
Program Construction Using State Refinement
Rules

言語: English

出版者:

公開日: 2010-04-06

キーワード (Ja):

キーワード (En):

作成者: Fujita, Yoneharu, Nishida, Fujio

メールアドレス:

所属:

メタデータ

https://doi.org/10.24729/00008609URL

47

Program Construction Using State Refinement Rules

Yoneharu FuJITA" and Fujio NisHiDA*

(Received June 15, l982)

 This paper presents an approach to program construction using state-refinement

rules in a top-down manner from specifications of a program.

 Both the domain dependent and independent knowledges necessary to various

program construction are stored in a form of the state-refinement rules. The system

synthesjzes specified programs by combining these rules through state unification and

furthermore, optimizes them.

 t. Introduction

 This paper presents a method of knowledge-based semiautomatic program
construction5' with the aid of a program library. The given specifications written

in state expressions are checked whether they meet a causality relation called the

precedence condition. Subsequently it is examined whether the procedures that

satisfy the given specification can be constructed by using expansion and linkage

rules in various fields stored in a program library. These rules take a kind of form

of production rules and are called transformation rules (abbreviated to TRs). Though

the specifications and TRs are written on the basis of state expressions for con-

venience to link various specified elements, procedural expressions F(x) can be also

used by interpreting {F(x)} as the state brought after the procedure has been applied.

Each synthesized part of programs using TRs is optimized and more precis2 speci-

fications are given by the operation parts of TRs and refined until programs written

in a specified target language are obtained.

 On the other hand, if the refinement process cannot proceed, the system requires

more precise specifications to the user.

 2. SpecificationsofPrograms

2.1 StateExpression

 Basic specifications of a program are sometimes given in relation-oriented forms

by a predicate formula. This formula takes one of the fo11owing forms:

 e,Ae,A...Ae.(1), (P->e,)A(rP-)e,) (2), (P.e,)A(-P--)T) (3)

where P is a coniunction of several literals and denotes a test condition, ei, e2, ...

and e. called post conditions are Iiterals or formulas consisting of some combi-

nation of (1), (2) and (3), and denote some relations brought by a certain operation.

T denotes the value `true' and means no operation needed for the output condition.

Each fbrmula can take some quantifiers.

" Department of Electrical Engineering, College of Engineering.

48 Yoneharu FtuTA and Ftijio NrsHiDA

 There are many cases where procedural specifications are more convenient and

suitable than declarative specifications. In these cases, procedural expressions

enclosed with braces are used for the description of relations brought by the pro-

cedures. For example, {y:==x} means an equality relation y==x.

 A state is characterized by some relations which hold at a certain point of flow-

chart diagram of a program and represented by a predicate fbrmula enclosed by

braces { }.

 A primed variable is introduced as a term of the value immediately after a

certain operation has been applied on the same variable, for instance, as y'=f(x3 y).

 An abbreviated description X(1..n) for an ordered set is also introduced for

(X(i)1i--1..n). For eXample, Y(1..n)=X(1..n) represents liiE(1..n) Y(i)=X(i).

Furthermore, the expression {Vif(1 . .n) S(i)} denotes a state brought by iterations of

an operation S(i) for i from 1 to n.

2.2 Precedence Condition

 Specifications of a program are given by a sequence of states which involves

the input state, some intermediate states and the output state. Let {Qi} (i=1, 2, ...)

denote states. Then, the basic form of specifications is written as

 {ei};{e,};...;{e.}. (4)
 Each adjacent pair {ei};{ei.i} means that, if the system is in a state {ei} it

moves to the next state {ei+i}.

 Furthermore, a form of repetition

 {*(P.ei)A(-P --e- T)} (5)
is introduced to represent a sequence of repetition of a state {(P.ei)A(-P.T)}

which contjnues so long as the condition P holds. Expression (5) can be also inter-

preted as a macro-state if the final state brought after repetition is taken as the state.

 In expression (4), each state can be divided into several substrates by partitioning

the parts of the involved logical formula A2i and they can be arranged in a form of

expression (4) again.

 Using the partitioned form of the predicate formula of a state together with an

iterative form expression (5), users can describe the program specifications as precisely

as possible jf necessary.

 In these specifications each variable of any state must satisfy the fbllowing

precedence conditions.

(1) Any non-primed variable of the argument of a function or a test condition of

 a logical formula in a state S must be defined on the range of the index of a loop

 or at the post condition of a logical formula in a state on every path which

 leads to the state S.

(2) For any primed variable y', the non-primed variable y must be defined

 in advance.

 In addition to the above state expressions, some specifications and declarations

must be given in advance with respect to (a) target languages, (b) names ofinput and

output variables and (c) types and structures of variables.

Program Construction tLsing State Rofnement Rules 49

 [Example 1] This example shows specifications of a program which selects

passers in an entrance examination. The input data is a table named as SCORE

which contains the identification number of every examinee and his scores of three

subjects in each row. The output data are the sorted table of SCORE in descending

order of total scores of three subjects and the mean value of the total scores. The

number of examinees is M. The specifications are given as follows:

717rget-L(PASCAL)

I]?V-OUT: IN (SCORE (1..M, 1..4)); OUT (SCORE (1..M, 1..5), MEAN);

TypE: IN71EGER (SCORE); S7'IRUCT: ARRAY (SCORE (1..M, 1..5));
PROG: {SCORE (1..M, 5)== SCORE (1..M, 2)+SCORE (1..M, 3)
 +SCORE (1..M, 4)
 AA VRG== Mean (SCORE (1 . . M, 5))} ; {SCORE' (1 . . M, 1 . . 5) =-:

 sort (SCORE (1..M, 1..5), key=SCORE ($, 5), rel:l2;)}

 where Mean (X(1..n)):.S(x(1..n))!n

 S= :.S(X(1. .n)) : S -Ml)A{P'iE(2. .n)S'-+(S, X(i))}.

 In the above specifications, the functions Mean and .X are assumed to be non-

primitive functions and defined in the `where' part of the specifications, whereas,

`sort' is hierarchically defined by TRs in a database as shown in Table 1.

 3. TransformationRules

3.1 The Structure of Transformation Rules

 The TRs are represented on a state representation basis for convenience to link

various specification entities as follows:

 {P(X)};e(X,Y) (OP:opvart),

where X and Y are input and output variable vectors necessary for the second-order

unification and P(X) and 2(X, Y) are called the precondition and the postcondition

of the TR respectively.

 If the precondition of a TR does not contain any expression of a result of a

computation to be obtained in adyance, the precondition of the TR is generally

omitted in this paper for simplicity. TRs with and without preconditions are called

linkage and expansion types respectively.

 The operation part (abbreviated to OP) suggests some procedures, state-

sequences or supporting TRs which support and help refining the state transformation

rule. The procedures are written in a target language such as ALGOL or LISP and

prefixed by the symboi `p:'. The state-sequences are described in the same form as

that of the specification and prefixed by the symbol `s:'. Likewise, the names of

supporting TRs are prefixed by the symbol `t:'.

3.2 ClassesofTRs

 The TRs are classified into three classes and are attached the prefixed class

numbers. The first of them contains program-oriented TRs which generate the

fundamental program structures. The second consists of data-oriented TRs related

50 Yoneharu FuJiTA and Fujio NisHiDA

to specific data structures. The third consists of problem-oriented TRs which

belong to specific problem fields such as symbol manipulation or database manage-

ment system. Many TRs of the first and second classes belong to the expansion

type. Table l shows some examples of TRs, where x, y and z are used as input,

intermediate and output variables. TR 1-(D and TR 1-(ED are TRs which give

assignment and conditional statements respectively, where Si and S2 denote some

procedures and Si and S2 are the relations brought by the procedures. TR 1-@

shows an iterative application of a twoplace functionf to a set X(1..n). TR 1-(ID

shows an iterative state expression similar to TR l-@ in a recursive form for a

certain initial value ofy where d(x) is a primitive function. TR 1-@ and TR 1-@

have a convenient fbrm to designate an iteratiye expression using a higher level

language specification`', while TR 1-@ and @ have forms directly applicable to

program construction where some mathematical induction2' needs to be applied in

planning of program construction for specifications as shown in [Example 4]. Fur-

thermore, TR 1-@ and TR 1-@ postulate relations of the form <{A}; {B}>
which asserts the transitivity from the state {A} to {B} as a precondition.

 Next, a part of the class of data-oriented TRs is shown. TR 2-(D represents an

exchange of contents of two vector variables. TR 2-@ represents the function

which moves the maximum of a set to the head of the set using TR 2-(!). TR 2-@

represents the sorting of a set of yectors in descending order ofa certain function value

of vector components as a key using the above TR 2-@, where `$' denotes an arbitrary

yalue in (1..n). As seen in the above, they constitute a hierarchical structure to

some extent and are used as basic TRs of data management and symbolic manipu-

lation.

 Finally, a part of TRs associated with linear algebra are shown as an example

ofthe class ofproblem-oriented TRs. TR 3-ml and TR 3-m2 say that the dimension

of a triangular and a unit submatrix contained in a matrix is extended by one re-

spectively. TR 3-m3 assures that any matrix can be transformed into a triangular

matrix and TR 3-m4 says that a triangular matrix is transformable to a unit matrix,

where "Matrix (A(1..k, 1..k+1))", "Partialtriangular (A(1..k, 1..k+1), i..k)"

and "Partialunit (A(1..k, 1..k+1), 1..i)" for anyiin (1..k) are predicates which

assert "A(1..k, 1..k+1) is ak×(k+1) matrix", "A(1..k, 1..k+1) is ak×(k+1)
matrix containing a triangular sub-matrix from i to k in rows and from i+ 1 to k+ 1

in columns" and "A(1..k, 1..k+1) is a kx(k+1) matrix containing a unit sub-

matrix from 1 to i in rows and from 2 to i+1 in columns", respectively.

 Table1 TRs of classes1 2 and 3.
 ,

1-@ {z==f(x)}(p:z:=f(x))
1-(El) {(P(x)-.Si(z, x))A(7P(x).S2(z, x))} (p: CfP(x) then Si(i, x) else S2(z, x))

1-@ {ViE(1..n)y'-fk[y, X(i))} (p:for i: -1 to n do y:-f(y, X(i)))

1-@ {Y(1..m, 1..n)==X(1..m, 1..n)} (s:ViE(1..m)Y(i, 1..n)=X(i, 1..n))

1-@ *{(P(x)--y'=f(7,x)Ax'=d(x))A(-P(x)-"T)}
 (p: while P(x) do y:--:fty, x);x:=d(x) od)

1-@ <{S(n)}>A<{S(k)};{S(k-1)}>;{S(1)}
 (s:{S(n)} ; * {(k>1.({S(k)} ; {S(k -1)))} A(-k>1-T)})

1-@ <{S(1)}>A<{S(k)}; {S(k+1)}>; {S(n)}
 (s: {S(1)} ; * {(k<n-"({S(k)} ; {S(k +1)}))A(-ik<n-. T)})

Program Construetion Using State Rofnement Rules 51

2-O

2-@

2-@

3-ml

3-m2

3-m3

3-m4

{X'(1..m)=Y(1..m)AY'(1..m)=X(1..m)}
 (s:(X'(1..m), Y'(1..ni))==T-exeh (.¥(1..m), Y(1..m)))

{ Y(1. .n)= Mbx(Y(1. .m, 1 . .n))}

 (s:{ViE(1..m))'7E(iti l..m) (f(Y(i, 1,.n))lf(Y(7, 1..n)).T)

 A(7f(Y(i, 1..n)) >=.f(Y(J', 1..n))-(Y'(i, 1..n) - }'(J', 1..n)

 AY'(.i, 1. .n)- Y(i, 1. .n)))})

{Y'(1..m, 1..n)= sort(Y(1..m, 1..n), key -::f(Y($, l..n)), rel:).)

 (s:{Y(l..m, 1..n) Earra)･, (1..m, 1..n)};

 {viE(1..m)f(Y'(i, 1..n)) -=: Max(f(Y'(i..m, 1..n)))};

 Y'(1..m, 1..n) -sort (Y(1..m, 1..n), key =f(Y($, 1..n)), ret: 2)})

{Partialtriangutar (A(1..k, 1..k +1), i. .k)};

 {Partialtriangular (A'(1..k, 1..k +1), i-1..k)}

 (s: {Vlf(1 . .i) pci'E(1 . .i+ I) ((l==i-A'(l, f)-A(l, .i)/fl(l, l+ 1))

 A(l<i A'(l, i)-A(t, ,i)-A(l, i+ 1)*A(i, y')IA(i, i+ 1))})

{Partialunit (A(1..k, 1..k+1), 1..i)};

 {Partial"nit (A'(1..k, 1..k+1), 1..i-1)}

 (s: {VIE(1 . .i)P:iE(1 . .i+ 1)A '(i+1, .i)=-A(i+1,]')-A(l, .i)*A(i+ 1, l+ 1)})

{Mbtrix (A(1..k, 1..k+1))};

 {Partialtriangular (A(1..k, 1..k+ 1), 1..k)}

 (t: 3-ml, 1-@)
{Partialtriangulai' (A(1..k, 1..k+1), 1..k)};

 {Partialunit '(A(1..k, 1..k+1), 1..k)}

 (t: 3-m2, 1-@)

i
i
l

3.3 Search of TRs

 In order to have access to appropriate TRs quickly, two kinds of tables are

implemented.

 One of them is an indexing table which contains headings and pointers to the

locations of the bodies of TRs for class 1 and 2 or contains those to the entries of

tree-like files for TRs of class 3. A heading consists of some logical symbols such as

*, V, --> and procedural names for class 1 and 2, and some domain or attribute names

for class 3. The system has access to the heading by the aids of characteristic ex-

pressions involved in the current state expression in the application of TRs.

 The others are tree-like files. The TRs of type 3 are classified into several

subclasses such as algebraic formulamanipulation. In each subclass a tree-like file

is implemented so that the system is accessible to appropriate TRs by refering to

detailed characteristics of states such as domain of data and the number of literals

as seen in problem solving.6)

 4. Refinement ofSpecifications

4.1 LinkageandExpansion

 Specifications by a user or the expanded parts by TRs are partitioned, arranged

and optimized, then the resulted states on a branch are refined from the left. The

system searches a unifiable post condition of a TR with a predicate formula contained

in the next leftmost state in the branch using the indexing table and files.

 The principle of unification procedures is based on the rules of projection,

elimination and imitation in five rules of the general second order unificati,on intro-

duced by T. Pietrsukowski.i'

52 Yoneharu FuJiTA and Fujio NisHiDA

 If a unifiable TR is found and it is an expansion type, a pointer to the OP of the

TR is recorded for the expansion to be done later. If the unifiable TR is a linkage

type and the unified precondition of the TR is not subsumed by the predicate formula

of the leftmost state of the branch, the precondition is set as an intermediate state

and a pointer to the OP of the TR is recorded. This process continues until such a

unified precondition of a TR is subsumed by the predicate formula in the leftmost

state of the branch or it is not needed in the appearance of an expansion type TR.

This operation is called linkage of states.

 If the linkage is impossible due to lack of stored knowledge, the system requests

some suggestions to the user. In such a way, the linkage proceeds from the left to

the right in each branch.

 After finishing linkage between states in each branch, each state is expanded by

replacing it by the pointed OP according to the respective types of OP as fo11ows:

 Suppose the applied TR to a pair of states {ei};{e3} has a form of {e2};

{es} (OP: R), then a sequence of expressions {ei} ; {e2} ; R; {e3} is constructed,

where R is a sequence of states or procedures.

 In the above, if the state ei leads to e2 and R also leads to the state es without

interpolating any intermediate state, {ei} and {e3} can be deleted. However, for

the later usage as the heading of this program section and others, they are sometimes

left in forms of [ei] and [e3].

4.2 Arrangement of Substates and Optimization

 As mentioned in section 2 and 3, the state expressions in the specifications given

by users or in the expansion forms obtained by applying TRs sometimes involve

logical coojunctive forms eiAe2A...Ae., where each ei(i=1, 2, ..., n) is a literal

or a complementary implication form like expression (2) or (3). The system par-

titions these formulas into several parts and arranges them according to the

precedence condition and constructs a sequence of substates {ei} ; {e2} ; .･･ ; {e.}.

Subsequently, a global optimization is tried over a sequence of substates on the

branch.

 The main optimizations are (a) factoring of loop-constant expressions from an

iterative state expression, (b) loop fusion for several iterative state expressions and

(c) elimination of redundant computations by moving a common part of computation

appearing in branches to the front of them. In practical situation such common

factors often appear in various modified forms. To facilitate to deal with various

forms, several optimization procedures are implemented. They are called by the

aid of the type of state expressions and optimize the state expressions.

 The next example shows a loop fusion

[Example 2] The first state expression in [Example 1] is rewritten by substituting

the `where' part into the main part of the specifications as fo11ows;

 {SCORE (1 . .M, 5)=-SCORE (1 . .M, 2)+SCORE (M, 3)+SCORE (M, 4)

 AMEAN=S'/MAS==SCORE (1, 5)

 AVi((2..M)S'l+(S, SCORE (i, 5))}. (6)
 Then the second and third lines in expression (6) are arranged to satisfy the

Program Construetion Using State Rofnetnent Rules 53'

precedence condition as follows:

 S- SCORE (l, 5) AViE (2. .M) S'-+(S, SCORE (i, 5)) AA VRG-S'!M. (7)

 The first line ofexpression (6) is transformed to the following form by TR 1-@ ;

 ViE(1. .M) SCORE(i, 5)-SCORE(i, 2)+SCORE(i, 3)+SCORE(i, 4). (8)

 By searching a common factor in iteration state expressions (7) and (8), ex-

pression (8) is at first partitioned into the following two expressions:

 {SCORE (1, 5) -= SCORE (1, 2)+SCORE (1, 3)+SCORE (1, 4)} ; (9)

 {ViE(2. .M) SCORE(i, 5)-SCORE(i, 2)+SCORE(i, 3)+SCORE(i, 4)} (10)

and then two iteration expressions (7) and (10) are fused. In this way, expression

(6) are refined and optimized to the following form :

 {SCORE (1, 5)-SCORE (1, 2)+SCORE (1, 3)+SCORE (1, 4)} ;

 {S- SCORE (1, 5)} ;

 {ViE (2. .M) (SCORE (i, 5)==SCORE (i, 2)+SCORE (i, 3)+SCORE (i, 4)

 AS'-+(S, SCORE (i, 5)))} ; {A VRG--S'IM}.

 If there remains any non-primitive expression in the target language after

arrangements and optimizations, the system repeats the refinement process.

 5. Example

 Two examples are shown in this section. The first shows an expansion of a

specification and the second involves a planning process of a program construction

using some TRs of linkage type.

[Example 3] Construction of a sorted score table.

 The refined specifications shown by expression (10) are expanded to the following

program by substituting M and 5 for m and n in TR 1-@ respectively:

 S:=SCORE (1, 5);
 for i: =2 to M do

 SCORE (i.. 5):-SCORE (i, 2)+SCORE (i, 3)+SCORE (i, 4);

 S':= S+SCORE (i, 5) od;

 AVRG: -SlM.

The part of a sorting program is constructed from the second state expression of

[Example 1] by the aids of TR 2-@, 2-@ and 2-@, and substitutions Y(1..m,

1..n)<-SCORE (1..M, 1..5) andf<Y(i, 1..n))-SCORE (i, 5) as fo11ows:

 for i:=1 to M do forj:==i+1 to M do

 if -SCORE(i, 5)).SCORE (1', 5) then

 (SCORE (i, 1...5), SCORE (J', 1.,.5))

 :-exch (SCORE (i, 1...5), SCORE (]', 1...5)) od od.

 An expansion of assignmefit statement of "exch" by TRs {(x',y')=exch (x,y)}

(s: t=xAx'==rAy=:t), TR 1-@ andTR 1-CD yields the foliowing remaining program

part:

54 Yoneharu FuJiTA and Fujio NisHiDA

 for i1:== 1 to 5

 do t(i1):,=SCORE (i, i1) od;

 for il:=1 to 5

 do SCORE (i, il):==SCORE (j, il) od;

 for il:=1 to 5

 do SCORE (j, i1):==t(i1) od.

[Example 4] Conversion to a unit matrix.

 This example shows a construction of a solving program of a simultaneous linear

equation in terms ofan array representation (1 . .k, l . .k+1), where the first column

denotes a constant vector corresponding to the Oth degree coeMcients of variables

and each pivot is assumed to be non-zero. The program part of the given speci-

fications is

 {Matrix(A(1..k, 1..k+1))};

 {Partialunit(A(1..k, 1..k+l), 1..k)} (11)
 An application of TR 3-m4, which is found by using a tree-like index file of

linear algebra, to expression (1 1) yields

 {Matrix(A(1..k, 1..k+1)};

 {Partialtriangular(A(1..k, 1..k+1), 1..k)};

 {Partialunit(A(1..k, 1..k+1), 1..k)}. (12)

 Subsequently, it is found that TR 3-m3 links the second state of expression (12)

with the first state and a linkage at the higher level is completed. The second state

expression contained in expression (12) is found to be an applicable form of TR

1-@ of mathematical induction and the postulate of the induction is found to be

assured by TR 3-ml, then the global transition by TR 3-m3 is refined to an iterative

transition by TR 3-ml after the substitution ofk for n in S(n) as fo11ows:

 {Matrix(A(1,.k, 1..k+1))}; i:==k; whiie i>1 do

 {Partialtriangular(A(1..k, 1..k+1), i..k)};

 {Partialtriangular(A(1..k, 1..k+1), i-1..k)};i:=i-1 od;

 [Partialtriangular(A(1.,k, 1..k+1), 1..k)]. (13)

 By a similar way to the above, the global transition by TR 3-m4 in expression

(l2) is also refined by the TR 3-m2 and 1-@ as fo11ows:

 [Partialtriangular(A(1..k, 1..k+1), l..k)];

 i: =1; whileik do {Partialunit(A(1..k, 1..k+1), 1..i)};

 {Partialunit(A(1..k, 1..k+1), 1..i+ 1)};i:==i+1 od;

 {Partialunit(A(1..k, 1..k+l), 1..k)}. (14)

 The replacement of the transitions in the while-statement contained in ex-

pressions (13) and (14) by the OPs of TR 3-ml and 3-m2 yields the following pro-

cedure :

Program Cbnstruetion tLyitrg State Rofnement Rules 55

i: =k; while i>1 do

 for l: ==1 to ido for J':==1 to i+1 do

 if l - i then A(l, j):--A(l, J')IA(l, l+ 1)

 else A(l, j'):-A(l, J')-A(l, i+1)*A(i,j)/A(i, i+l)

 od od'
 '
 i:==i-1 od'
 ,
i:==1; while i<k do

 for l: ==1 to ido for J':=1 to i+1 do

 A(i+1,j):==A(i+1,j)-A(l,j)*A(i+l, l) od od; i:-i+1 od

6. Conc!usion

 An experimantal system is constructed on a LISP system by using 33 keells.

The required time fot generation of small programs including the program of

[Example 3] is several seconds for each.

 The future problems of this project are to increase the fiexibility of specifications

by introducing various specification forms and to apply this system to generations

of system programs like compilers.

1
)2
)3
)4
)
5
)6
)
7
)

 References

T. Pietrzykowski, Journal of ACM, 20, 333 (1973).

Z. Manna and R, Waldinger, Communications of ACM, 14, 151 (1971).

Y. Fgjita and F. Nishida, IECE Trans., J-61D, 103 (1978).

J. T. Schwartz, Computer Languages, 1, i61 (1975),

D. R. Barstow, Artificial Intelligenoe, 12, 73 (1979).

F. Nishida and Y. Fujita, Proc. of IJCAI-79, 659 (1979).

H. Kuroki, F. Nishida and Y. Fujita, Proc. of 23-th Conference of IPSJ, 399 (1981).

