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An Approach to Reliability Evaluation of Redundant Structures®

Martin GRIMMELT **

(Received November 15, 1981)

The basic ideas of evaluating the reliability of structures are summarized. The effects
of the type of structure and of probability distribution parameters are shown. Some methods
of reliability analysis are compared together with their respective results when applied to cer-
tain sample structures. The idea of considering only the significant failure mode is intro-
duced.

1. Introduction

As structural systems become more complex nowadays, the question of how safe or
unsafe they are becomes increasingly important, too. The public wants to know the risks
of failure of certain structures, the failure of which might lead to the loss of human life.
On the other hand, the engineer might want to know how to design a structure or part
thereof in order to maximize its overall reliability. For this, new techniques are necessary
which model the structure’s resistance on the one hand, and its loading on the other hand
as random variables. Observed data show that loads and resistance are not deterministic
values but have varying properties. Therefore the rules of stochastic theory have to be
introduced into civil engineering practice. There are various publications on this matter,

16),

only references 17) may be mentioned here.

2. Reliability

2.1 General Remarks

In order to analyse the failure behavior of a structure, component failure has to be
understood. In this paper only short notes can be given, and the chapter on component
reliability may serve as an introduction to the basic ideas of reliability evaluation.

2.2 Component Reliability

A force S may be applied to a component with resistance R. This component fails
if R < 8, and survives if R > S. Since R and S may vary because of different building
materials and load conditions, they should be defined as random variables with given or
assumed mean, variance, and type of distribution. In this case the safety factor, e.g. the
central safety factor, cannot be taken as measure of reliability any more. A better measure

* This paper is partly based on the researches made while the author stayed as a visiting research
associate at Department of Naval Architecture.
**  Formerly, Visiting Research Associate at Department of Naval Architecture. Presently, Institut
fiir Bauingenieurwesen III, Technische Universitit Miinchen, Miinchen, W. Germany.
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would be eg. the probability of survival, or its complement, the probability of failure,
which is given by

pr=P(R<S)=P(R-5<0) )
In order to evaluate this failure probability the so-called convolution integral

Pr= J, Fg (x) fs (x)dx @)
has to be introduced, where Fgr (x) : cumulative distribution function (c.d.f) of the
resistance, and fg (x) : probability density function (p.d.f)) of the load. It can be derived
as follows: The probability of a load § = x to occur within an interval dx is fs (x) dx. The
probability of R being smaller than this value is Fz (x). Since R and S are usually assumed
to be statistically independent, these values can be multiplied to give the probability that R
is smaller than a certain occuring load § =x. To include the probability that any value of §
may occur, the above integral has to be evaluated (see Fig. 1). By introducing the safety

fx)

fs &) R

ms x dx rr;R

Fig.1 Convolution

margin Z = R — § as a new random variable, the probability of failure can also be defined
by

In case Z is normally distributed Eq. (3) can directly be evaluated from the first two
moments of Z — mean my and standard deviation oz — by using normal tables. If &
denotes the standardized normal (Gaussian) distribution function, the failure probability is

pf=<1>(—’(’f72)=d>(—ﬁ) 0

where § is the generalized safety index. If R and S are normally distributed, Eq. (4) is
exact.

2.3 Reliability of Structures
2.3.1  Introduction

The influence of the behavior of just one component on the structure depends e.g. on
the type of structure, on the material used, and on the considered failure criterion. Failure
of a system might be assumed if any of the following criteria is applied:
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— A certain limit stress is reached or exceeded at any one section, or a maximum
deformation might be met at a certain point of the structure (elastic limit load).

— At least one component fails (plastification of section).

— The structure collapses partially or totally.

According to how “failure” is defined, there are of course different probabilities of this
event. For example the elastic limit load of a simple one bay-one storey frame may occur
with py = 2.3 X 10~%. This criterion can be applied to both determinate and indeterminate
structures and usually implies collapse of a structure of brittle material. The second crit-
erion would be the complete plastification of a section, which leads to the collapse of a
determinate structure. The chain model (weakest link model) represents this criterion,
which means that the system fails if any one member fails. For the given frame, the pro-
bability of this event to occur is py = 8 X 1072, The third criterion — the plastic limit
load — is applicable to redundant structures of plastic material. The structure will collapse
only if a plastic hinge mechanism develops, i.e. if all redundant elements fail. A suitable
model is that of a parallel system. The probability of the above frame to collapse is pf =
2X 1074,

Of course, most realistic structures have to be described by a combination of the chain
and the parallel model, e.g., there are at least three different collapse mechanisms of the
already mentioned frame each of which is represented by a parallel model; but as the
structure can fail by any one mechanism, the appropriate overall model is the chain model.

According to how “failure” is defined (in the above sense), there are different “failure
modes™: If e.g the elastic limit load is the applicable failure criterion, then “failure of
component no.;” is one possible mode. If the plastic limit load is the criterion, then the
formation of any plastic hinge mechanism is a failure mode. Of course, there are more
possible definitions.

If the collapse failure probability of a statically indeterminate steel structure has to
be evaluated, the plastic hinge mechanisms may be the modes to be considered. The per-
formance functions or limit state functions of such plastic hinge mechanisms can be found
by using the virtual work theorem. The general form of such an equation is given by

Zi=% azpe My + Z bi]'Lj (5)
J

Z; : random variable describing the residual strength of the ith failure mode

a;, . resistance coefficient at the kth point of the structure

M, : random variable denoting plastic moment capacity at kth point of struc-
ture

b : load coefficient related to jth load

L; : random variable denoting jth load

When using this modified definition of the safety margin Z;, system failure occurs if
any Z; < 0, and the respective failure probability is

pf=P(F1UF2U...UFiU....UFm) (6)
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To evaluate Eq. (6) this can be transformed in different ways, e.g.

m
= T P(F;)— 2 S P(F,F;)+Z X (FjFp)— -« -
pr= £ P(F)- T ZP(FF)*E E 5 p(FiFFy) ™

The intersecting probabilities lead to multiple integrals which usually are not easily evalu-
ated. But there are two simple cases — when there is independence among the modes, and
when there is perfect correlation respectively. In case of perfect correlation Eq. (7) re-
duces to

74 =1 -S_"l?%xm Dy, i €3]

and in case of independence P ( F; F; ) = P ( F; ) X P (F;) which is negligible because of
higher order, thus

m
pr< El Py, i ()

Egs. (8) and (9) form well-known lower and upper bounds to system failure probabil-
ity. These bounds can be close if few modes are present or if one mode is dominant, and can
be wider if the failure probabilities of several uncorrelated modes have the same magnitude.

2.3.2  Some Methods to Determine System Failure Probability

In case these bounds are not satisfying some methods are available to approximately
calculate system failure probabilities:

From the statistical formulation for the probability of survival

ps=P(S$:NS,N...085N...NSy) 10)

Jorgenson and Goldberg!) derive a multiple integral to calculate the system probability
of survival. However, the necessary integration procedure is quite time consuming.

The complementary formulation to Eq. (10) is given by Eq. (6), which can be ex
panded to a sum of mutually exclusive events

Pr=P(F,)+P(S, F,)+P(S; S, F;3)+... (11)

Using this formulation, several authors try to take the correlation of modes into acco-
unt. The various methods then introduce different simplifications. Stevenson and
Moses? e.g. assume conditioned probabilities to be Gaussian, reduce multiple integrals
by replacing random variables by their means, and limit conditioning events to three.
Vanmarcke® reduces intersecting events to two, the correlation of which is approximately
taken into account. Murotsu er al® reduce the number of considered failure modes
according to their contribution to system failure probability, and reduce high-dimensional
joint probabilities. An approximating technique to include mode correlation between any
two modes is also used by Ditlevsen®), who introduced closer bounds. Basis of this
method is a second-moment reliability format for which the basic variables have to be
transformed into standardized, normally distributed variables. A “probabilistic network
evaluation technique” is introduced by Ang and Ma®. It groups the modes according to
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their mutual correlation and avoids the difficult evaluation of intersecting events. All
methods described so far need the evaluation of all modal limit state functions. A pro-
cedure which avoids this is proposed by Klingmiiller”). From the theorem of total pro-
bability he derives the approximation that the system probability of failure is the failure
probability of the deterministically relevant mechanism divided by the probability that
this is the relevant mechanism, A plastic limit load analysis is also used by Kappler® in
a failure tree analysis to find the dominant failure modes. System failure probability is
assumed to be the probability of the last hinge to occur that is necessary to form a mech-
anism,

2.4 Influence of Parameters

Coefficient of Variation. A variation of distribution parameters can influence the
value of failure probability. The most important in this respect is the coefficient of varia-
tion (C.0.V.) V = ¢/m, which can be interpreted as relative standard deviation. Fig. 2
shows schematically how a larger C.0.V. causes larger failure probabilities: In the area

fx)

fs ) fr ()

Fig. 2 Influence of C.O.V.

where the p.d.f. of the load has significant values, the probability density of the resistance
with larger C.0.V. is larger by which the product in Eq. (2) is influenced. Fig. 3 shows
this effect on the failure probabilities of sample structures of a benchmark study (see
section 3).

Type of Distribution. The type of a distribution may significantly affect the value
of failure probability — e.g. the normal distribution is symmetrical with respect to the
mean, the lognormal is skewed. The effect of skewness as compared to a normal distri-
bution is shown in Fig. 4 — again the p.d.f. of the resistance R has larger values in the tail
region. The analysis of the same structures as before shows that the “lognormal” case leads
to larger failure probabilities than the “normal” case, see Fig. 5.

Correlation of Basic Variables. The assumption of perfect correlation of the basic
variables (e.g. plastic moment capacities) leads to larger system failure probabilities as
compared to perfect independence. This can easily be seen from the variance of a sum of
random variables 4 =B + C
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Fig. 3 Influence of C.0.V. on failure probability represented by general bounds
(Egs. (8), (9)) (ND : Normal distribution)
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Fig. 4 Influence of type of distribution
ND : Normal distribution
EXjg : Type I extreme value distribution of smallest values

04® = 08>+ 2X pgc X 0g X 0¢ *+ 0¢? (12)

with ppc = correlation coefficient of B, C, ie. higher correlation (e.g. pgo > 1) leads
to a larger variance and a larger failure probability. Fig. 6 shows this effect on the failure
probabilities of the sample structures.
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Fig. 5 Influence of type of distribution on failure probability represented
by results of simulation (Vs = 0.1, Vg, = 0.3, pps = 0).
EX : Extreme value distribution LN : Log-normal distribution
ND : Normal distribution
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Fig. 6 Influence of correlation of plastic moment capacities on failure probability
represented by general bounds (Eq. (8), (9)) : Normal distribution
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3. Benchmark Study on Methods to Determine Collapse Failure
Probabilities of Redundant Structures

3.1 Introduction

In the past a number of methods for determining collapse probabilities of redundant
structures have been developed by various authors. Since these methods are based on
different assumptions and techniques, the authors® thought it necessary to evaluate their
capabilities for various kinds of applications. For this reason a benchmark study was
initiated, where structures and all other parameters were the same for all methods under
consideration. The purpose for this comparison was to determine

— whether the methods yield different results when applied to the same structures
and fixed parameters,

—  which results they yield when applied to different types of structures,

— which limitations exist for the application of a certain method, and

— how difficult and time consuming the application is, i.e. how efficient a method
is for particular cases.

Different types of structures showing different basic characteristics are to be evaluated
(Fig. 7):

Fig. 7  Structures to be analysed.

Since only redundant structures of plastic material are to be considered, the applicable
failure criterion in this study is the plastic limit load, i.e. the development of a plastic-
hinge mechanism that leads to partial or total collapse of the structure. Neither the elastic
limit load nor buckling or any other failure mode is to be considered. Only loads and
plastic moment capacities are assumed to be random variables which are modeled by three
different kinds of distribution. The cases of perfect correlation and no correlation among
plastic moments are to be considered; the correlation of mechanisms (= modes) depends on
the capability of the particular methods. They were described in section 2. 3. A Monte-
Carlo-Simulation was also applied to the sample structures in order to verify the results
obtained by the other methods.

3.2 Results

The study is based on results which are contributions of the respective authors them-
selves. They are compared and shortly summarized. A more detailed report on this study
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will be published®.

The general influence of different parameters, e.g. coefficient of variation, type of
distribution, correlation of basic variables, is well known and to be found in this study,
too. As was expected the various methods do not yield identical results in all cases. As all
of them are based on the analytically tractable normal distribution, in this case the failure
probabilities according to the various methods do not differ significantly no matter which
coefficient of variation and which plastic moment correlation is assumed (with the excep-
tion of one method), as can be seen from Fig. 8. But as soon as non-normal distributions
are assumed, which in many cases is more realistic, the discrepancies of the results of the
various methods may be considerably large, as Fig. 9 shows for lognormally distributed
basic variables. Especially with small coefficients of variation these discrepancies might
reach several orders of magnitude. This means, in case of non-normal distributions only
those methods should be used that are capable to evaluate non-normal safety margins.

The common drawback of most methods is the fact that the modal performance
functions have to be derived by hand, which — particularly with large systems — implies
a considerable amount of work. Quite easily a significant failure mechanism might be
missed. Those methods that need to evaluate only one failure mode, based on a plastic
limit load analysis at mean values, which might not yield the stochastically most relevant
mechanism. For these reasons, in order to be able to evaluate failure probabilities of large
structures, a method has to be found which autoimatically yields the dominant failure
modes.

4, Methods to Find Dominant Modes

If the failure probabilities of all possible modes can be evaluated, of course, the dom-
inant modes are easily selected. The modes of a small system can be found by simple in-
vestigation, but this may be very tedious or impossible at all for large systems. For this
reason an automatic method to find all modes would be very useful. This can be done by
combining the basic independent mechanisms which can be found by matrix methods. !
The dominant failure modes can be found, e.g. by searching for the minima of the gener-
alized safety index p.1V

A more interesting method is a branch-and-bound algorithm!?» 13) by which the
significant failure modes can be found directly, By this, system failure is modeled by a
sequence of members failing — the structure thus undergoing consecutive failure stages or
failure levels. There is a large number of these possible failure paths all of which cannot be
considered. So the number of the failure paths has to be reduced. This is done by deciding
at every stage which member will most probably fail next, and by discarding possible ‘
failure paths branching from this level. The method was first applied to truss structures,



114

Martin GRIMMELT

but with some modifications is applicable to frame structures, 4> 15) 100,
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