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  This paper describes new theoretical investigation in which the boundary value

problem of the dissymmetrical two stage cascade connected multi-conductor system

has been analized by making use of position angle matrices. Our new analysis is very

helpful in acquiring a clear physical picture of the phenomena, because it gives very

easily the potentials along the lines due to multireflections of the traveling waves. And

it will enable the engineer to design for adequate protection of the system.

                           1. Introduction

   An analytical method was given in previous paperi) so that the potential and the

current of any point of the symmetrical many cascade connected multiconductor sys-

tem may be exactly obtained as functions of time, taking into consideration arbitrary

initial potentials and currents on the lines and assuming boundary conditions on the

lines without using the lattice diagram method. But it was assumed there that the sys-

tem was symmetrical. In this paper the dissymmetrical case has been treated although

the arrangement of conductors is the same at al1 stages of lines.

   However, as it is clear from the previous paperi) that these analytical solutions are

too complicated to use for numerical calculations and it takes a great deal of trouble to

put its method to practical use. Well, the calculation of potential for the cascade con-

nected single phase transmission line can be treated easily by means of the position

angle. Therefore, taking into consideration that electrical quantities can be written in

matrices for the multi-conductor system, it is evident that such calculation for the cas-

cade connected polyphase transmission system can be done more easily by using the

position angle of the matrix fbrm. But, the boundary conditions are so dissymmetrical,

that the position angle can not be used for the multi-conductor system, as dissym-

metrical matrices is not commutative for its multiplication.

   However, it has been found out that the addition theorem ofthe hyperbolic func-

tion of matrix holds good by adopting a new generalized manner under an extending

rule on the application of Sylvester's expansion theorem even ifmatrices do not satisfy

commutative law for multiplication, and therefore it has become to be able to introduce

the position angle matrix to the multiconductor system.

   In this paper, the boundary value problem of the dissymmetrical two stage cas-

cade connected multi-conductor system has been analized by introducing position

angle matrices and the results of calculations based upon this method have shown com-

plete agreement with the theory due to the traveling waves along the lines.
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                    2. Pseudo-Sylvesterfimction

   The typical function ofa square matrix {A] is defined 2) by

    f(M])=Co {U]+Ci ta]+'''''+C. la]"+･･･

where, [U] is the unit matrix and Co, Ci,･･･,C.,･･･are scalar constants. Now, the

fbllowing definition can be introduced.

(Definition 1) The functionfis called pseudo-Sylvester function if [,4] and [B] are

square matrices of order n and

    S),l {f([ttl] + [B])}=Z [Kr] (Sri) Z [Gs] (SS') f(ari + SSsi) (1)

                     rs
where, {A] and [B] cannot be added when they are not commutable for multiplication,
and [K,](Sri) is calculated by the fo11owing equation (2) as a,i (n = iZ.k

i Sri) is Sri-ple

characteristic root ofmatrix [i4] '
     '
            Mifiti}2""'k(a,. [u] - [,4])Srm

    [K,] (Srl) -                                                          (2)
             M--fi '2""' k (arm - or,l)Srm

              mil

and [G.] (Ssi) may be obtained similarly.

   It can be proved easily that matrix hyperbolic function is a kind of pseudo-

Sylvester function, for example the next relation can hold

    isp,l{sinh([A] ± [B])}=,S),l{sinh [A] cosh [B] ± cosh [A] sinh [B] }

Then next definitions are introduced to use matrix hyperbolic function on the calcula-

tion of the electrical potential and to emphasize to be pseudo-Sylvester function.

    (Definition2) SH([A]± [B])=smh [A] cosh [B] ±cosh [Al sinh [B] (3)

    (Definition3) CH([A]± [B])=cosh [,4] cosh [B] ±sinh [A] sinh [B] (4)

Then the following theorems for example can hold.

    (77ieorem 1) SH(- [A]+ [B])=- SH ([t4] - [B]) (5)

    (7heorem 2) SH([A]+ [B])cosh [C] +CH([,4]+ [B])sinh {C]

                 -SH([,4]+[Bl+[C]) (6)
    (7heorem 3) SH([A]+ [B])CH({C] + [D])+CH([A]+ [B])SH([C] + [D])

                 =SH ({A]+ [B]+[C] + [D]) '(7)

    (71heorem 4) SH([,tl] + [B])CH([B] + [,4])

                 -CH ([A]+ [Bl) SH ([B]+ [A]) (8)

   Next, the position angle matrix [6] is defined as follows :
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 (Definition 4) tanh [6] = sinh [6] (cosh [6] )"

                      = ( cosh [61 )-i sinh [6]

                      =[z] [k"]-i (k] (9)
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where, [z] is the square matrix whose elements are the impedances connected on the

ends of transmission 1ines, and

     [k *]=[pL +R] (1 0)
     [k]2= [pL +R] [pC+ G] (11)
where, [L], [R], [C], and [G] represent square matrices whose elements are induc-

tances, resistances, capacitances and leakances per unit length of transmission lines res-

pectively.

   3. Analytical method for the dissymmetrical 2-conductors transrpission system

                   and applications of position angle matrix

   The system illustrated in Fig. 1. is the i-stage cascade connected dissymmetrical

n-conductors transmission system and there are impedances, admittances and sources at

the points A, B, ..., and X The arrangements of Conduc.tors at all stages are the same

                                               ione another, and the 1ine length of the s-th stage is k (l = 2 k).
                                              s=1

                LineI Linell

A B J

h t
2

t
[
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Fig. 1 Simplified equivalent circuit of cascade connected polyphase transmission system.

   In this paper the initial conditions are not taken into account because the applica-

tion of the position angle matrix is our main purpose. Let [e, (x)] and [i, (x)] be the

potential and the current matrices in the operational forms at any point x of the s-th

stage line, the well-known formulas are obtained3) as fo11ows :

     [e, ix)] =sinh [k] x･ [als]+cosh [k] x･[k] (12)

     [i, ix)] =- [k"]" [k](cosh [k] x･ [ac,]+sinh [kl x･[%] (13)

where [a,] and [pt] are the constants of the integration to be determined by boundary

conditions.
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   Now, the analytical solutions in the case ofi -- 2 are obtained in the following way,

where electrical sources [EAl, [EB], [Ec] and impedances [ZA], IZB], [Zc] connect-

ed at junctions A, B, C are as shown in Fig. 2. Then the boundary conditions in this

case are as follows:

              Linel Lino ll

-- @)

?4

A- @)

?aj

tec]
t･vt

?q

-.--- l
A B c

      Fig. 2 A simple example of cascade connected polyphase transmission system.

    [ii (O)]=- [ZA]-' [ei (O)]+[ZA]-' [EAI (14)

    [ii (li)] =[i2 (li)] +(ZB]-i [ei (li)] -[ZB]-' [EB] (15)

    [i2 (l)]=[Zc]-' [e2(l)]-{Zcl-i Mc] (16)

    {ei (li)]=[e2 (li)l (17)
Denoting the position angles at the points A,B, C by [6A], [6B], [6c], the next

equations are derived from eq. (9)

    [ZA] [k"] -' [k]=tanh [6A] (18)
    [ZB] [k"]-i [k] =tanh [6B] (19)
    Vc] [k"]-i [k]=tanh [6c] (20)
The constants of the integration [ai], [a2], [Bi] and [62] are obtained from eqs.

(12) -- (20),

    [ai] = - cosh [6A] { SH([k] li + [6A]}-' {SH ([k] l2 + [6c])[CH([k] l

      + [6c])}-' [a2] + cosh [k] li ･[EA] - cosh [k] li {CH([6c]

      +[k]l)}-i cosh [6c]･M.]] (21)
    [a2]=- CH([k] l+ [6c]){SH([k] l2 + [6cl)}-i [S2]-i (sinh [6.] )-'

      × [sinh [6Bl [SH([6A] + {k] l,)]-i cosh [6A]･ [EA]+ cosh {6Bl･[EB]

      - [CH([6B] - [k] li)+sinh [6B] CH({k] li + [6A]){SH([k] li

      + [6A])}-i cosh [k] li]{ CH([6c] + [k] D}-i cosh [6c]'[Ec]] (22)
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    [Bi] = tanh [6A] ･ [ai] + [EA] (23)
    [B2] ={ CH([6c] + [k] l) }-i { cosh [6c] ･ [Ec] - SH({6c] + [k] l)･ [a2]}

                                                       (24)
where

    [S)] =CH([k] l2 + [6c]){SH([k] l2 + [6c])}-i +cosh [6B](sinh [6Bl)-'

      +CH([k] li + [6A]){SH([k] l, + [6A])}-i

Now, the pseudo-hyperbolic tangent is defined as follows :

(Ddinition 5) TH([A] + [B])=SH([,4] + [B]){CH([,4] + [B])}-'

Let [¢B] be satisfied by eq. (27), then

    TH [¢B] = [{TH([k] l2 + [6c])}-' +(tanh [6.])-i ]-'

   It is possible to explain that {¢B]

fbre eq. (25) becomes

    [SZ] -{ SH ([6A] + [k] l, )}-i SH ([6A] + [k] l, + [¢.]) (SH [¢B])'i

Let [ ¢k] be satisfied by eq. (29)

    TH [li;k] = [(tanh [6B])-' +{TH([kl l, + [6.I)}-' ]"

then it is possible to explain that I¢h]

sending point

line I. Therefore eq. (25) is written as follows :

    [SZI ={SH ([6c] + [k] l,)} 'i SH([6c] + [k] l, + [6kl) (SH [ti ])-i

Hence by eqs. (12), (21) t- (24), (28) and (30), [ei (x)] and [e2 (x)] are

    [ei (x)] =SH {[k] (li-x)+ [¢B]} {SH([6A] + [k] l, + [¢B])}-'

      xcosh [6A] [EA]+SH( [k] x+ [6Al){SH([k] l, + [6A])}'i SH [dik]

      ×{SH([6c] + [k] l, +[bh])}-i SH([6c] + [k] l,)

      ×(sinh [6B])-i cosh [6Bl･ [EB] +SH([k] x+ [6A])

      ×{SH([k] l, + [6A])}'i SH [6b]{SH([6c]

      +[k] l2 +[¢k])}-i cosh [6c]･[Ec] (31)
    [e2 (x)} =SH{[k] (l- x)+ [6c]} {SH([k] l, + [6c])}-i SH [¢B]

      ×{SH([6A] + [k] l, + [¢B])} -i cosh [6A]･ [EA]

      +SH{[k] (l- x)+ [6cl}{SH([k] l2 + [6c])} -' SH [¢B]

(25)

(26)

(27)

                           represents the position angle matrix at the end

point of the line I in the case of measuring from the end point C of the line II. There-

(28)

                                             (29)

                   represents the position angle matrix at the

of the line II in the case of measurifig from the sending point A of the

(30)
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      ×{SH([6A] + [k] l, + [¢B])} -i SH([6A] + [k] l,)

      × (sinh [6B])-i cosh [6B] ･ [EB] + SH{[k] (x - l,)+ {li k] }

       × {SH([6c] + [k] l2 +[6k])}-i cosh [6c]･[Ec] (32)

   In the foregoing analysis the application of the general equations derived above is

restricted to general circuits, since these simple multiconductor circuits adequately

illustrate the methods of analysis with a minimum amount of algebraic exercise. But,

in order to explain the phenomena quite easily, some of the transition-point networks

must be zero and others must be infinite.

   Consider, for example, the case, where the load impedance zA at the point A is

directly terminated, and the potential of lines at the pointA is given by [EA]. Then

    [6A] =[O]

therefore the first term of the right hand in eq. (31) becomes

    SH {[k] (l, - x) + [¢B] }{ SH( [kl l, + {¢B]) }'i [EA] (3 3)

The position angle matrices at the pointsA andB, when the point C is chosen to be the

standard point, are written by [k] li + [¢B] and [k] (li -x)+ [¢B],respectively,
that is to say, by making use of the position angle matrix, eq. (33) is the acceptable

solution for the potential of the cascade connected transmission line.

   On the lines of arbitrary series impedance (load or internal impedance) in the

power source [EL4] at the sending pointA, these solutions are of interest in showing the

eq.(3 1)'s right hand with position angle matrix [6A ] .

   Assuming the load impedance [zc] at C to be zeros and the potential oflines at the

point A to be [Ec],the third term of the right hand in eq. (31) is,by putting [6c] =

[o],

    SH( [k] x+ [6A]){SH( [k] l, + [6A])}-i SH [6b]

      × {SH( [k] l, + [¢'i ])}'i [Ec] (34)
SH [6k] { SH( [k] l2 +[¢-i ])}-i [Ec] in eq. (34) is obviously the potential ofline

at the point B, and then eq. (34) represents the potential of line at the pointx. Thus,

eq. (34) gives the potentials of the transmission lines in the position angle matrix form.

It is clear that the influence of the position angle matrix [6c] in eq. (31) is so vital as

to change the characteristics of the potential at the receiving point C through the

medium ofa series impedance (load or internal impedance) in the power source [Ec].

   In general, in the study of traveling waves due to multireflections, cosh [6] ･ [E]

must be used instead of the power source matrix [E],when there is a load (or an in-

ternal) impedance in series of the power source, where [6] is the position angle matrix

at the point that the power source is located.

   The second term of the right hand in eq. (31) involves numerical calculations that

are time-consuming and prohibit the use of these expressions for rapid engineering cal-

culations, because there are lines on both sides of power source [EB]. Next equation in

this term
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    SH([6c]+[k] l2 )(sinh [6B])" cosh [6B]･[EB] (35)

represents a rigid distribution of the line potential at the point C that is calculated by

using the position angle matrix of the base point B. Therefore the second term ofthe

right hand in eq. (31) is the potential of the point x in the form of the position angle

matrix as well as the third term of the right hand in eq. (31).

   Furthermore, let [zB] be [O],then [6Bl becomes [O],but [6B] can not be put

in [O] directly at the second term of the right hand in eq. (31). Then this term must be

reformed as fo11ows :

    SH( [k] x+ [6A]){SH( [k] li + [6A])}-i [[U] +(cosh [6B])-i sinh [6B]

      × CH( [k] li + [6A]){SH( [kl li + [6A])}-i +(cosh [6B] )-i sinh [6B]

      ×CH( [k] l2 + [6c]){SH([k] l, + [6cl )}-' ]-' [EB] (36)

Therefore, let [6B] be [O] in eq. (36), then next equation is obtained

    SH([k] x+ [6Al){SH([k] l, + [6A])}-i [EB]

and this expression gives the line potential at the point x in the form of the position

angle matrix of the base point A, where [EB] is the potential of the line at the point

B.

   Now, in addition to those wave trains may be found from the following transfor-

mation in eq. (31),

[EA ]

[6A ]

 ll

[¢B]

 x

(l, -x)

-

-

-

-

-

-

-

.

.

.

-

-

[Ec]

[6c]

 l2

[6k]

(l-x)

(x- l, )

   It is sometimes possible to obtain the solution for a given problem by an ingenious

interpretation of the solution for an entirely different one. In our analysis, it should be

remarked that eq. (32), which has been obtained purely analytically, is properly match-

ed with the results get from eq. (31) and Fig. 2.

   As shown before, it is evident that the idea of the position angle matrix is usefui

for calculations of the potential at the multi-conductor system; owing to the following

reasons :

   (1) It wi11 serve our porpose better to consider the position angle matrix, rather

      than the multirefiections of the traveling waves.

   (2) The required equations of the line potential can be written simply and directly

      from the system diagram without so much as calculatingby making use ofpo-

      sition angle matrices.
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                           4. Conclusion

   It has been found out that the addition theorem of the hyperbolic function of

matrix holds good by adopting a new generalized manner under an extending rule on

the application of Sylvester's expansion theorem even if matrices do not satisfy commu-

tative law for multiplication. Then, by introducing position angle matrices to the

multi-conductor system we can very easily obtain the potential on the dissymmetrical

multi-conductor system with three boundary conditions. This does not lead only to

carry out the computations with ease, but also this leads to get equations of potentials

of the cascade connected multi-conductor system from the diagram directly using the

position angles; thus the solution can be got without solving the boundary problem of

partial differential equations.

References

1
)
2
)3
)

Y. Inagaki and M. Kido, Trans. of IEE of Japan, 99,A, 17 (1979)

S. Hayashi, A. C. Circuit Theory and Transient Phenomena, P. 502, OHM-SHA, Tokyo (1961)

S. Hayashi, Surges on Transmission Systems, P. 106, DENKI-SHOIN, INC, Kyoto (1955)


