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   This paper describes two tyPes'ofapproximation methods for finding a hamiltonian

walk with minimum cost in a given graph. One is the constructive methpd, and the

ratio of the cost of the solution to that of the optimum solution has the worst-casg

bgund of 2. The other is the iterative improvement method which is based on the
well-known a-optimal method. The computation times of them are proportional to

O(n2+mlogm), where n and m are the numbers of vertices and edges of the graph,

respectively.

1. Introduction

   The problem for finding a hamiitonian walk with minimum cost in a given graph

is closely related to the well-known travelling salesman problem, and solutions to

this problem and its variants have practical applications in many fields.

   This problem is described as fbllows:'Given a connected graph G, find a closed

walk with minimum cost, which passes through every vertex of G at least once. Note

that this problem is a generalization of the travelling salesman problem which is

defined as follows: Given a connected graph G, find a circuit with minimum cost,

which passes throUgh every vertex of G exactly once. Since this problem is, one of

the NP-hard problems," it is not reasonable to expect to find a polynomial-time

aigorithm for its exact solution. Therefore, it has been desired to develop an eMcient

technique that yields a good approximate solution to this problem. However,

reports of such research have apparently not been published to date except for the

case of graphs without costs.2' We can immediately replace this problem with the

travelling salesman problem, by finding the shortest pathS betwgen any two vertices

of the graph. In this case the time complexity is O(n3), where n is the number of

vertices of the graph. Since it is generally said that the desired time complexity of

algorithms for applying to large networks or systems'iS O(n) or at most 0(n2), the

eMciency of this method will not be satisfactory for practical applications.

    In this paper we propose two types of approximation methods with time com-

plexity O(n2+mlogm), where m is the number of edges of the graph, for finding a

hamiltonian walk with minimum cost in a given graph, and discuss the accuracy and

average computation times of them. One is a constructive method based on the

shortest spanning tree, and the ratio of the cost of the solution to that of the optimum

solution has the worst-case bound of2. The other method is based on the Z-optimal
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method3' which is an

optimization problems.

eMcient heuristic method to solve the combinatorial

                           2. Preliminaries

    This chapter introduces some of concepts and terms used in this paper. We

deal with a connected and undirected graph with positive cost written along the

edges. A hamiltonian yt'alk is a closed walk which passes through every vertex of

the graph G at least once. A cactus is defined as a connected graph in which every

block is either a bridge or a circuit without edges that join two non-consecutive

vertices of the circuit. Hence, in the cactus every pair of circuits, which is adjacent

each other, always has a common vertex. A graph H(G,) is defined as a graph which

represents a hamiltonian walk of a grapli G,, i.e., the graph H(G.) means a multigraph,

in which every bridge of G. has a pair of edges in parallel.

    Throughout this paper n and m denote the numbers of vertices and edges of the

graph G, respectively. The symbol c(i, J') is used to represent the cost of an edge (i,

.i), similarly c(G.) is the sum of costs of edges in G,. Hereafter, we will call c(G,)

simply the cost of G,. Furthermore, the cost of a hamiltonian walk is written by h,

and its minimum value is h..

                         3. Constructive Methed

    Let T be a spanning tree of a graph G. Then we can consider a hamiltonian

walk of G, which can be constructed by traversing twice every edge of 71 Therefore

denoting a shortest spanning tree of the graph G by Z, the following inequality is

derived:

          c(Z)<h.g2xc(Z). ' (1)
    Now let us assume that there exists a co-tree of T}, and the cost of its edge (i,

J' ) is less than that of a path P,(i, 1') in Z, i.e., c(i, J')<c(P,(i, 1')). Then adding an

edge (i, j) to T, and forming a circuit, a new hamiltonian walk, whose cost is less

than 2× c(7:,), can be constructed. Hence, by repeating above operations, it will be

expected that we can find a hamiltonian walk whose cost is approximately equal to h..

    On the basis of the above considerations, an approximation algorithm to solve

the problem for finding a hamiltonian walk with minimum cost is deduced as fo11ows:

{Algorithm l]

    Step 1 : Find a shortest spanning tree Z.

           Let 71 be a co-tree of Tk.

           Set Hi-,--Z, H2<-¢, and h<--2×c(Z).
    Step 2: Calculate a distance matrix D, of 7k.

    Step 3: Let Ah(i,J') be a decreased value ofh by adding an edge (i, ]') to the graph

           H,, i.e., dh(i, j)==D,(i, 1')-c(i, j).

           Calculate dh(i, J') for every edge (i, J')E 7'k.

    Step4: Remove a set of edges, {(i,j)} with Ah(i,j)l.O, from 71. Arrange the

           edges beloriging to 7} in the non-increasing order of Ah.
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              t
   Step 5: If 71 becomes empty, then go to Step 6. 0therwise choose the first

          element (i, .i) of 71, and set

              7-1:`'- 71r " {(i･ .i)} '

          Find a path P(i, J') in Hi, lfthere is no path between the vertices iand

          .i, repeat Step 5. 0therwise set

              H, <-- H, - P(i, .i),

              H12eH2 U {(i, i)} U P(i, .i),

          and

              h<-h-Ah(i, j),

          and repeat Step 5.
   Step 6: Add an edge in parallel with every edge in Hi, and set

              H(G) <- H, U H2,

          and stop. ,
   We shall show that the time complexity ofthis algorithm is O(n2+mlogm). It is

clear that Steps l and 2 require O(n2) operations. Since the number of edges in TL is

m-n+1, Step 3 is executed m-n+1 times, and Step 4 requires at most O(mlogm)

operations. Step 5 is repeated until it becomes impossible to find any path P(i, ,i)

in Hi. Therefore the total amount ofoperations required at Step 5 is O(m). Step 6

glpeearrallionnes?dS O(M) OPerations･ Thus algorithm l requires o(n2+mlogm) total

[Example l] ･･
   Let G be the graph depicted in Fig. I. We show the procedure to find the

hamiltonian walk inGby using the algorithm 1. -

                           5
                           s5 29 7

6

6

1

1
1

4

13

13 13

1

17 1

  20
4

   28

6

Fig. 1

13

15

 132

  17

3

   8

A graph G.

9

1



40 Syoichiro YAMADA, Akira UMEzu, Tetsuo OHNo and Tamotsu KAsAi

   The cost matrix [c(i, ,f)] of G is given by Eq. (2):

                   -- 28 17 l3 -- 15 -
                   -- 20 l3 5- 9-4
                   28 20 ---- l3 13 -
                   17 l3 -- 11 1.- 6 2
          [c(i.i)]= 13 5- ll -.6･- 13 -
                   ---l6-5-1
                   -913--5-T-1
                   15 - 13 6 13 --- 17
                   - 4- 2- 11 17 -.
The shortest spanning tree Z obtained in Step 1 is shown in Fig. 2.

and H2<-¢･

                           527

                       6 13
                                       4

                   614 31                                   1

                         16
                                      13

                                   8' '9

               Fig. 2 A shortest spanning tree 71s (h=.'2×e(7'le)=:90).

The distance matrix [D,(i, .i)] of Z is obtained as Eq. (3):

                   - 24 39 20 l3 19 21 26 20
                   24 - 25 6 11 5 5'12.4
                   39 25 - l9 26 20 22 13 21
                   20 6 19 -71362
         [Ds(i, 1' )] = 13 11 26 '7 - 6 8 13 7

                   19 5 20 1 6 .- 2 7 1
                   21 522 382 91
                   26 12 13 6 l3 7,9- 8
                   20 421 27118-.
The values of dh(i, 1') calculated in Steps 3 and 4 become as fo11ows

          dh(1, 3)-=l1,

          Ah(1, 8)=11,

          Ah(3, 7)- 9,
          Ah(2, 5)== 6,

          Ah(2, 3)== 5,

          dh(1, 4)= 3.

:

(2)

Set M-Z

(3)
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   Then the first element of 7-t is the edge (I, 3). Finding the path P(l, 3) of

Hi(==7Z,), we have P(1, 3)={(l, 5), (5, 6), (6, 4), (4, 8), (8, 3)}. The resultant graphs

Hl and Hh are shown in Fig. 3.

   As it is impossible to find any more path P(i, D, where (i, J')E7}, we cannot

improve the solution, hence go to Step 6. A graph H(6) obtained in Step 6 is shown

in Fig. 4. Thus the algorithm finds a hamiltonian walk of cost 79 in 6.

   As seen from this example, H(C) obtained by the algorithm 1 is a connected graph

constructed by fundamental circuits and circuits of length 2. In other words, H(G)

is a cactus in which every bridge has two edges in parallel. Furtherrnore it is clear

that the cost of H(G) obtained by the algorithm 1 is at most 2×h..

                   4. IterativelmprovementMethod

   The l-optimal method has been known as one of the most eflective methods for

solving the combinatorial optimization problems in the graph theory. In this

method the solution is iteratively improved by exchanging Z edges contained in an

initial graph Hb for another Z edges which are not in Ho. In order to restrict the

computation time in practical range, we use 2-optimal method with two conditions

as .fo11ows ;

1) An initial graph Ho is a cactus in which every bridge has two edges in parailel.

2) The patterns obtained by exchanging two pairs of edges are restricted only three
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types shown in Fig. 5, where broken lines represent the edges to be added and the

lines marked with crosses represent the edges to be removed to improve the solution.

We vvill call these operations, shown in Fig. 5(a), (b) and (c), exchange 1, 2 and 3,

respectively.

   Exchange 1 intends the improvement of the solution by replacing a pair of

adjacent circuits with a circuit. As shown in Fig. 5(a), let Ci and C2 denote adjacent

circuits with a common vertex vo, and vi and v2 denote the vertices adjacent to ve.

Then this operation is described as the following. Ifand only ifthere exists an edge

(vi, v2) in G and the inequality denoted by Eq. (4) is satisfied, the edges (vo, vi) and

(vo, v2) are removed, and the edge (vi, v2) is added:

          C(Vi, V2)<C(Vo, Vi)+C.(Vo, V2). (4)
   Exchange 2 intends the improvement of the solution by exchanging a pair of

non-consecutive edges in a circuit for a pair of edges which are not contained in the

circuit. As shown in Fig. 5(b), ifand only ifthere exists a pair of edges (vi, v3) and

(v2, v4), and the inequality denoted by Eq. (5) is satisfied, by removing the edges

(vi, v2) and (v3, v4), and by adding the edges (vi, v3) and (v2, v4), the solution can

be improved:

          C(Vi, V3)+C(V2, V4)<C(Vi, V2)+C(V3, V,). (5)

   Similarly, exchange 3 intends the improvement of the solution by exchanging a

pair of edges for another pair of edges of adjacent circuits. As shown in Fig. 5(c),

if and only if edges (vi, v4) and (v2, v3) or edges (vt, v3) and (v2, v4) are contained
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in G, and the inequality denoted by Eq. (6) or (7) is satisfied, by removing the edges

(vi, v2) and (v3, v,), and by adding the edges (vi, v4) and (v2, vs) or the edges (vi, v3)

and (v2, v4), the solution can be improyed:

          C(Vi, V,)+C(V2, V3)<C(Vi, V2)+C(Vs, V`), , (6)

          e(vi, vs)+c(v2, v4)<c(vi, v2)+c(v3, v4). (7)

   Note that the walk obtained by our method is guaranteed to be connected by

setting two conditions described before.

   The outline of the algorithm will be described below.

[Algorithrn 2]

    Step 1: Set Hb-Hb.
    Step 2: Apply exchange 1 to every pair of a(ljacent circuits in H..

    Step 3: Apply exchange 2 to all circuits in H..

    Step 4: Apply exchange 3 to every pair of adjacent circuits in H..

    Step 5: Ifthe value ofh is decreased by the operations ofSteps 2, 3 and 4, repeat

           Step 2, otherwise stop.

    It is clear that Steps 2, 3 and 4 are executed in O(n2) operations. Since the

process of repeating Steps 2, 3 and 4 will terminate when and only when the solution

has no room of the improvement, the time complexity of the algorithm 2 is O(Kh2),

where K is the number of the iterations.

[Example 2J

    As an example, let us consider again the graph G shown in Fig. 1. Suppose we

choose Hb shown in Fig. 6, as an initial graph. The graphs obtained by applying the

algorithm 2 are shown by solid lines in Figs. 7, 8 and 9. The value of h has been

irnproved from 95 to 68. Since the minimum yalue of h is 68, our,method also
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produces the optimum solution in this example.

    Two iteratiye improvement methods can be considered according to how to

choose the initial graph in algorithm 2. In the first method the initial graph is

constructed by using algorithm 1. It will be clear that the initial graph obtained by

this method satisfies the condition l) mentioned previously. Hereafter we will call

it simply the iterative method I. In the second method the initial graph is con-

structed, based on the shortest-distance tree with an appropriate starting vertex, by

the same technique as the constructive method. We will call the second method

simply the iterative method II. Since the iterative method II is permitted to choose

many distinct initial graphs, it will be expected to get over some local minima.

                        5. ExperimentalResults

   The ratios between the values of optimum and suboptimum solutions are Iisted

in Table I. These data were obtained on random graphs with uniformly distributed

random costs, and the number of the data is 20 for n==5 and 10, and 7 for n= 15.

We obtained the optimum solutions by using the branch-and-bound method.`' Since

it is extremely diMcult to find the optimum solutions in large-scale problems, the

solutions in only small problems were shown here.

    It was described before that the ratio R for the constructive method is at worst

2, however, from this results, R.<1.1 for n<l5, i.e., the 'average computational

error is less than 1O percents for n<15. This fact means that such a method has high

accuracy for small size graphs. In the iterative method II on over 20 trials with

different initial graphs, the computational error is decreased in about 5 percents as

compared with that of the constructive method.

    Figure 10 illustrates the average computation time t for the graph with m=-5n

edges, where the program was written in FORTRAN and run on NEAC ACOS-
7717oo. In this figure it is confirmed that the average computation time of every

method is O(n2), if the graphs used as data are sparse, that is, the number of edges

are far fewer than n(n-1)12. Furthermore it became clear that the average value

of the repetition number Kin the iterative method II was constant independently ofn.

Table 1 The ratio R between the values of the optimum and

      suboptimum solutions

n

Constructive method

Iterative method I

Iterative method II

Ra

Rm

Ra

Rm

Ra

Rm

5

1.022

1.146

1.oo9

l.117

1

1

10

1.072

1.247

1.052

1.220

1.029

' 1.152

15

1.103

1.181

1.079

1.168

1.056

1,124

Ra and Rm : average and maximum values of R.
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6. Conclusions

   We proposed in this paper two types of approximation methods, i.e., the con-

structive method and the iterative improvement method, for finding the hamiltonian

walk with minimum cost, and discussed them from the view point of the accuracy

and computation time. The results are summarized as follows:

1) The ratio of the cost of the solution obtained by the constructive method to that

of the optimum solution has the worst-case bouhd of 2.

2) The average computational error of the constructive method is less than 10

percents in the range of n<15.

3) The average computational error of the iterative improvement method with

random choice of initial graphs can be decreased in about 5 percents as compared

with that of the constructive method, when we select 20 for the number of iterations.

Although by increasing the number of iterations the accuracy may be higher, the

computation time will increase rapidly.

4) The average computation time of our method is proportional to n2, when the

given graphs are so sparse that the ratio m/n is constant.

    Since almost all graphs representing large networks or systems are sparse, it.can

be understood that our methods have higher computational eMciency than the

conventional methods.
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