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A Study of % -harmonics in the neighborhood of Branching Point in Non-

autonomous Piecewise Linear Systems with Unsymmetrical Restoring Force

Yoshiaki SHIRAO* and Masao Kipo*

(Received June 15, 1981)

This is a study of —;— -harmonics in the neighborhood of branching point in the non-
autonomous second order differential equation with piecewise linear restoring force having
unsymmetrical characteristics in the case of the undamped systems.

In this report the periodic condition in which the first variational equation has a
periodic solution of period 3T (T : period of external force) and the branching behavior
of the trajectories of —5— -harmonics from that of harmonics are obtained. ‘

1. Introduction

It is well known that nonlinear systems can possess a wide variety of periodic solutions
in addition to those which have the same period as the external forcel> 239, for ex-
ample, what are called subharmonic oscillations can occur in which the smallest period of
the motion may be any integral multiple of the period of the external force. Such oscilla-
tions may occur in nonlinear systems, particularly in the case where the system is described
by Duffing’s equation with symmetrical restoring force.

In the preceding articles®> 9 7 we have obtained some results as to periodic solutions
in the nonautonomous piecewise linear systems with unsymmetrical restoring force.

We are now to deal with the subharmonic oscillation whose fundamental frequency is
a fraction -4 of the driving frequency in the neighborhood of the branching point, at
which the subharmonic and the harmonic oscillations are identical, in piecewise linear
systems with unsymmetrical restoring force, which has been studied very little.

This paper will qualitatively and numerically give the branching condition and some
results as to the behavior of solutions near bifurcation point.

2. Periodicity Conditions

In this chapter we restate the periodicity conditions as to the solutions type ;A shown
in Fig. 2.
Consider the equation
% + f(x) = E cos wt ()

where f (x) is a piecewise linear restoring force (shown in Fig. 1) given by
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k3x : t, v—tl T ¢

Fxg 1. Restoring force characteristics Fig. 2.  Periodic solution of type, A
sz - K2x° (x gxo) s
&) ={ R ‘ @
kx xLxy) ,
2 =K% + K2
in which k, &, K, and x, are positive constants.
In this paper dots over a quantity refer to differentiation with respect to the time.
Assume the initial conditions as follow,
x©)=M(>x,) ,
. 3).
x(0)=0
Then, the conditions of periodicity are
E. K? E k2
(M"‘ Qz_wz "‘? Xo )COS Qtl + 22_0)2 COS wtl = _'Ef“ Xo (4)
. 2 2
T M —QZE_z —f—z Xo) sin 21, +(!22 _wg‘;l((kf_wz) sin wi,
tank(—z-—t1)= ‘ Vo 5)
- k(xo T cos wty )

where T = 27/w and ¢, is the time when the solution reaches the corner point first. Thus
periodicity conditions depend on four parameters M, E, w, and #; and so we have the
parameters M and E which lead to periodic solutions if angular frequency w and transition
time ¢, are given, viz ; k

M=M(w t;)
E=E (wt) (6)

As to any other type of solutions, periodicity conditions can be obtained in the same
procedure as for that of type ; A.

3. Branching Condition

We assume that equation (1) admits periodic solution x°(f) of period T = 2n/w under
the conditions (7) : '
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xo(O) =M0 . )&0(0)=0 N E=Eo (7)
It is of course clear that we have
LEtD=x° @),
o o ®)
x° (@O=x" (1)

The variational equation of equation (1) associated with the periodic solution x°(¢)
for the variation y (¢) is
y+a@®y=0 )
where @ (¢) is an even and T-periodic function which is given by the formula (shown in
Fig. 3)

o=@ {2’ @ (1) >xo) 10
a()y= — = ‘
ox |x=x°@ k2 (x° () <xp) ,

#Xo @
a(®
=1\ [\
H Q2
— 1
NN =
] . |
: M |
T 4 T-t, T t K - ' ! '
: Lo
| Pt
6— — >
t, T-t, T t
Fig. 3. Periodic solution x° (#) Fig. 4. Coefficient 4 (¢) of periodic solution type , A

Therefore equation (9) means a Hill’s equation. It is known from Floquet theory as to
normal solutions that

y+T)=py(® 11
and for
2mmn
p=el n (m, n relatively prime integers) 12)

there exist periodic solutions of period n T.
Here we shall investigate the case for n = 3, since we have already reporteds)’ %) in the
case of n =1 and n =2. The condition p = e 712%™ means thaty (¢ +3T7) =y (8),

p1-pz=1,and p; +p, =—1 - (13)

if p, and p, are the roots of the characteristic equation of equation (9).
Let ¢ (¢) and ¢ (¢) be fundamental solutions of equation (9) which satisfy the follow-
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ing conditonsat £ =0 :

0(@=1, #(0)=0 } a8
¥ (0)=0, J)=1

Then ¢ (¥) is an even function and ¥ (¢) is an odd function. Using p, and p, expressed in
terms of ¢ (¢) and ¢ (¢), we have

p1+p2 = (M) +§ (T)=-1 (15
and from the explicit formulas for v (£) and ¥ (¢)

. k £ T 1
«T) = Y(T) = cos 2%¢, cos 2k (‘g‘—h) —% (E+]?) sin 28¢, sin 2k (7— t)= —3 (16)

Therefore the solutions of period 3T of equation (9) are admitted when equation (16)
holds and in this case the bifurcation of trajectories may occur.
Thus the branching condition is given by equation (16).

4. Branching Phenomena

In this chapter we shall discuss the branching of the trajectories of periodic solutions
whose period are T and 37

It is well known that bifurcation theory concerns the solution x(t;\) of a problem
which depends upon a scalar or vector parameter A®). The solution is said to bifurcate
from the solution x°(¢; A) at the parameter value \ = ), if there are two or more distinct
solutions which approach x°(z ;1o ) as A tends to A,.

The first problem of bifurcation theory is to determine the solution x°(¢,A,) and
parameter value Ao at which bifurcation occurs (see chapter 2, 3). The second problem is
to find the number of solutions which bifurcate from x°(¢;),). A third problem is to
determine the behavior of these solutions for X near A,. The behavior of the solutions for
A outside a small neighborhood of A, is also important, but is not considered in bifurcation
theory.

Now we shall consider the branching phenomena of the curves which bifurcate the
solutions of period 3T from the T-periodic solutions of equation (1).

Assume the solution x of equation (1) as a function of the three parameters, which
hasx=M,x=Natt=0,

x=x(t;MN,E) ’ a7n
Let the functions F (M, N, E) and G (M, N, E) be defined by the formulas :
FMN,E)=x(3T ;M,N,E)—x(0;M,N, E)
GWM,N,E)=x (3T ;M,N,E)—x (0 ;M,N, E) }
The solution x (t ; M, N, E) will be 3T-periodic if and only if
FMN,E)y=GM,N,E)=0 : (19)
The set points in (M, N, E)-space for which F =G =0 will usually be composed of certain

(18)
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Fig. 5. Branching phenomena of solutions of order —'3'— (n=1,2,4,5) from harmonic solutions

curves. To study the locus of F (M, N, E) = G (M, N, E) = 0 in the neighborhood of the
point (M,, 0, E), satisfied by equations (7) and (16), we introduce the following nota-
tions.

Let x° (¢) denote the T-periodic solution of equation (1). Let ¢ () and ¥ () denote
the solution of the variation equation (9).

We shall be evaluating the partial derivatives of F and G at the point (M, 0, E,).
Let xz (?) denote the partial derivative of x (¢; M N E) with respect to E evaluated for
M=My, N=0,E=E,. ‘
Then xg (¢) is the solution of the problem :
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y+a(@)y=coswt,
. | -
y(©0)=y(0)=0 ‘
The first partial derivatives of F and G at the point (M,, 0, E¢) have the values :
Fy=¢@BT)-1=0, FN=y(3T)=0, Fg=x5(3T)=0 an

Gu=¢(B7)=0, Gy=¥(BN)-1=0, Gg=%g(T)=0
- The first partial derivatives of F and G at (M,, 0, E) both vanish.

The second derivatives of F and G are computed using the values of the second partial
derivatives of x (t; M, N, E) at (M,, 0, E,), but we shall omit most of them in what fol-
lows, since these computations are long and tedious.

It is found that at (M, 0, Ep)

Fuyr =xpmm 3T ; My, 0,Eo)=0, Fuyg =xmg (3T ;M,,0,E,)=0 ]
Fer =xgg (3T ;M,,0,E3)=0,  Fyy =xnn (3T ;M,,0,E,)=0

Q2 —k?
Faay =3y OT 1Mo, 0,52 = = 20 {2 02) 2@ 20 Yot
Fyg =%ng 3T ;Mo, 0, Eo) 1@
2(R*—k? 3
S (@) s 3w} se +sem et
’ 1
(2vmeen -3 v}, J

282 -k%) 3

Ty P -sr@va) |

Gumm =%py (3T ;Mo,0,E0) =

GME =x'ME (3T ;M030,E0)
_2(22—]62)
x°(t1)
l 2 19 w2 2
{2 gt T (fl)}]’
GEE =xE'E (3T;M0, o,EO) >(23)

o =2k
.xo(tl)

[ran+ Zrmve),

3
[{5¢2 (1) + 202 (D) WA () xe() + x5(D) ltr)

o ,
[XE(T) {2 ¢*(t1) "';{02(7') ‘Pz(tl)} xg(t,) + x5 (T) o(t1)

2 (P-k? (9 : ’
)thl)“) w(fl){jlﬁz(t;)— Y*(T) w’(tl)},

Gun =xun (3T ;My,0,E0)=0, Gyg=%yg (3T ;My,0,E4)=0

Therefore the locus of F = G = 0 near (M, 0, E,) consists of two branches, one tangent

Gnw =xny (3T ;M,y,0,Eq) =
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to the line N = 0, (M—M,) — l xg(T) (E—E¢) = 0 and the other tangent to the line
N=0,A(M-My)+B(E-Ey) = 0, where

4 =%{¢2(t1) — 4 PM P} e,

3 14
B=3 ¢*(t1)+ 4 &*(T) ¥*(t1) xe(t,) + x(T) o(t1) (792(&) t T ¢*(T) ¥ (t1))

The first branch tangent to N = 0, M — M, = 32— xp(T) (E — E,) is, of course, the curve of
T-periodic solutions type 14, the second branch tangent to the line N =0, 4 (M —M,) +
B(E — Ey) =0 is the trajectories of %-harmonics of type 34.

Finally, we have the same results from numerical calculations shown in Fig. 5 (a), (b),
(c), and (d) as predicted from qualitative discussion above.

5. Conclusions

In this paper the branching conditions are dealt with in regard to the bifurcation of
—%— -harmonics in the neighborhood of branching point. And we have the results that the
locus of F = G = 0 near bifurcation point consists of two branches, one corresponding to
harmonic solution, the other —;—-harmonics.

Finally, it is noted that numerical calculations were performed by using ACOS-600 at
the computer center, University of Osaka Prefecture.
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