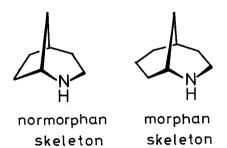


Synthesis of Normorphan Derivatives from Norbornadiens

メタデータ	言語: eng
	出版者:
	公開日: 2010-04-06
	キーワード (Ja):
	キーワード (En):
	作成者: Umano, Katsumi, Inoue, Hiroo
	メールアドレス:
	所属:
URL	https://doi.org/10.24729/00008632

Synthesis of Normorphan Derivatives from Norbornadienes

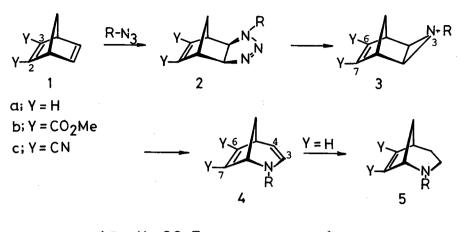

Katsumi UMANO* and Hiroo INOUE*

(Received November 15, 1980)

A convenient synthetic method for the preparation of 2-azabicyclo [3.2.1] oct-3, 6diene derivatives from norbornadienes has been developed by employing three reactions of 1,3-dipolar cycloadditions, the decomposition of triazoline compounds, and the thermal rearrangement of tricyclic aziridines.

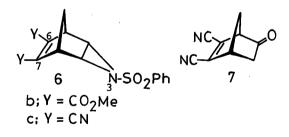
1. Introduction

Normorphan derivatives are important intermediary substances for the synthesis of the functionalized morphan compounds with potential analgetic activity,¹) since the fivemembered ring of the normorphan derivatives can be enlarged to the six-membered ring by a relatively facile method. The literatures report only few syntheses of the normorphan system.²⁴) Recently we have proposed the reaction mechanism for valence isomerization of the tricyclic aziridines 3 to the normorphan derivatives 4.⁵) This reaction was applied to the synthesis of the normorphan derivatives. In this paper, we will describe the synthetic method for the preparation of normorphans 4 and 5 from norbornadienes la-c under mild conditions.

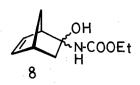


2. Results and Discussion

Preparation of Unsaturated Tricyclic Aziridines 3 from Norbornadienes la-c


The unsaturated tricyclic aziridines were prepared from norbornadienes la-c and various azides. The data are collected in Table 1 and the results are summarized as follows.

^{*} Department of Applied Chemistry, College of Engineering.



 $(R = H, CO_2Et, Ph, or SO_2Ph)$

1) The reaction of la with benzenesulfonyl azide gave 4a ($\mathbf{R}=\mathbf{SO}_2\mathbf{Ph}$) via the formation of 3a ($\mathbf{R}=\mathbf{SO}_2\mathbf{Ph}$) in higher yield than that described previously.⁶) When the substituents such as methoxycarbonyl and cyano groups exist at the C₂ and C₃ positions of norbornadiene, however, prolonged heating was necessary for forcing this reaction (Entries 1, 2, and 3). The products were mainly 3b, c ($\mathbf{R}=\mathbf{SO}_2\mathbf{Ph}$) and their endo isomers 6b, c. Only in the case of 1c, 2, 3-dicyano-bicyclo[2.2.1] hept-2-en-5-one 7 was produced as another byproduct (Entry 3). In these reactions, 4b, c ($\mathbf{R}=\mathbf{SO}_2\mathbf{Ph}$) were not obtained at all. Thus, it was found that the electron-withdrawing substituents at the C₂ and C₃ positions cause the lowering of the yields of 3 and 4.

2) In the cases of ethyl azidoformate and phenyl azide, the triazoline compounds 2a (R=COOEt and Ph), which are precursors of 3a (R=COOEt and Ph), were isolated as the reaction products, as shown in the literatures^{7), 8)} (Entries 4 and 5). Compound 2a (R=COOEt) was decomposed to 3a (R=COOEt) by adding 2a to ethanol at 10°C. When a solution of 2a (R=COOEt) in toluene was heated at 110°C for 13 h, however, 4a (R=COOEt) was obtained in 41% yield with 5-ethoxycarbonylamino-5-hydroxy-bicyclo[2, 2, 1] hept-2-ene 8 in 37% yield. In the case of 2a (R=Ph), we found that 3a (R=Ph) is produced by

irradiating a solution of 2a(R=Ph) in cyclohexane for 22 h, but not by the thermal decomposition of 2a(R=Ph). Thus, this fact indicates that the electron-withdrawing substituent R is necessary for the preparation of compounds 3.

Entry	Norbornadienes	Azides	Molar ^{a)} ratio	Conditions	Product	Yield, %
1	1a	PhSO ₂ N ₃	3:1	benzene, rt, 24h	4a (R=SO ₂ Ph)	86 (62) ^b
2	1b	PhSO, N,	3:1	benzene, 50°C, 48h	$3b(R=SO_2Ph)$	7 4
		2 0			6b	10
3	1c	PhSO, N ₃	3:1	benzene, 80°C, 68h	$3c (R=SO_2Ph)$	19
		2 0			6c	21
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				7	12
4	1a	EtOOCN,	2.5:1	hexane, rt, 3day	2a (R=COOEt)	72 ^{c)}
5	la	PhN ₃	excess	cyclo- 60°C, 2h hexane,	2a (R=Ph)	67 ^{d)}

Table 1. The yields of the products in the reactions of norbornadienes with azides

a) Molar ratio = Norbornadienes : Azides. b) Ref. 6. c) Ref. 7. d) Ref. 8.

Preparation of Normorphan Derivatives 4 from Tricyclic Aziridines 3

The normorphan derivatives 4 were prepared from the tricyclic aziridines by the thermal rearrangement. The reactions were carried out by heating a solution of 3 in various solvents in the range of 78 to 179°C. The data are collected in Table 2 and the results are summarized as follows.

1) The exo aziridines 3a-c ($R=SO_2Ph$) were converted quantitatively into the corresponding normorphan derivatives 4a-c ($R=SO_2Ph$) by valence isomerization (Entries 6, 7, and 8). In the cases of 3b, c ($R=SO_2Ph$), however, it was necessary to raise the reaction temperature to 139 - 179°C. Thus, this fact indicates that the valence isomerization becomes difficult owing to the existence of the electron-withdrawing substituent Y.

2) Compounds 3a (R=H and Ph) underwent no isomerization under the similar conditions described in Table 2 (Entries 10 and 11). This fact means that it is preferable to have an electron-withdrawing group at the 3-position for the preparation of normorphan derivatives.

3) The protic solvent promoted significantly valence isomerization of 3, as Table 2 shows (Entry 9).

Entry	Aziridines	Conditions	Product	Yield, %
6	3a (R=SO ₂ Ph)	benzene, 80°C, 5 h	4a (R=SO ₂ Ph)	98
7	$3b (R=SO_2Ph)$	xylene, 139°C, 11 h	4b (R=SO ₂ Ph)	99
		o-dichloro- 179°C, 0.2 h benzene,	$4b(R=SO_2Ph)$	100
8	$3c (R=SO_2Ph)$	o-dichloro- 179°C, 7 h benzene,	$4c (R=SO_2Ph)$	100
9	3a (R=COOEt)	toluene, 110°C, 13 h	4a (R=COOEt)	99
		ethanol, 78°C, 2 h		95
10	3a (R=Ph)	benzene, 80°C, 10 h	polymeric material	
11	3a (R=H) ^{a)}	benzene, 80°C, 10 h	polymeric material	

Table 2.	The Yields of normorphan	derivatives in the	thermal rearrangements
	of tricyclic aziridines 3		

a) The 3a (R=H) was prepared according to the method described in the literature.⁷⁾

The above results demonstrate that the choice of azides and solvents is important for the synthesis of normorphan derivatives from norbornadienes. Using benzenesulfonyl azide, it is possible to prepare quantitatively the normorphan derivatives from norbornadienes. Further conversion of 4a (R=SO₂Ph) into 5a (R=H) was achieved by Barraclough's method⁹⁾ using LiAlH₄ as a reducing agent.

3. Experimental

Melting points were uncorrected. IR, NMR, and mass spectra were obtained on a Hitachi 216 grating infrared spectrometer, a Hitachi R-24A spectrometer, and a Hitachi RMU-6E mass spectrometer, respectively. Elemental analyses were recorded on a Yanaco CHN corder MT-2. The spectral data of 3a-c ($R=SO_2Ph$), 3a (R=Ph), 6b, c, 4b, c ($R=SO_2Ph$), and 4a (R=COOEt) are summarized in Tables 3 and 4.

3-Phenylsulfonyl-2, 4-exo-3-azatricyclo $[3.2.1.0^{2,4}]$ oct-6-ene 3a $(R=SO_2Ph)$: A solution of a mixture of 15 g (0.163 mol) of norbornadiene and 7 g (0.038 mol) of benzenesulfonyl azide in 55 ml of dry benzene was stirred at 5°C for 42 h. After the removal of benzene in vacuo, 120 ml of (10 : 1) hexane-benzene was added into the residue and the mixture was stirred at 10°C for 8 h. The supernatant solution was taken out of the apparatus and was allowed to stand overnight at -14°C to give 1.7 g (18%) of 3a (R=SO₂Ph) as colorless prisms: mp 75 - 76°C; MS, m/e, 247 (M⁺). Found: C; 63.17, H; 5.42, N; 5.56%. Calcd for C₁₃H₁₃NO₂S: C; 63.16, H; 5.26, N; 5.67%.

Compound	IR (cm ⁻¹)	NMR (& values from TMS, Solvent; CDCl ₃)
3a (R=SO ₂ Ph)	$\frac{1620 (\nu_{C=C})}{1345 (\nu_{SO_2})}$ $\frac{1160 (\nu_{SO_2})}{1160 (\nu_{SO_2})}$	7.38 - 8.11 (m, 5H, aromatic), 6.35 (t, 2H, J=1.6Hz, 6-H, 7-H), 3.17 (s, 2H, 2-H, 4-H), 3.00 (m, 2H, 1-H, 5-H), 1.16 (d, 1H, J=8.3Hz, 8-H _s), 1.72 (d, 1H, J=8.3HZ, 8-H _a)
3b (R=SO ₂ Ph)	1740 (v _{CO}) 1345 (v _{SO₂})	7.30 - 8.00 (m, 5H, aromatic), 3.80 (s, 6H, OCH ₃), 3.45 (brs, 4H, 1-H, 2-H, 4-H, 5-H), 1.83 (d, 1H, J=8.7Hz, 8-H ₈), 1.41 (d, 1H, J=8.7Hz, 8-H _a)
3c (R=SO ₂ Ph)	2240 ($\nu_{\rm CN}$) 1335 ($\nu_{\rm SO_2}$)	7.46 - 8.16 (m, 5H, aromatic), 3.50 (brs, 2H, 1-H, 5-H), 3.43 (s, 2H, 2-H, 4-H), 2.03 (d, 1H, J=10.7Hz, 8-H ₈), 1.55 (d, 1H, J=10.7Hz, 8-H _a)
3a (R=Ph)	1600 (<i>v</i> _{C=C})	6.58 - 7.30 (m, 5H, aromatic), 6.22 (brs, 2H, 6-H, 7-H), 2.96 (m, 2H, 1-H, 5-H), 2.40 (s, 2H, 2-H, 4-H), 1.82 (d, 1H, J=8.0Hz, 8-H ₈), 1.12 (1H, d, J=8.0Hz, 8-H _a)
бЪ	1730 ($\nu_{\rm CO}$) 1325 ($\nu_{\rm SO_2}$)	7.40 - 8.00 (m, 5H, aromatic), 3.72 (brs, 2H, 2-H, 4-H), 3.66 (s, 6H, OCH ₃), 3.38 (m, 2H, 1-H, 5-H), 1.98 (brs, 2H, 8-CH ₂)
6c	2230 ($\nu_{\rm CN}$) 1325 ($\nu_{\rm SO_2}$)	7.50 - 8.30 (m, 5H, aromatic), 3.81 (m, 2H, 2-H, 4-H), 3.45 (m, 2H, 1-H, 5-H), 2.15 (s, 2H, 8-CH ₂)

Table 3. Spectral data of compounds 3a-c (R=SO, Ph), 3a (R=Ph), and 6b, c

Table 4. Spectral data of compounds 4b,c (R=SO₂ Ph) and 4a (R=COOEt)

Compound	IR (cm ⁻¹)	NMR (δ values from TMS, Solvent; CDCl ₃)
	$\frac{1730 (\nu_{\rm CO})}{1350 (\nu_{\rm SO_2})}$	7.30 - 8.00 (m, 5H, aromatic), 6.49 (dd, 1H, J=7.0Hz, J=1.0Hz, 3-H), 5.35 (m, 1H, 1-H), 3.82 (s, 3H, OCH ₃), 3.68 (s, 3H, OCH ₃), 3.08 (m, 1H, 5-H), 1.95 (m, 1H, 8-H _a), 1.29 (d, 1H, J=11.0Hz, 8-H _s)
4c (R=SO ₂ Ph)	$^{2230}_{1360} (\nu_{\rm CN})_{\rm SO_2})$	7.50 - 8.15 (m, 5H, aromatic), 6.68 (dd, 1H, J=1.3Hz, J=8.0Hz, 3-H) 5.33 (t, 1H, J=8.0Hz, J=6.0Hz, 4-H), 5.10 (m, 1H, 1-H), 3.20 (m, 1H, 5-H), 2.02 (m, 1H, 8-H _a), 1.43 (d, 1H, J=11.8Hz, 8-H _s)
4a (R=COOEt)	1710 (v _{CO}) 1622 (v _{C=C})	6.49 (dd, 1H, J=8.3Hz, J=1.6Hz, 3H), 6.20 (dd, 1H, J=2.7Hz, J=5.7Hz, 6-H), 5.51 (dd, 1H, J=5.7Hz, J=2.3Hz, 7-H), 5.10 (m, 2H, 1-H, 4-H), 4.20 (q, 2H, $-OCH_2 CH_3$), 2.69 (m, 1H, 5-H), 1.80 (m, 1H 8-H _a), 1.25 (t, 4H, $-OCH_2 CH_3$, 8-H ₈)

6, 7-Bis(methoxycarbonyl)-3-phenylsulfonyl-2,4-exo-3-azatricyclo[$3.2.1.0^{2,4}$]oct-6ene 3b (R=SO₂Ph): A solution of a mixture of 3.7 g (0.0178 mol) of 2,3-bis (methoxycarbonyl) norbornadiene and 1.1 g (0.006 mol) of benzenesulfonyl azide in 20 ml of dry benzene was stirred at 50°C for 48 h. After the removal of benzene *in vacuo*, the residue was chromatographed on silica gel. Elution with (12 : 1) benzene-acetone gave 1.16 g (74%) of 3b (R=SO₂Ph) and 0.23 g (10%) of 6b (R=SO₂Ph). The 3b (R=SO₂Ph) was recrystallized from methanol to give colorless prisms: mp 127 - 128°C; MS, m/e, 363 (M⁺). Found: C; 56.05, H; 4.70, N; 3.98%. Calcd for C₁₇H₁₇NO₆S: C; 56.20, H; 4.68, N; 3.86%. The 6b was recrystallized from methanol to give colorless cubic crystals: mp 100 - 100.5°C; MS, m/e, 363 (M⁺). Found: C; 56.17, H; 4.68, N; 4.09%. Calcd for $C_{17}H_{17}NO_6S$: C; 56.20, H; 4.68, N; 3.86%.

6,7-Dicyano-3-phenylsulfonyl-2,4-exo-3-azatricyclo[$3.2.1.0^{2.4}$]oct-6-ene 3c (**R=SO**₂**Ph**): A solution of a mixture of 5.0 g (0.0352 mol) of 2,3-dicyanonorbornadiene¹⁰⁾ and 2.2 g (0.012 mol) of benzenesulfonyl azide in 20 ml of dry benzene was stirred at 80°C for 68 h and then benzene was removed *in vacuo*. The residue was chromatographed on silica gel. Elution with (12 : 1) benzene-ethyl acetate gave 0.68 g (19%) of 3c (**R=SO**₂**Ph**), 0.74 g (21%) of 6c, and 0.23 g (12%) of 7. The 3c (**R=SO**₂**Ph**) was recrystallized from ethanol to give colorless plates: mp 182 - 183°C; MS, m/e, 297 (M⁺). Found: C; 60.72, H; 3.68, N; 14.01%. Calcd for C₁₅H₁₁N₃O₂S: C; 60.61, H; 3.70, N; 14.14%. The 6c was recrystallized from methanol to give colorless plates: mp 188 - 189°C; MS, m/e, 297 (M⁺). Found: C; 60.63, H; 3.72, N; 13.90%. Calcd for C₁₅H₁₁N₃O₂S: C; 60.61, H; 3.70, N; 14.14%. The 6c was recrystallized from (5 : 1) hexane-chloroform to give colorless needles: mp 119 - 121°C; NMR (CDCl₃) δ = 3.66 (m, 1H, 1-H), 3.51 (1H, m, 4-H), 2.68 (1H, d, J=11.3Hz, 6-H_{exo}), 1.98-2.45 (m, 3H, 6-H_{endo}, 7-CH₂); IR (KBr) 2220 (ν_{CN}), 1750 (ν_{CO}); MS, m/e, 158 (M⁺). Found: C; 68.60, H; 3.78, N; 17.67%. Calcd for C₉H₆N₂O: C; 68.35, H; 3.80, N; 17.72%.

3-Phenyl-2,4-exo-3-azatricyclo[$3.2.1.0^{2,4}$]oct-6-ene 3a (R=Ph): A solution of 4.4 g (0.021 mol) of the 2a (R=Ph) in 35 ml of dry cyclohexane placed in pyrex-tube was irradiated for 22 h from a 100 W-mercury lamp. After the removal of cyclohexane *in vacuo*, the residue was distilled at 106 - 107°C (0.4 mmHg) to obtain 1.38 g (36%) of 3a (R=Ph): MS, m/e, 183 (M⁺). Found: C; 85.50, H; 7.18, N; 7.41%. Calcd for C₁₃H₁₃N: C; 85.24, H; 7.10, N; 7.65%.

Decomposition of triazoline compound 2a (R=COOEt): A solution of 5.72 g (0.028 mol) of 2a (R=COOEt) in 56 ml of dry toluene was refluxed for 13 h and then toluene was removed *in vacuo*. The residue was chromatographed on silica gel. Elution with benzene gave 2.02 g (41%) of 4a (R=COOEt) and 2.02 g (37%) of 8. The 4a (R=COOEt) was distilled at 85 · 86°C (0.4 mmHg): MS, m/e, 179 (M⁺). Found: C; 67.30, H; 7.41, N; 7.95%. Calcd for C₁₀H₁₃NO₂S: C; 67.02, H; 7.26, N; 7.82%. The 8 was recrystallized from (2 : 1) hexane-benzene to give colorless prisms: mp 77 · 78.5°C; NMR (CDCl₃) δ = 6.29 (dd, 1H, J=5.3 Hz, J=3.0Hz, 2-H), 6.03 (dd, 1H, J=5.3Hz, J=3.3Hz, 3-H), 5.67 (m, 1H, OH), 4.62 (m, 1H, NH), 4.11 (q, 2H, -O<u>CH₂CH₃</u>), 3.18 (m, 1H, 4-H), 2.87 (m, 1H, 1-H), 1.40 · 2.23 (m, 4H, 6-CH₂, 7-CH₂), 1.22 (t, 3H, -OCH₂<u>CH₃</u>); IR (KBr) 3290 (ν_{OH} , ν_{NH}) and 1730 (ν_{CO}) cm⁻¹; MS, m/e, 180. Found: C; 60.69, H; 7.90, N; 7.06. Calcd for C₁₀H₁₅NO₃: C; 60.91, H; 7.61, N; 7.11%.

2-Phenylsulfonyl- $\overline{2}$ -azabicyclo[3.2.1]oct-3,6-diene 4a (R=SO₂Ph): A solution of 6.53 g (0.026 mol) of 3a (R=SO₂Ph) in 50 ml of dry benzene was refluxed for 5 h and then benzene was removed *in vacuo*. The residue was chromatographed on silica gel. Elution with benzene gave 6.40 g (98%) of 4a (R=SO₂Ph). The spectral data and elemental analysis agreed with the data described in the literature.⁶

2-Ethoxycarbonyl-2-azabicyclo[3.2.1]oct-3,6-diene 4a (R=COOEt): Use of toluene as

a solvent; A solution of 3.64 g (0.02 mol) of 3a (R=COOEt) in 20 ml of dry toluene was refluxed for 13 h. Use of dry ethanol as a solvent; A solution of 3.64 g of 3a (R=COOEt) in 20 ml of dry ethanol was refluxed for 2 h. In both cases, the solution after the reaction was treated as follows. After the removal of the solvent *in vacuo*, the residue was chromatographed on silica gel. Elution with benzene gave 3.46 - 3.60 g (95 - 99%) of 4a (R=COOEt).

6,7-Bis(methoxycarbonyl)-2-phenylsulfonyl-2-azabicyclo[3.2.1]oct-3,6-diene 4b (R= SO_2Ph): Use of dry xylene as a solvent; A solution of 1.09 g (0.003 mol) of 3b (R= SO_2Ph) in 20 ml of xylene was refluxed for 11 h. Use of dry o-dichlorobenzene as a solvent; A solution of 1.09 g (0.003 mol) of 3b (R= SO_2Ph) in 20 ml of o-dichlorobenzene was refluxed for 0.2 h. In both cases, the solution after the reaction was treated as follows. After the removal of the solvent *in vacuo*, the residue was chromatographed on silica gel. Elution with (12 : 1) benzene-acetone gave 1.08 - 1.09 g (99 - 100%) of 4b (R= SO_2Ph). The 4b (R= SO_2Ph) was recrystallized from 95% ethanol to give colorless prisms: mp 83 - 84°C; MS, m/e, 363 (M⁺). Found: C; 55.96, H; 4.78, N; 3.70%. Calcd for C₁₇H₁₇NO₆S: C; 56.20, H; 4.68, N; 3.86%.

6,7-Dicyano-2-phenylsulfonyl-2-azabicyclo[3.2.1]oct-3,6-diene 4c ($R=SO_2Ph$): A solution of 1.19 g (0.004 mol) of 3c ($R=SO_2Ph$) in 10 ml of dry o-dichlorobenzene was refluxed for 7 h and then o-dichlorobenzene was removed *in vacuo*. The residue was chromatographed on silica gel. Elution with (12 : 1) benzene-acetone gave 1.18 g (100%) of 4c ($R=SO_2Ph$). The 4c ($R=SO_2Ph$) was recrystallized from 95% ethanol to give colorless prisms: mp 116 - 118°C; MS, m/e, 297 (M⁺). Found: C; 60.84, H; 3.61, N; 13.99%. Calcd for C₁₅H₁₁N₃O₂S: C; 60.61, H; 3.70, N; 14.14%.

References

- 1) R.C. Cavestri and M. Mokotoff, J. Med. Chem., 20, 1493 (1977).
- 2) W.J. Gensler, C.D. Gatsonis, and Q.A. Amed, J. Org. Chem., 33, 2968 (1968).
- 3) P.G. Gassmann and J.H. Dygos, Tetrahedron Lett., 4749 (1970).
- 4) M. Mokotoff and R.C. Cavestri, J. Org. Chem., 39, 409 (1974).
- 5) K. Umano, H. Taniguchi, H. Inoue, and E. Imoto, Tetrahedron Lett., 247 (1979).
- 6) A.C. Oehlschlager and L.H. Zalkow, J. Org. Chem., 30, 4205 (1965).
- 7) H. Tanida, T. Tsuji, and T. Irie, J. Org. Chem., 31, 3941 (1966).
- 8) S. Mclean and D.M. Findlay, Tetrahedron Lett., 2219 (1969).
- 9) P. Barraclough, S. Bilgic, and D.W. Young, Tetrahedron, 35, 91 (1979).
- 10) H. Taniguchi, T. Ikeda, Y. Yoshida, and E. Imoto, Bull. Chem. Soc. Jpn., 50, 2694 (1977).