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   The basic ideas of evaluating the reliabdity of structures are summarized. The effects

of the type of structure and of probabmaty distribution parameters,are shown. Some methods

of reliabruty analysis are compared together with their respectiye results when applied to oer-

tain sarnple structures. The idea of considering only the significant failure mode is intro--

duced.

1. Introduction

   As structural systems become more complex nowadays, the question of how safe or

unsafe they are becomes increasingly important, too. The public wants to know the risks

of failure of certain structures, the failure of which might lead to the loss of human life.

On the other hand, the engineer might want to know how to design a structure or part

thereof in order to maximize its overall reliability. For this, new techniques are necessary

which model the structure's resistance on the one hand, and its loading on the other hand

as random variables. Observed data show that loads and resistance are not deterministic

values but have varying properties. Therefbre the rules of stochastic theory have to be

introduced into civi1 engineering practice. There are various publications on this matter,

only referencesi6)' i7) may be mentioned here.

                             2. ReliabMty
                     /1
2.1 General Remarks

   In order to analyse the failure behavior ofastructure, component failure has to be

understood. In this paper only short notes can be given, and the chapter on component

reliabthty may serve as an introduction to the basic ideas of reliability evaluation.

2.2 Component Reliabdity

   A force S may be applied to a component with resistance R. This component fails

if R < S, and survives if R > S. Since R and S may vary because of different building

materials and load conditions, they should be defined as random variables with given or

assumed mean, variance, and type of distribution. In this case the safety factor, e.g. the

central safety factor, cannot be taken as measure of reliability any more. A better measure
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would be e.g. the probabMty of survival, or its complerrient, the probability of failure,

which is given by

      lzf =P (R KS)=P(R -S f{ O) (1)
   In order to evaluate this fadure probability the so-called convolution integral

      iZf-CilR ix) fs ix) du (2)
has to be introduced, where jFIR (x) : cumulative distribution function (c.d.f) of the

resistance, and fs (x) : probability density function (P.d.f) of the load. It can be derived

as fo11ows: The probability of a loadS =x to occur within an interval du isfs (x) dx. The

probability ofR being smaller than this value is ER (x). SinceR andS are usually assumed

to be statistically independent, these values can be multiplied to give the probability that R

is smaller than a certain occuring load S = x. To include the probability that any value ofS

may occur, the above integral has to be evaluated (see Fig. 1). By introducing the safety

f(x)

fs (x) j[iit (x)

                                                   x                            MS X CtX MR

                           Ftg.1 Convolution

margin Z = R - S as a new random variable, the probability of failure can also be defined

by

   In case Z is normally distributed Eq. (3) can directly be evaluated from the first two

moments ofZ - mean mz and staridard deviation oz - by using normal tables. If tp

denotes the standardized normal (Gaussian) distribution function, the failure probability is

      izf=lp(- M,,,Z )-¢(-B) (4)
where B is the generalized safety index. IfR andS are normaby distributed, Eq. (4) is

exact.

2.3 Reliability of Structures

2.3.1 introduction

   The influence of the behavior ofjust one component on the structure depends e.g on

the type of structure, on the material used, and on the considered failure criterion. Failure

of a system might be assumed if any of the following criteria is applied:
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   - A certain limit stress is reached or exceeded at any one section, or a maximum

      deformation might be met at a certain point of the structure (elastic limit load).

   - At least one component fails (plastification of section).

   - The structure collapses partially or totally.

According to how "failure" is defined, there are of course different probabihties of this

event. For example the elastic limit load of a simple one bay-one storey frame may occur

with pf = 2.3 × 10'-i. This criterion can be applied to both determinate and indeterminate

structures and usually implies collapse of a structure of brittle material. The second crit-

erion would be the complete plastification of a section, which leads to the collapse of a

determinate structure. The chain model (weakest link model) represents this criterion,

which means that the system fails if any one member fails. For the given frame, the pro-

bability of this event to occur is pf = 8 × 10-2. The third criterion - the plastic limit

load - is applicable to redundant structures of plastic material. The structure wM collapse

only if a plastic hinge mechanism develops, i.e. if all redundant elements fai1. A suitable

model is that ofa parallel system. The probability of the above frame to collapse is pu,=

2× 1o-4.

   Of course, most realistic structures have to be described by a combination of the chain

and the parallel model, e.g., there are at least three different collapse mechanisms of the

already mentioned frame each of which is represented by a parallel model; but as the

structure can fail by any one mechanism, the appropriate overall model is the chain model.

   According to how "failure" is defined (in the above sense), there are different "failure

modes": If e.g the elastic 1imit load is the applicable failure criterion, then "failure of

component no.i" is one possible mode. If the plastic limit load is the criterion, then the

formation of any plastic hnge mechanism is a failure mode. Of course, there are more

possible definitions.

   If the collapse failure probability of a statically indeterminate steel structure has to

be evaluated, the plastic hinge mechanisms may be the modes to be considered. The per-

formance functions or limit state functions of such plastic hinge mechanisms can be found

by using the virtual work theorem. The general form of such an equation is given by

      Zi=? aikMk+?. biiLi (5)
      Zi : random variable describing the residual strength of the ith failure mode

      aik : resistance coefficient at the kth point of the structure

      Mk: random variable denoting plastic moment capacity at kth point of struc-

           ture
      bij : load coefficient related toith load

      Li : randomvariabledenotingithload

   When using this modified definition of the safety margin Zi, system failure occurs if

any Zi f{; O, and the respective failure probability is

      llf=P(FiUF2U...UFi U. ...U,Fin) (6)
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    To evaluate Eq. (6) this can be transformed in different ways, e.g.

           m
       llr= ,Z.,P(Fi)- >. .ZiP(jFl jF))+>.;. .£,p(Ef]F]rFk)- ･･･ (7)

The intersecting probabilities lead to multiple integrals which usually are not easily evalu-

ated. But there are two simple cases - when there is independence among the modes, and

 when there is perfect correlation respectively. In case of perfect correlation Eq. (7) re-

 duces to

       Rte =, sri:.lg. . prt i (s)
and in case of independence P ( ]Fli I} ) = P ( jFlf ) × P ( jF> ) which is negligible because of

higher order, thus

            m       Pf S ,Z., PL i (9)
    Eqs. (8) and (9) form well-known lower and upper bounds to system failure probabil-

ity. These bounds can be close if few modes are present or ifone mode is dominant, andcan

be wider if the failure probabthties of several uncorrelated modes have the same magnitude.

2.3.2 SomeMethodstoDetemiine,sp2stemjF2ztiureP),obability

    In case these bounds are not satisfying some methods are available to approximately

calculate system failure probabilities:

    From the statistical formulation for the probability of survival

       ps =p(s,ns,n... nsin...nS.) (l o)
Jorgenson and Goldbergi) derive a multiple integral to calculate the system probabthty

of survival. However, the necessary integration procedure is quite time consuming.

    The complementary formulation to Eq. (10) is given by Eq. (6), which can be ex

panded to a sum of mutually exclusive events

       Rf=P(F, )+P(S, F, )+P(S, S, F3 )+... (11)

{lsing this formulation, several authors try to take the correlation of modes into acco-

unt. The various methods then introduce different simplifications. Stevenson and

Moses2) e.g. assume conditioned probabilities to be Gaussian, reduce multiple integrals

by replacing random variables by their means, and limit conditioning events to three.

Vanmarcke3) reduces intersecting events to two, the correlation of which is approximately

taken into account. Murotsu et al.4) reduce the number of considered fallure modes

according to their contribution to system fadure probability, and reduce high-dimensional

joint probabilities. An approxtmating technique to include mode correlation between any

two modes is also used by Ditlevsen5), who introduced closer bounds. Basis of thi's

method is a second-moment reliability format for which the basic variables have to be

transformed into standardized, normdly distributed variables. A "probabilistic network

evaluation technique" is introduced by Ang and Ma6) . It groups the modes according to
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their mutual correlation and avoids the diflficult evaluation of intersecting events. All

methods described so far need the evaluation of al1 modal 1imit state functions. A pro-

cedure which avoids this is proposed by Klingmuller7). From the theorem of total pro-

bability he derives the approxirnation that the systern probability of failure is the failure

probability of the deterministically relevarit mechanism divided by the probability that

this is the relevant mechanism. A plastic limit load analysis is also used by Kappler8) in

a fadure tree analysis to find the dominant fadure modes. System failure probability is

assumed to be the probabMty of the last hinge to occur that is necessary to form a mech-

allism.

2.4 lnfluence ofParameters

   CbejYicient of VZiriation. A variation of distribution parameters can influence the

value of failure probability. The most important in this respect is the coeflficient ofvaria-

tion (C:O. Vl) V = q!m, which can be interpreted as relative standard deviation. Fig. 2

shows schematically how a larger C:O. Vl causes larger failure probabilities: In the area

f (x)

f]s (x) he (x)

Vk=O.67
      t---SN

"nt t

ms MR

Ns.. V]R=1･O

         x

Fig. 2 Infiuence of C: O. V:

where the p.d.i of the load has significant values, the probability density ofthe resistance

with larger CtO. VL is larger by which the product in Eq. (2) is influenced. Fig. 3 shows

this effbct on the failure probabilities of sample structures of a benchmark study (see

section 3).

   7)epe ofDistribution. The type of a distribution may significantly afTect the value

of failure probability - e.g. the normal distribution is symmetrical with respect to the

mean, the lognormal is skewed. The effect of skewness as compared to a normal distri-

bution is shpwn in Fig. 4 - again the p.df of the resistance R has larger values in the tail

region. The analysis of the same structures as before shows that the "lognormal" case leads

to larger failure probabilities than the "normal" case, see Fig. 5.

   Correlatton ofBasie VZiriabies. The assumption of perfect correlation of the basic

variables (e.g plastic moment capacities) leads to larger system fadure probabilities as

compared to perfect independence. This can easily be seen from the variance ofa sum of

random variables A = B + C
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Influence of type of distribution

 ND : Normal distribution
 EXIs : Type I extreme value distribution of smallest values

q42= (ig2 + 2× pBc× (ig × oc + oc2 (l2)

with pBc = correlation coefficient ofB, C, i.e. higher correlation (e.g pBc -> 1 ) leads

to a larger variance and a larger failure probability. Fig. 6 shows thiseffect on the failure

probabilities of the sample structures.
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3
.

Benchmark Study on Methods to Determine Collapse Failure

ltobabilities of Redundant Structures

3.1 introduction

   In the past a number of methods for determining collapse probabilities of redundant

struqtures have been developed by various authors. Since these methods are based on

different assumptions and techniques, the authors9) thought it necessary to evaluate their

capabihties for various kinds of applications. For this reason a benchnark study was

initiated, where structures and ab other parameters were the same for ail methods under

consideration. The purpose for this comparison was to determine

   - whether the methods yield different results when applied to the same structures

      and fixed parameters,

   - which results they yield when applied to difTerent types of structures,

   - which limitations exist fbr the application of a certain method, and

   - how difficult and time consuming the application is, i.e. how ethcient a method

      is for particular cases.

Different types of structures showing different basic characteristics are to be evaluated

(Fig. 7):

    1

    ,

    2

3

, , ,

4    5

Fig. 7 Structures to be analysed.

   Since only redundant structures ofplastic material are to be considered, the applicable

failure criterion in this study is the plastic lmit load, i.e. the development of a plastic-

hnge mechanism that leads to partial or total collapse of the structure. Neither the elastic

limit load nor buckling or any other failure mode is to be considered. Only loads and

plastic moment capacities are assumed to be random variables which are modeled by three

different kinds of distribution. The cases of perfect correlation and no correlation among

plastic moments are to be considered; the correlation of mechanisms (= modes) depends on

the capability of the particular methods. They were described in section 2. 3. A Monte-

Carlo-Simulation was also applied to the sample structures in order to verify the results

obtained by the other methods.

3.2 Results

   The study is based on results which are contributions of the respective authors them-

selves. Trhey are compared and shortly summarized. A more detailed report on this study
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wi11 be published9).

   The general influence of different parameters, e.g. coefficient of variation, type of

distribution, correlation' of basic variables, is well known and to be found in this study,

too. As was expected the various methods do not yield identical results in al1 cases. As ad

of them are based on the analytically tractable normal distribution, in this case the failure

probabilities according to the various methods do not differ signficantly no'matter which

coefficient of variation and which plastic moment correlation is assumed (with the excep-

tion of one method), as can be seen from Fig. 8. But as soon as non-normal distributions

are assumed, which in many cases is more realistic, the discrepancies of the results ofthe

various methods may be considerably large, as Fig. 9 shows for lognormally distributed

basic variables. Especially with smal1 coefficients of variation these discrepancies might

reach several orders of magnitude. This means, in case of non-normal distributions only

those methods should be used that are capable to evaluate non-normal safety margins.

   The common drawback of most methods is the fact that the modal performance

functions have to be derived by hand, which - particularly with large systems - implies

a considerable amount of work. Quite easily a significant failure mechanism might be

missed. Those methods that need to evaluate only one failure mode, based on a plastic

limit load analysis at rriean values, which might not yield the stochastically most relevant

mechanism. For these reasons, in order to be able to evaluate failure probabilities of1arge

structures, a method has to be found which autoMatically yields the dominant failure

modes.

                    4. MethodstoFindDominantModes

   If the failure probabilities of all possible modes can be evaluated, of course, the dom-

inant modes are easily selected. The modes of a small system can be found by simple in-

vestigation, but this may be very tedious or impossible at al1 for large systems. For this

reason an automatic method to find al1 modes would be very usefu1. This can be done by

combining the basic independent mechanisms which can be found by matrix methods.iO)

The dominant failure modes can be found, e.g. by searching for the minima ofthe gener-

alized safety index 6.ii)

   A more interesting method is a branch-and-bound algoritimi2), i3) by which the

significant failure modes can be found directly. By this, system failure is modeled by a

sequence of members fading - the structure thus undergoing consecutive failure stages or

failure levels. There is a large number of these possible failure paths al1 of which cannot be

considered. So the number of the failure paths has to be reduced. This is done by deciding

                                                                       iat every stage which member wi11 most probably fail next, and by discarding possible

failure paths branching from this level. The method was first applied to truss structures,
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but with some modifications is applicable to frame structures i4)'

                                               ),
i5) too.
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