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Determination of Sample Size in the Mixture of Normal Distributions

Toshitaka Koike*, Ken’ichi Mor1 ** and Shigeo KASE**

(Received Oct. 29, 1982)

Two-sample scheme by Stein has been utilized to determine the practical sample
size in many opportunities. Since he assumes that the population is normal, his tech-
nique can not be applied directly to non-normal population. The present paper deals
with the determination of sample size applicable in the case where the population is
a mixture of normal distributions. The determination method using range is selected
for modification because of simplicity of calculation. The estimation procedure of
variance of mixed normal distribution is derived through estimation of expectation of
the range. The robustness of Stein’s method in this population is also discussed.

1. Introduction

Since Stein® devised a two-stage sample size determination scheme, many authors
have investigated this procedure and given some derivatives from this scheme. However,
the Stein’s method and other’s assume the normal population from which the sample
is drawn. If the sampled population is not follow the normal distribution, change of
sample size necessary to estimate the population parameters becomes a serious matter
of great concern.

The method which uses a sample range after Stein’s has been utilized from its sim-
plicity of calculation. This paper discusses a sample size determination method with a
range for the population which is a mixture of two normal distributions with different
means. Specifically, the expected value of sample range in mixed normal distribution is
first treated, and thereby an estimating method of variance in the mixed normal distri-
bution is proposed. One of the sample size determination method in the mixed normal
distribution is also discussed.

2. Stein’s Sample Size Determination Procedure

Stein’s two-sample procedure for estimating the mean of normal population N(u,
0?) with a confidence interval of preassigned length is summarized as follows :
Draw the first sample of tentative size IV, , and calculate

— N,
X1 = le x,-/Nl,

z

52 =

[EY]

(x;=%1)? [V — 1),

i=1

With the above values, determine the necessary sample size N by

N=(ty,-1(0)35/1)*, (1)
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where ¢y —; (@) is the two sided o point of Student’s t-distribution with V, —1 degrees
of freedom and 27 stands for the length of confidence interval given in advance.

Some other investigators derive the simplified method using sample range by dint
of this procedure. The unbiassed estimate of variance is given by 6> = (r/d,)?, where
sample range r = x(,) — X (). Substitution of this into the Stein’s method yields the
sample size such as

N=(ty, -1 @)1/ (d21))?, » 2

where d, is the expected value of the distribution of a range from standard normal
distribution, d,’s are already tabulated for use in control charts, and X stands for
the order statistic in the sample of size n,

Replacement of X, /40 for I/tN, _1(e) reduces?® Eq.(2) to

N=(40r/(dyx1))?. 3
This treatment means that confidence coefficient is about equal to 0.95 and the length

of confidence interval is about 5 percent of x,.

3. Distribution of Order Statistics from Mixed Population

3.1 Distribution of Symmetric Statistic

Behboodian!) shows the distribution of symmetric statistic T = g (X;, X,, ...,
X,,) from the mixed population which is composed of two probability density functions
f1 (x) and f;(x) with mixing proportions p (0 <p < 1) and g such that

f&X)=pfix)tqf(x), q=1-p.

He points out that the density fr (f) of symmetric statistic T is given by

fr®= E nCer " fr, ), (4)

that is, the density of 7" is a binomial mixture of the densities f1, (2) of the Ty’s.
Tw =8 (X1, Xk2, . . ., Xgp) and Ty is a statistic for which the X;,’s are independent
with density f, (x) if i < k and density f, (x) if i > k. Moreover, symmetric statistic of
a random sample stands for the statistic 7= g (X;, X,, ..., X,;) which is invariant by
any permutation on X;’s.

3.2 Distributions of Order Statistics

Since the order statistic is one of symmetric statistics, its distribution from mixed
population can be obtained as described in 3.1. From Eq. (4) the first order statistic
X(1) in ascending order for variables X;, X,, ..., X,, has probability density

n
fx(l)(x)= kEO anpk qn_kfx(kl)(x)a )

where X (1) is the first order statistic in the sample Xy,, Xx,,..., X, kn- The density
of X(iry, fx (1)), is given as
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Fegeny® =k £1G) [1-F1())* 7 [1-F,()]" "

t=-K)LE) [1-F ) ]* [1-F, @]"7*71, (6)
where F; (x), i = 1, 2, is the distribution function. The distributions of the other order
statistics can be similarly obtained.

4. Sample Size Determination for Mixed Distribution

4.1 Expected Value of Range from Mixed Normal Distribution

Consider the range R of sample from mixed normal distribution

F@)=(p/o) ¢l (x—u ) /o] +(a/a)o[(x-u) /0],

which results from mixing of two normal distributions having means p;, Mo, respei;-
tively, and equal variance o2, where ¢ (?) is a density of standard normal distribution.
Since R = X(,) — X(1), the expectation of R becomes

ER=E(Xm—X1))=E (X)) —E(Xq))-

The distribution of X(;) from mixed normal distribution is given by Egs. (5) and (6),
and the one of X(,) is calculated in the same manner described in 3.2 as

Framy@ = EynCrP* @7 o @ | ™
P my () = (K19 9 1) [ 0] { @ [(x-p ) [ 0 1157
(@ [(x-1) /0 1}"* +(nk) [ 0) #{(x-12 ) [ 01 { @ [(x~1 ) [ 01}

{@ (x—w) /o 1}"7F 71, . ®)
where & (x) = * ¢ (¢) dt. Therefore, E (R) may be rewritten as
I . Kk n—k
E®= Z ACcP"d" "ERy), ©)
where E (R;,) stands for
ERi)=E X@n)) —E (X(x1)) - ‘ (10)

From Egs. (6), (8), and (9), it is easily obtained by the same derivation as in the normal
case that ‘

E(Rk) = l: x{fX(kn) (x) _fX(kl) (JC) } dx

o [1—{<I>(x)}’°{q>(x+A)}"—k—{1—q>(x)}k
{1-®(x+8)}" *]ax
=oD (k) , ’ (11
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where A =(u; — p, )/ 0. Consequently Eq. (9) is rewritten as

E®= 2 nCer*a" *aD(k) = oD .

The coefficient D is defined by

n —_—
D=2 nCeP*q" "D (k) ,

which is a function of parameters n, p and A .

If there exists no mixture of distribution, we may use A=0 orp=0 (orp=1)in
Eqgs. (11) and (12). In this case, it is readily known that Eq. (13) gives the same coef-
ficient D as in the normal case d,. Table 1 shows the coefficients D’s for some values
of n, p and A. This table gives the D’s for p ranging up to 0.5. The D’s for p more
than 0.5 are symmetrical with respect to p = 0.5, so that any value of D can be easily

obtained from this relation.
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(12

(13)

Table 1  Table of coefficients D
A 0.1 0.2 0.3 0.4 0.5
0.5 3.112 3.139 3.157 3.168 3.172
1.0 3.215 3.315 3.382 3421 3434
1.5 3.383 3.588 3.719 3.791 3.815
2.0 3.606 3.933 4,128 4,231 4.263
n=10 2.5 3.872 4.325 4.578 4.705 4.744
3.0 4.166 4.746 5.048 5.193 5.236
35 4478 5.181 5.528 5.687 5.733
4.0 4.797 5.623 6.012 6.183 6.232
4.5 5.121 6.068 6.497 6.680 6.731
5.0 5.446 6.514 6.983 7.177 7.230
0.5 3.777 3.809 3.831 3.844 3.849
1.0 3.907 4.023 4.098 4.140 4,154
1.5 4.124 4.352 4.485 4.555 4.577
2.0 4422 4.762 4.939 5.026 5.052
n=120 2.5 4.799 5.217 5422 5.518 5.546
3.0 5.178 5.696 5.917 6.016 6.045
3.5 5.598 6.184 6.415 6.515 6.544
4.0 6.029 6.676 6.914 7.015 7.044
4.5 6.466 7.170 7.413 7.515 7.544
5.0 6.904 7.664 7.913 8.015 8.044
0.5 4.132 4.167 4.191 4.205 4.209
1.0 4.277 4.401 4478 4.521 4.535
1.5 4,523 4.757 4.887 4,953 4.974
2.0 4.861 5.193 5.355 5.433 5.457
n=30 2.5 5.264 5.668 5.846 5.929 5.953
3.0 5.707 6.159 6.344 6.428 6.453
3.5 6.170 6.656 6.843 6.928 6.953
4.0 6.643 7.155 7.343 7.427 7.452
4.5 7.119 7.654 7.843 7.927 7.952
5.0 7.598 8.153 8.343 8.428 8.452
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4.2 Determination of Sample Size

If a population distribution is not normal but mixed normal, the Stein’s sample
size determination method, Egs. (2) and (3), can not give the correct value in the
original form. In what follows, the device in such a circumstance shall be discussed.

If p and A of mixed normal are known, the estimate G2 of o® is given by

0* = (r/D)* =’{(X(N,) —x(1y)/D}?

from sample range r and coefficient D for n = N,. However, such derived 62 is not a
variance of mixed distribution but an unbiassed estimate of variance of original normal
distribution. The population mean 6," and population variance 6, of mixed distribu-
tion are

0, =puy +qua,

0,=0% +p(u — 6" )> +q(up — 6, )%

(14)

By use of the relation of Eq. (14), the estimate of variance of mixed distribution can be
derived. In order to generalize the assumption slightly, let p and u, be known. The
algorithm of sequential estimation of the variance is shown as follows :

1) Determine an initial value of &.

2) Calculate A=(f; — 42 )/ 6=(Xx1— 1)/ (pG).

3) Find the coefficient D corresponding to N;, p and A from the table, and obtain the
new estimate G, as 6,=r/D.

4) 1If |6, — & | < e (infinitesimal number), then proceed to 5), otherwise set & = 01, go
back to 2) and repeat. . ,
5) From Eq. (14), the estimate of variance 8, becomes

8,=6"+((1-p)/P)(¥1~ 1), (15)
If 6, is obtained by the above algorithm, the total sample size NV can be calculated
by
N=(ty,~ @]1)* s, (16)
or ‘ ;
N=(40/%,)%6, , ' (17)
from Eq. (2) or (3). |

4.3 Effect due to Prior Informations ’

This section treats the changes of sample size under the condition that the values of
p and p, deviate fairly from their true values. Suppose that a procedure based on Eq.
(16) is applied to the determination of sample size. Dependency of sample size on
prior information for Eq. (17) can be discussed in the similar way as described in this
section,

It is rather troublesome for one to treat the sample size analytically because of its
non-linearity in p and u,, so we will calculate its change numerically. Let N, (the first
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sample size) be equal to 10, the length of confidence interval (2/) 400, and confidence
coefficient (1 — ) 0.9. Assume also that the sample range (r) and the sample mean
(x1) are calculated from the first stage sample as 1800 and 3500, respectively. These
postulated values give total sample size N’s for several values of p and u, by the pro-
cedure in 4.2, Fig. 1 shows these results as contours of V. The value on each lattice
point is N for the corresponding p and u,. In Fig. 1, the column of p = 1.0 and the
row of u, = 3500 show the values in case of no mixture. The shifts from these column
and row mean that there exists the mixture. The values in case of u, = 3500 is only
shown in Fig. 1, because the another case is given by symmetry.

, S
4500 + 31 / 29 29
30 29 29
29 29 29
29 29 29
29 29 29
40001 29 29 29
29 29 29
29 29 29
29 29 29
9 29 29 29 29 29 29 29 29 29
3500 + 29 29 29 29 29 29 29 29 29 29
i " 1 -+ 1
' 02 i 04 ' 0.6 ' 0.8 ' 1.0

Fig. 1  The change of sample size as a function of u,, p

From Fig. 1, it is known that little effect by mixture is recognized when p = 0.9.
Little drift of sample size is also seen in case of p = 0.8. If the mixture of distribution
is limited to this extent, the shift of u, from its true value scarecely has an effect on
sample size. If y, is nearly equal to 3500, the change of p brings little change of sample
size. In fact, if p is enough large or if the means of the two distributions are not so
distinct from each other, the shift of prior knowledge of p and u, has little effect on
sample size, '

Contrarily if p is small or if there is a significant difference between the two means
of distributions which are mixed, it is concluded from Fig. 1 that the sample size is
quite sharply effected by the shifts of p and u,. When one is to determine the sample
size in this situation, p and u, must be estimated deliberately.

If p is very small and y, differs from 3500 meaningfully, extraordinary sample size
is calculated. For example, if p is 0.1 and u, is 2500, then N = 757. For this instance,
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u, is estimated as &; = (3500 — 0.9 X 2500) / 0.1 = 12500. It is rather hard to consider
that a sample range as 1800 is obtained from the mixed normal distribution with y; =
12500 and p, = 2500. The reason why an extraordinary sample size such as 757 is
calculated seems to be due to this fact. If such an extreme result is encountered, one
must regard the prior knowledge as wrong and reestimate these values.

4.4 Robustness of Stein’s Method

Assume X; is a random variable with mean 6;, and the order of variance and covari-
ance of Xy, X3, ..., Xpisn”" (r>0). Then the expectation of functiong (X4, ...,
X, ) is given? by

E(g(Xl,...,Xk))=g(01,...,9k)+0(n_’).

This relation suggests that if the population is distributed normally N ( u, ¢?), the ex-
pectation of Eq. (3) E,, (W) is

E, W)=[400/u]?.

On the other hand, if the population distribution is a mixed normal (mean 8,  and
variance 0,), the expectation E,, (V) of Eq. (3) becomes

Ew (V)= [40 Do/ (d,0,) 17 .

Letu=90,, 0> =0, , then, from Eq. (14), the ratio of expectations in normal and mixed
normat distribution is determined as

Ey(N) | Ep (N)=(dy | A)? [14p(1-p)A*]. (18

Eq. (18) which is a function of N, p, and A gives the robustness of Eq. (3). Table 2
summarizes some numerical results of Eq. (18). From this table it can be seen that the
ratio of sample size expectation for each N shows the same behavior against the varia-
tion of p and A. If p =0.1 (or p =0.9), the ratio scarcely differs from unity even for
large A, and this fact shows that the Stein’s method is robust. If p =0.2 (or 0.8), then
the Stein’s is robust for the mixture of order A < 3. The same is true for order A <
2.5, A< 2and A< 1.5 in case of p=0.3(0.7), p $0.4(0.6) and p =0.5, respectively.
Therefore, for the mixed distribution with parameter values which fall within these
intervals, Egs. (2) and (3) can be safely applied to the determination of sample size.

For the mixed distribution with parameter values which situate outside the above
range, the Stein’s is not so robust. Then it is reccommendable to use Egs. (16) and (17)
instead of Egs. (2) and (3) for sample size determination.
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Table 2  The ratios of sample size expectation

P 0.1 0.2 0.3 0.4

A 0.9 0.8 0.7 0.6 0.5

0.5 1.000 - 1.000  1.000 1.000 1.000

1.0 0.999 1.000 1.002 1.004 1.004

1.5 0.996 1.001 1.009 1.015 1.017

2.0 0.991 1.004 1.023 1.037 1.042

N =10 25 0.987  1.013 1.045 1.070  1.079
' 3.0 0.988  1.026 1.074 1111, 1.123
3.5 0.993 1.045 1.107 1.154 1171

4.0 1.004 1.067 1.143 1.199 1.220

45 1.020 1.091 1.179 1.244 1.268

5.0 1.038 1.116 1.214 1.287 1.314

0.5 1.000 1.000 1.000 1.001 1.001

1.0 0.996 1.000 1.001 1.009 1.011

15 0.986 1.002 1.021 1.036 1.041

2.0 0.971 1.009 1.053 1.083 1.093

V. =20 25 0.954 1.025 1.098 1.146 1.162
' 3.0 0.942  1.049 1.152 1218 1.241
3.5 0.936 1.080 1.211 1.295 1.324

4.0 0.937 1.114 1.273 1372 1.406

45 0.942 1.151 1.334 1.448 1.486

5.0 0.951 1.188 1.393 1520 1.563

0.5 1.000 1.000 1.001 1.001 1.001

1.0 0.995 1.000 1.007 1.013 1.015

1.5 0.981 1.003 1.030 1.048 1055

2.0 0.961 1.016 1.071 1.108 1.121

N =30 2.5 0942  1.040 1.130 1188  1.207
' 3.0 0928  1.074 1.199 1.277 1.303
3.5 0922 1116 1.274 1.371 1.403

4.0 0.923 1.161 1.350 1.465 1.503

45 0.930 1.208 1.426 1.557 1.601

5.0 0.940  1.256 1.499 1.646 1.694

5. Concluding Remarks

Although this paper postulates that the prior informatibns abot p and y, are
known, accurate prior informations are often unusual. Therefore the dependency of
sample size on the prior informations is discussed and the robustness of Stein’s method
for mixed normal distribution is referred from such a situation.

The method suggested here is also applicable to the determination of sample size
when a nuisance factor comes into the stable system. An example is perceived in es-
timation of the mean production rate or the mean production time in a stable produc-
tion line participated by non-skilled person. Since the prior informations can be ob-
tained to some extent even in this situation, the assumptions made in this paper are
not so unreasonable,
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