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(Received June 17, 1982)

A continuum model for the solid-solid transformation kinetics of diffusion type is
proposed. The theoretical procedure to figure the continuous cooling transformation
diagram (C-C-T diagram) and the time-temperature-transformation diagram (T-T-T
diagram) is discussed. Some numerical results are given for the austenite-pearlite
transformation of steels.

1. Introduction

The phase transition, or the phase transformation, problem is one of the most
attractive problems not only in physics but also in the practical engineering field.
Limiting to the industrial attention, for example, the effective thermo-mechanical
treatment in the plastic forming of metals, such as the ausforming, is possible only
when plenty of knowledge about the solid-solid phase transformation is assumed.”
The continuous casting in' the steel industry is just a case of the solidification
processes.” '

The phenomena, of course, attracted the attention of the continuum mechanists.
Their studies cover from the soft phonon mode of lattice vibration to the heat treat-
ment of steels, and also from rational mechanics to the finite element formulation.® -®

The phase transformation problems in engineering are always the coupled
problems in such fields as mechanics, thermodynamics and, above all, metallurgy.
This complicates the situation greatly when the problems are studied from the point
of continuum mechanics. This might be the main reason why, except few excellent
studies®+®, the transformation kinetics could not help sometimes, in fact, leaving
untouched, and at other times being assumed to be too simple, although the ther-
momechanical consideration was often done minutely and strictly.

In this paper a continuum model for the solid-solid transformation kinetics is
proposed. It is shown that the model employed can well describe the metallurgical
reality.!® - The theoretical procedure to figure the continuous cooling transfor-
mation diagram (C-C-T diagram) and the time-temperature-transformation diagram
(T-T-T diagram)'® is discussed when the material experiences the uniform temper-
ature histories. As an application of the theory presented, some numerical calcu-
lations are conducted for the austenite-pearlite transformation of steels.

2. Continumh Model of Solid-Solid Phase Transformations

2.1 General formulation
Let us consider a material in the course of solid-solid phase transformation.
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Of course, the phase transformation discussed here is not necessarily limited to the
transformations between two phases but could be the transformations among the
multi-phases. ,

We assume that the phenomenological aspect of the solid-solid phase trans-
formation of metals is characterized by a set of equations;

é=5(69 07 69 -f; x)’ (2'1)

where & represents a set of scalar variables, which describes the extent of phase
transformation. It is worth noting that & should not be regarded as the fractions of
each phases only. In fact later we will illustrate a case in which the other additional
variables are necessary to describe the system rationally by means of Eq. (2.1). The
variables ¢ and ¢ stand for the temperature and the temperature rate, respectively,
while . # represents all other factors that might take effect on the progress of phase
transformation. The stress tensor or the strain tensor induced in the material is very
likely included in .~ when the stress assisted transformation or the strain-induced
transformation is discussed.” The argument x in Eq. (2.1) means that the trans-
formation might be inhomogeneous in nature.  In. later discussion, however, the
inhomogeneity is not considered.
When the material experiences a uniform temperature history;

0(x, 1)=9(r) (2.2)

and, therefore,
6(x, t)=_d‘lt.o(t)ze(z), 2.3)

Equation (2.1) reduces to
&(x, N=B(&(x, 1), 9(1), 6(1), F(x, 1)). 24

The variable x is omitted in the following discussions, since it plays only a role of
parameter. Assuming that differential equation (2.4) can be solved for an appropriate
initial condition, we get a solution

&(N=A(t;9,0). 2.5)

The arguments ¢ and & mean that the solution depends on the temperature history
experienced by the material.
Let us write the solution for the constant rate cooling history

0=9(t)=T—at, (T, a: constant) (2.6)
as
§()=cA(t; T, o). 2.7

The C-C-T diagram is no other than the curves. of Eq. (2.7) plotted in the plane of
6(linear scale)—t(logarithmic scale) with & as a parameter. When we put a=0 in
Eq. (2.7), the solution reads '

§(t)=14(t; T). (2.8
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This solution for various values of T figures thé¢ T-T-T diagram in the same plane.

In order to present a clear continuum mechanical view for the phase trans-
formation problems we disregard the dependence of . # in Eq. (2.1) in the following
study. In other words the phase transformation discussed here is not coupled with
the other phenomena, such as, for example, the mechanical behavior of materials.
Moreover, only the case in which Eq. (2.1) has a structure

ezs’s(ea 0.)'9E(09 0) (29)

will be treated. Cahn started his discussion on the transformation kinetics from
this type of equation but with no §-dependence.'¥

Before going further it is worth noting here that the Johnson-Mehl type trans-
formations!'®:'® ;

p=1—exp(—V.)
V., :rinGSN(t—r)sdr
03

(2.10)

is fully expressible by means of the governing equation proposed here; Eq. (2.1).
In Eq. (2.10) p stands for the fraction of the phase produced by the transformation,
while G and N mean the growth rate of the product and the rate of nucleation per
unit volume of matrix, respectively. Generally both G and N depend on the temper-
ature strongly. In the case of isothermal phase transformation, Eq. (2.10) is reduczd
to a familiar form ' '

p=l—exp<—_}fo ;‘nGaNﬂ). @.11)

When the material experiences a general temperature history (2.2), the time
differentiation of Eq. (2.10) gives

t . k
= J 3(%G3N>(t—r)2dr (1—p), @.12)
L]
which is rewritten by means of the additional state variables ¢, r and s as
p=q(—p), ¢=r,

F=s, $=6<%7TGSN>.

(2.13)

This is in fact no other than a special form of Eq. (2.1), but with no f-dependence.in
this case. Let us emphasize here the following fact: The way of reducing a higher-
order differential equation to a set of first-order differential equations by introducing
the additional state variables is very familiar in mechanics.!® 8

2.2 Phase transformation of steels

In order to illustrate how the theory proposed so far works in practice, we apply
it to the phase transformation of steels. When the steel is cooled from the tempera-
ture above the eutectoid temperature, or the equilibrium transformation temperature,
the initial phase, the austenite, transforms to such phases as the felite, the pearlite
(ferrite--cementite), the bainite and the martensite. In this study we model the actual
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transfromation of steels as follows:

1. The phases produced by the transformation are the pearlite and the martensite
only.

2. The martensitic transformation takes place at a certain temperature, the mar-
tensitic transformation point, with an infinitely large speed.

The C-C-T and the T-T-T diagrams are then derived theoretically for the pearlite

transformation in the temperature range between the eutectoid temperature and the

martensitic transformation point.

Let the fraction of the pearlite be p. The production rate of pearlite p takes the
form from Eq. (2.9) as

p=4,P(p, 6) 4P(6, 6). 214

We assume that the material functions ,P(p, 6) and ¢P(6, 6) are expressed by

e ),

oP(0, 6)=4[Dn(6)}%,

(2.15)

where the material constants C and D are the functions of the temperature rate only;
C=C(6), D=D(6). (2.16)
The form of the function 7(6) will be discussed later minutely.

When the constant cooling process (2.6) is chosen as the temperature history, the
differential equation (2.14) is solved for the initial condition p(0)=0 to give

p(t)zC(a)Kl—exp[—D(a){J.:(n(T—at))%dr}4}ﬂ. @.17)
Equation (2.17) together with Eq. (2.16), i.e.,
C=C(a), D=D(a) @.18)

in our present context enables us to construct a C-C-T diagram.
For isothermal history, =0, Eq. (2.17) reduces to

2(1)=CO)[1—exp{—DO)n(T)*}]. 2.19)

This figures a T-T-T diagram in the temperature-time plane.
It is important to stress here the following fact: Comparison of Eq. (2.19) with
Johnson-Mehl’s Eq. (2.11) reveals the physical meaning of the function z(6) as

n(@):%nGsN (2.20)
and

C(0)=1, D(0)=1/4. ’ (2.21)

For further characteristic of the material functions z(8) and C(6), let us examine
the general features of the T-T-T and the C-C-T diagrams of the steels. The T-T-T
diagram, the thin lines in Fig. 2.1, could be characterized as follows!® ;
I. It figures like the letter C in shape.
2. The pearlite transformation completes perfectly in the temperature range between
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Fig. 2.1 T-T-T and C-C-T diagrams; Schematic representation.

the eutectoid temperature (T,) and the martensitic transformation point (7).
This leads us to the following estimation of #(f):

(0)—0 for 0T, or Ty. (2.22)

We might, therefore, assume 7(6) to have a form

w(0)=a( Lazt )”A (¢ T )””’ @23

where a, A, n,, M and ny are the material constants. The general feature of C-C-T

diagram, the thick lines in Fig. 2.1, could be summarized as follows'®:

1. The transformation does not always complete. In fact along the thick broken
line in Fig. 2.1, the transformation stops.

2. There exist the upper critical cooling rate («,) and the lower critical cooling
rate (o).

3. Compared to the T-T-T diagram, the diagram shifts to the larger-time side as
a whole.

The characteristics 1. and 2. state that for the cooling rate between «, and «,, the

transformation stops on its way and therefore the austenite is retained. Now we

could conclude that

Cla)=1 ; a<a,,
0<Cle)<<l ; <A<y, (2.24)
C(a)=0 ; a=a, .

In other words, provided that the material constant is given, the equations
C(@)=0 and C(a)=1 (2.25)

determine the upper and the lower critical cooling rates, respectively.

3. Numerical Illustration
3.1 T-T-T diagram

Following Inoue et al®, we employ a numerical representation

720—6\52 /08— 6.80
omoan(B) " (439)
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for =(6). As was explained before, the eutectoid temperature and the martensitic
transformation point are

T,=720°C and T4=380°C, 3.2)

respectively, in this case. We have also mentioned in Eq. (2.21) that for the iso-
thermal transformation

C=1 and D=1/4. (3.3)
Equations (2.14) and (2.15) together with Egs. (3.1) and (3.3) yield
1 4. 720—T\®2 / T—380\%% ,

p=1 exp[ 1/4 0.173( s ) ( - ) t] (3.4)

The numerical results by means of Eq. (3.4) for the several values of T between T,
and Ty are plotted in Fig. 3.1 to give a T-T-T diagram in the temperature-time plane.
In this figure, and throughout this study, we regard that the beginning and the com-
pletion of the transformation are equivalent to the time corresponding to p=0.01
and p=0.99, respectively, as is done commonly in the metallurgical studies. The
T-T-T diagram obtained demonstrates a very good applicability of the theory pro-
posed here. An example of the progress of transformation is shown in Fig. 3.2
for T=450°C. - ’
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Fig. 3.1 T-T-T diagram.
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Fig. 3.2 Progress of transformation.
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3.2 C-C-T diagram
Let assume that the material functions C(a) and D(a) have ’the form shown in

Figs. 3.3 and 3.4, respectively. In other words, from the present practical version
of Eq. (2.25),

C(2,)=001 and C(a)=0.99, | (3.5)

we have a,=200°C/sec and ,=30°C/sec. The C-C-T diagram for the constant
rate cooling history )
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Fig. 3.3 Assumed form of C. Fig. 3.4 Assumed form of D.
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Fig. 3.6 Progress of transformation.
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0=T20—at | : (3.6)

is now obtainable from Eq. (2.17) with Eq. (3.1). The result is shown in Fig. 3.5.
The progress of transformation is illustrated in Fig. 3.6 with the cooling rate as a
parameter. The thin broken line in Fig. 3.6 corresponds to the thick broken line in
Fig. 3.5, where the transformation stops. The C-C-T diagram calculated well
realizes the overall characteristics of the diagram listed in Sec. 2.2.

Figures 3.7 and 3.8 are the similar results when the function D(a) is replaced by
a little more complex function as shown in Fig. 3.9.

The quantitative application of the theory to the practical engineering problems
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Fig. 3.7 C-C-T diagram.
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Fig. 3.8 Progress of transformation.
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Fig. 3.9 Assumed form of D.
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will be the subject of further research. -
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