Hessian Matrix for the Networks Containing Periodically operated Switches

メタデータ	言語：eng
	出版者：
	公開日：2010－04－06
	キーワード（Ja）：
	キーワード（En）：
	作成者：Jyo，Yoichi，Minamoto，Suemitsu メールアドレス： 所属：
URL	https：／／doi．org／10．24729／00008642

Hessian Matrix for the Networks Containing Periodically Operated Switches

Yoichi Jyo* and Suemitsu Minamoto*

(Received June 16, 1980)

Abstract

In this paper, we will show that the Hessian matrix for the networks containing periodically operated ideal switches can be precisely calculated without any analytic expression, but in far less effort than that would be required by the pertubation method.

1. Introduction

For the optimization of electrical networks the gradient-based methods are normally used, because several efficient methods for calculating the gradients of a network function to a set of design parameters have been proposed. Among them the most widely used is that of Fletcher and Powell ${ }^{1)}$. This requires only first derivatives (the gradients), but implicitly estimate second derivative information to speed convergence. Wing and Behar ${ }^{2}$) showed that Hessian matrix (matrix of second derivatives of network function) can be obtained from first- and second-network sensitivities and can be used to solve optimization problems. David Agnew ${ }^{3}$ developed an algorithm which can reduce the amount of work required to generate the Hessian. S.W. Director ${ }^{11}$ showed the calculation procedure of second order sensitivities (the Hessian) with the aid of the adjoint network method, which is very useful for CAD.

However, we can't apply these methods listed above directly to the networks containing switches, for example, switched modulator, variable active switched filter etc..

This paper deals with the calculating procedure of the Hessian matrix in the frequency domain for the networks containing periodically operated ideal switches (switching networks). In a previous work ${ }^{4)}$, the authors derived the adjoint network representation for the linear netowrks containing switches. By the use of properties that exist between the switching network and its adjoint network, we obtain new formulas to determine the factors of Hessian matrix. The purpose of this paper is, first, to give the calculation algorithm of Hessian matrix; next, to estimate the total number of network analyses. And finally, a concrete example is shown to serve for an illustration.

2. Calculation of the gradients

In 4), we proposed the following definitions.

[Definition 1] the adjoint network

(1) The adjoint network \hat{N} has the same topology as the original network N, and \hat{N} is obtained from N by the branch replacement rules proposed by S.W. Director and

[^0]R.A. Rohrer ${ }^{5}$, hereat, each switch in N is also duplicated in \hat{N}.
(2) $O N$-switch in N corresponds to $O N$-switch in \hat{N} and $O F F$-switch in N to $O F F$ switch in \hat{N}.
(3) It is forbidden to observe N and \hat{N} at the same time when the positions of the corresponding switches in N and \hat{N} are different.

[Definition 2] the gradient

The gradients in the switching network N are defined as the partial derivatives of the equivalent transfer function of N with respect to network parameters.

The outline of the gradient generations based on the adjoint network method will be described below.

Consider the time interval $n T_{s} \leqq t \leqq(n+1) T_{s}$ as shown in Fig. 1 , where T_{s} is the

Fig. 1. Notations for n-th switching period.
switching period. Each switching period T_{s} is divided into r subintervals $\tau_{1}, \tau_{2}, \cdots$, $\tau_{k}, \cdots, \tau_{r}$, which represent r different sets of switch positions. For the k-th subinterval, the time invariant network N_{k}, where $O N$-switches are short-circuited and $O F F$-switches are open-circuited, is provided. As a result, the time invariant networks N_{1}, N_{2}, \cdots, N_{k}, \cdots, N_{r} are provided in order of time according to the sets of switch positions. For the adjoint network, $\hat{N}_{1}, \hat{N}_{2}, \cdots, \hat{N}_{k}, \cdots, \hat{N}_{r}$ are also provided and they have one to one correspondence to $N_{1}, N_{2}, \cdots, N_{k}, \cdots, N_{r}$.

Consider a single input, single output linear network. By a suitable choice of excitations for N and \hat{N}, two analyses, one performed on N and another on \hat{N}, are sufficient

Table 1. Summary of $\partial\left(V_{0}, I_{0}\right) / \partial x$ calculation.

Element type	Description in N and \hat{N}	$\partial\left(V_{0}, I_{0}\right) / \partial x$
impedance Z	$\begin{aligned} & V_{Z, k}=Z I_{Z, k} \\ & \hat{V}_{Z, k}=Z \hat{I}_{Z, k} \end{aligned}$	$-\sum_{k=1}^{r} \frac{I_{Z, k} \hat{I}_{Z, k}}{\delta_{k}}$
admittance Y	$\begin{aligned} & I_{Y, k}=Y V_{Y, k} \\ & \hat{I}_{Y, k}=Y \hat{V}_{Y, k} \end{aligned}$	$\sum_{k=1}^{r} \frac{V_{X, k} \hat{V}_{X, k}}{\delta_{k}}$
$\begin{gathered} \text { inductance } \\ \quad L \end{gathered}$	$\begin{aligned} & V_{L, k}=j \omega_{0} L I_{L, k} \\ & \hat{V}_{L, k}=j \omega_{0} L \hat{I}_{L, k} \end{aligned}$	$-j \omega_{0} \sum_{k=1}^{r} \frac{I_{L, k} \hat{I}_{L, k}}{\delta_{k}}$
capacitance c	$\begin{aligned} & I_{\sigma, k}=j \omega_{0} C V_{\sigma, k} \\ & \hat{I}_{\sigma, k}=j \omega_{0} C \hat{V}_{\sigma, k} \end{aligned}$	$j \omega_{0} \sum_{k=1}^{\tau} \frac{V_{\sigma, k} \hat{V}_{\sigma, k}}{\delta_{k}}$

to determine the gradients.
Here, we make an appointment that capital letters I and V indicate phasors. Let $\left(I_{x, k}, V_{x, k}\right)$ and ($\hat{I}_{x, k}, \hat{V}_{x, k}$) be (current, voltage) of corresponding branch x in N_{k} and \hat{N}_{k}. Denote the output current and voltage by I_{0} and V_{0}, respectively, the gradients $\partial\left(V_{0}, I_{0}\right) / \partial x$ with respect to various elements x s can be calculated by using the results in Table 1. In Table 1, $\delta_{k}=\tau_{k} / T_{s}(k=1,2, \cdots, r)$ and ω_{0} is the angular frequency of input signal.

3. Algorithm to determine the Hessian matrix

We can observe that with network parameters $\boldsymbol{p}=\left[p_{1}, p_{2}, \cdots, p_{i}, p_{j}, \cdots, p_{m}\right]^{T}$ the Hessian matrix is of the form

$$
\boldsymbol{H}=\left(\begin{array}{ccc}
\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial p_{1}^{2}} & \frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial p_{2} \partial p_{1}} \cdots \cdots & \frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial p_{m} \partial p_{1}} \tag{1}\\
\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial_{1} p_{2} p_{2}} \frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial p_{2}^{2}} & \cdots \cdots & \vdots \\
\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial p_{1} \partial p_{m}} & \cdots \cdots \cdots \cdots \cdots \cdots & \frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial p_{m}^{2}}
\end{array}\right)
$$

Fig. 2. Calculation of $\partial^{2}\left(V_{0}, I_{0}\right) / \partial Y_{i} \partial Y_{j}$.

In this section, we propose the calculation procedure of $\partial^{2}\left(V_{0}, I_{0}\right) / \partial p_{i} \partial p_{j}$. The model we propose for development of our calculation procedure is shown in Fig. 2(a), namely, a linear network N containing Y_{i}, Y_{j}, R, L, C, switches and various controlled sources etc., where $\partial^{2}\left(V_{0}, I_{0}\right) / \partial Y_{i} \partial Y_{j}$ or $\partial^{2}\left(V_{0}, I_{0}\right) / \partial Y_{j} \partial Y_{i}$ are to be found. In Fig. 2(a), V_{s} is the input voltage, $V_{Y_{i}, k}$ is the branch voltage across the admittance Y_{i} and $V_{Y_{j}, k}$ is that of Y_{j}. Fig. 2(b) shows the adjoint network. The unit current source \hat{I}_{0} is added to \hat{N}_{k} for the calculation of $\partial^{2} V_{0} / \partial Y_{i} \partial Y_{j}$, while the unit voltage source \hat{V}_{0} is applied to \hat{N}_{k} for evaluating $\partial^{2} I_{0} / \partial Y_{i} \partial Y_{j}$.

From Table 1, we write the gradient in the form

$$
\begin{equation*}
\frac{\partial\left(V_{0}, I_{0}\right)}{\partial Y_{i}}=\sum_{k=1}^{r} \frac{V_{Y_{i}, k} \hat{V}_{Y_{i}, k}}{\delta_{k}} \tag{2}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{\partial}{\partial Y_{j}}\left(\frac{\partial\left(V_{0}, I_{0}\right)}{\partial Y_{i}}\right)=\sum_{k=1}^{r} \frac{\left(\partial V_{Y_{i}, k} / \partial Y_{j}\right) \hat{V}_{Y_{i}, k}+V_{Y_{i, k}}\left(\partial \hat{V}_{Y_{i}, k} / \partial Y_{j}\right)}{\delta_{k}} \tag{3}
\end{equation*}
$$

Now $\partial V_{Y_{i}, k} / \partial Y_{j}$ and $\partial \hat{V}_{Y_{i, k}} / \partial Y_{j}$ can be calculated in the same manner as the product of two voltages. Fig. 2(c) is the adjoint network $\hat{N}_{k}^{V_{Y_{i}}}$ with $V_{Y_{i}, k}$ regarded as an "output" voltage.
Then,

$$
\begin{align*}
& \frac{\partial V_{Y_{i, k}}}{\partial Y_{j}}=\frac{V_{Y_{j, k}} \hat{k}_{Y_{j}, k}^{V_{Y_{i}}}}{\delta_{k}} \tag{4}\\
& (k=1,2, \cdots, r)
\end{align*}
$$

where $\hat{V}_{Y_{j}, k}^{V_{Y_{i}}}$ is measured across Y_{j}-branch of $\hat{N}_{k}^{V_{Y_{i}}}$ but with the excitation $\hat{I}_{0}^{V_{Y_{i}}}=1$ in parall with Y_{i} (the output branch) as shown in Fig. 2(c). The term $\partial \hat{V}_{Y_{i}, k} \partial Y_{j}$ can be similarly developed as

$$
\begin{align*}
& \frac{\partial \hat{V}_{Y_{i}, k}}{\partial Y_{j}}=\frac{\hat{V}_{Y_{j}, k} \hat{V}_{Y_{j}, k}^{\hat{V}_{Y_{i}}}}{\delta_{k}} \tag{5}\\
& (k=1,2, \cdots, r)
\end{align*}
$$

where $\hat{V}_{Y_{j}, k}^{\hat{V}_{Y_{i}}} \hat{l}_{i}$ is measured across Y_{j}-branch of $\hat{N} \hat{V}_{Y_{i}}$, which is the adjoint network of
 Fig. 2(d).

Substituting Eqs. (4) and (5) into Eq. (3)

$$
\begin{equation*}
\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial Y_{j} \partial Y_{i}}=\sum_{k=1}^{r} \frac{V_{Y_{j, k}} \hat{V}_{Y_{j, k}}^{V_{Y_{i}}} \hat{V}_{Y_{i}, k}+V_{Y_{i}, k} \hat{V}_{Y_{j, k}} \hat{V} \hat{Y}_{Y_{j}, k}^{\hat{V}_{Y_{i}}}}{\delta_{k}^{2}} \tag{6}
\end{equation*}
$$

Similarly, we can obtain the next equation.

$$
\begin{equation*}
\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial Y_{i} \partial Y_{j}}=\sum_{k=1}^{r} \frac{V_{Y_{i, k}, k} \hat{V}_{Y_{i}, k}^{V_{Y_{j}} \hat{V}_{Y_{j, k}}}+V_{Y_{j, k}} \hat{V}_{Y_{i}, k} \hat{V}_{Y_{i}, k}}{\hat{V}_{Y_{j}}} \tag{7}
\end{equation*}
$$

From the properties of the adjoint network, we can obtain the following equations (Appendix 1)

$$
\begin{align*}
& \hat{V}_{Y_{i, k}}^{V_{Y_{i}}}=\hat{V}_{Y_{j, k}}^{\hat{V}_{Y_{i}}} \tag{8}\\
& \hat{V}_{Y_{i}, k}^{V_{Y_{i}}}=\hat{V}_{Y_{i}, k}^{\hat{V}_{y}} \tag{9}
\end{align*}
$$

Then, Eqs. (6) and (7) become

$$
\begin{equation*}
\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial Y_{j} \partial Y_{i}}\left(=\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial Y_{i} \partial Y_{j}}\right)=\sum_{k=1}^{\prime} \frac{V_{Y_{i, k}} \hat{V}_{Y_{j, k}} \hat{V}_{Y_{i, k}}^{V_{Y_{j}}}+V_{Y_{j, k}} \hat{V}_{Y_{i}, k} \hat{V}_{Y_{j}, k}^{V_{Y_{i}}}}{\delta_{k}^{2}} \tag{10}
\end{equation*}
$$

This formula is symmetric in i and j as indeed it should be and can be calculated as the product of three voltages.

The results corresponding to Z, Y, L and C branches are shown in Table 2. Other types of branches can be handled in a similar manner.

Table 2. Summary of $\partial^{2}\left(V_{0}, I_{0}\right) / \partial x_{i} \partial x_{j}$ calculation.

	z_{j}	Y_{j}
z_{i}	$\sum_{k=1}^{\sum_{i=1} \frac{I_{Z_{i}, k} \hat{I}_{z_{j}, k} \hat{I}_{Z_{i}, k}^{I_{j}}+I_{z_{j}, k} \hat{I}_{Z_{i}, k} I_{Z_{j} k}}{I_{Z_{i}}}}$	$-\sum_{k=1}^{k} \frac{I_{Z_{i}, k} \hat{V}_{Y_{j}, k} I_{Z, k}^{I_{Y_{j}}}+V_{Y_{j, k}} \hat{I}_{z, k} \hat{V}_{Y j, k}^{I_{Z_{i}}}}{\delta_{k}^{2}}$
Y_{i}		$\sum_{k=1}^{r} \frac{V_{Y_{i}, k} \hat{k}_{Y_{j}, k} \hat{V}_{Y_{i}, k}^{\nabla_{Y_{i}}}+V_{Y_{j, k}, k} \hat{V}_{Y_{i}, k} \hat{V}_{Y_{j}, k}^{V_{Y_{i}}}}{\delta_{i}^{2}}$
	L_{j}	c_{j}
Z_{i}		$-j \omega_{0} \sum_{k=1}^{r} \frac{I_{z_{i, k}} \hat{V}_{\sigma_{j}, k} i_{z_{i}, k}^{V_{j}}+V_{\sigma_{j, k}} \hat{i}_{z_{i, k}} \hat{V}_{c_{j, k}} \hat{Z}_{i}}{\delta_{k}^{2}}$
Y_{i}	$-j \omega_{0} \sum_{k=1}^{r} \frac{V_{Y_{i}, k} \hat{L}_{L_{j}, k} \hat{V}_{Y_{i}, k}^{I_{j}}+I_{L_{j}, k} \hat{V}_{Y_{i}, k} \mathcal{I}_{L_{j, k}, k}^{V_{Y_{i}}}}{\delta_{k}^{2}}$	$j \omega_{0} \sum_{k=1}^{r} \frac{V_{Y_{i}, k} \hat{V}_{\sigma_{j}, k} \hat{V}_{r_{i}, k}^{V_{j}}+V_{\sigma_{j, k}, \hat{k}}^{V_{i, k}, \hat{V}_{j_{j, k}}} \vec{\nabla}_{Y i}}{\delta_{k}^{2}}$
L_{i}	$-\omega_{0}^{2} \sum_{k=1}^{r} \frac{I_{L_{i}, k} \hat{I}_{L_{j}, k} \hat{I}_{L_{i}, k}^{L_{j}}+I_{L_{j}, k} \hat{L}_{L_{i}, k} I_{L_{j, k}} I_{L_{i}}}{\delta_{k}^{k}}$	
C_{i}		

The procedure for determining \boldsymbol{H} of Eq. (1) can now be summarized.
Step 1 Determine all branch variables $V_{p_{i}, k}, V_{p_{j}, k^{\prime}}, I_{p_{i}, k}$ and $I_{p_{j}, k}(k=1,2, \cdots, r)$ of the original network;
Step 2 determine all branch variables $\hat{V}_{p i}, k, \hat{V}_{p_{j}, k}, \hat{I}_{p_{i}, k}$ and $\hat{I}_{p_{j}, k}(k=1,2, \cdots, r)$ of the adjoint network;
Step 3 for any j, determine all branch variables $\hat{V}_{p i, k}^{(V, I)_{p j}}$ and $\hat{I}_{p_{i}, k}^{(V, I)_{D_{j}}}(i=1,2, \cdots, m)$ in the analysis of adjoint network with a unit source across p_{j}, for $j=1,2, \cdots, m$.

To obtain numerical solutions, we must calculate the branch variables in the k-th subinterval ($k=1,2, \cdots, r$) for the original network, its adjoint network and the networks of adjoint type constructed by regarding each branch as the output branch. M.L. Liou's state variable approach ${ }^{6}$) is suitable for the properties required. The summary is as follows.

For N_{k}, the differential state equation and the output equation are obtained as

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{\boldsymbol{x}}_{k}=\boldsymbol{A}_{k} \boldsymbol{x}_{k}+\boldsymbol{B}_{k} \boldsymbol{u} \\
\boldsymbol{y}_{k}=\boldsymbol{C}_{\boldsymbol{k}} \boldsymbol{x}_{k}+\boldsymbol{D}_{k} \boldsymbol{u}
\end{array}\right. \tag{11}\\
& (k=1,2, \cdots, r)
\end{align*}
$$

where \boldsymbol{x}_{k} is the state variable, \boldsymbol{u} is the input-function vector, $\boldsymbol{\nu}_{k}$ is the output-function vector, and $\boldsymbol{A}_{k}, \boldsymbol{B}_{k}, \boldsymbol{C}_{k}, \boldsymbol{D}_{k}$ are constants.

Substituting $\boldsymbol{A}_{k}, \boldsymbol{B}_{k}, \boldsymbol{C}_{k}, \boldsymbol{D}_{\boldsymbol{k}}$ and other network parameters into M.L. Liou's equation (Appendix 2),

$$
\begin{equation*}
\boldsymbol{T}_{k}(p)=\left[\boldsymbol{C}_{k} e^{-p \eta_{k}} \boldsymbol{R}_{k}(p)-\tau_{k}\left\{\boldsymbol{C}_{k}\left(\boldsymbol{A}_{k}-P \boldsymbol{I}\right)^{-1} \boldsymbol{B}_{k}-\boldsymbol{D}_{k}\right\}\right] / T_{s} \tag{12}
\end{equation*}
$$

we can obtain the numerical solutions of all branch voltages and currents for $N_{k}(k=1$, $2, \cdots, r)$.

Similarly, we can calculate all branch variables for $\hat{N}_{k}, \hat{N}_{k}^{(V, I)_{p_{i}}}$ and $\hat{N}_{k}^{(V, I)_{p_{j}}}$.

4. Computational cost

It is common to regard the number of elementary arithmetic operations alone as the measure of the computational effort. In this section, we examine the question.

The symmetry of \boldsymbol{H} requires the calculation of only the upper (or lower) triangular matrix. The number of operations required in each step to solve the Hessian matrix is shown in Table 3. Therefore, a total of $r(m+2)$ network

Table 3. Operation count.

step	network	no. of operations
1	N_{k}	r
2	\hat{N}_{k}	r
3	$\hat{N}_{k}(\nabla, r)_{p_{i}}$	$r m$
	total	$r(m+2)$

On the other hand, if the partial derivatives are calculated by successive differencing of p_{j} (pertubation method), i.e.

$$
\begin{equation*}
\frac{\partial^{2}\left(V_{0}, I_{0}\right)}{\partial p_{i} \partial p_{j}}=\frac{\left.\frac{\partial\left(V_{0}, I_{0}\right)}{\partial p_{j}}\right|_{p_{i}=p_{i}{ }^{0}+\Delta p_{i}}-\left.\frac{\partial\left(V_{0}, I_{0}\right)}{\partial p_{j}}\right|_{p_{i}=p_{i} 0^{0}}}{\Delta p_{i}} \tag{13}
\end{equation*}
$$

a total of $m(m+2) / 2$ separate analyses are required after the first derivatives are estimated,
and the computational effort can rise sharply with the number of parameters and becomes intolerable for a large network. Since $r \ll m$, this method is far better than the pertubation method, which is commonly used, at the point of view of computational cost.

5. Example

For the simple lowpass filter of Fig. 3(a), calculate $\partial^{2} V_{0} / \partial G_{1} \partial G_{2}$. Fig. 3(b) is the adjoint network, Fig. 3(c) is the network built by taking G_{1} as the output branch and Fig. 3 (d) is the adjoint network which results on regarding G_{2} as the output branch.

Fig. 3. Example.
$G_{1}=G_{2}=1 \mathrm{~m} \sigma, \quad C=0.1 \mu \mathrm{~F}$
$\omega_{0}=2 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
$\omega=2 \times 10^{5} \mathrm{rad} / \mathrm{sec}$
Assume that the switch $S W$ is $o n$ in the interval $\left[n T_{s}, n T_{s}+\tau_{1}\right.$) and off in the interval $\left[n T_{s}+\tau_{1},(n+1) T_{s}\right)$, the original network N is divided into $N_{1}(S W$ is shortcircuited) and $N_{2}\left(S W\right.$ is open-circuited). Sinilarly, \hat{N} is divided into \hat{N}_{1} and $\hat{N}_{2}, \hat{N}^{V \epsilon_{1}}$ into $\hat{N}_{1}^{V \sigma_{1}}$ and $\hat{N}_{2}^{V \sigma_{1}}, \hat{N}^{V \sigma_{2}}$ into $\hat{N}_{1}^{V \epsilon_{2}}$ and $\hat{N}_{2}^{V \sigma_{2}}$.

Let the capacitor voltage be the state variable, we have the following equations by inspection
for N_{1}

$$
\begin{equation*}
v_{c, 1}=-\frac{G_{1}+G_{2}}{C} v_{C, 1}-\frac{G_{1}}{C} v_{s} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
v_{G_{1}, 1}=-v_{C, 1}+v_{s} \tag{15}
\end{equation*}
$$

and for N_{2}

$$
\begin{align*}
& \dot{v}_{c, 2}=0 \tag{16}\\
& v_{G_{1}, 2}=\frac{G_{2}}{G_{1}+G_{2}} v_{s} \tag{17}
\end{align*}
$$

From these equations, the constants of Eq. (11) are determined. Substituting the constants $A_{1}=-\left(G_{1}+G_{2}\right) / C, B_{1}=-G_{1} / C, C_{1}=-1, D_{1}=1, A_{2}=0, B_{2}=0, C_{2}=0, D_{2}=$ $G_{1} /\left(G_{1}+G_{2}\right)$ into Eq. (12), we can obtain the values of $V_{G_{1}, 1}$ and $V_{G_{1}, 2}$.

In the same manner, $V_{G_{2,1}}$ and $V_{G_{2}, 2}$ can be calculated. For $\hat{N}, \hat{N}^{V G_{1}}$ and $\hat{N}^{V_{G_{2}}}$ as well, we can obtain the numerical results of $\hat{V}_{G_{1}, k}, \hat{V}_{G_{2}, k}, \hat{V}_{G_{1}, k}^{V_{G_{2}}}$ and $\hat{V}_{G_{2}, k}^{V_{G_{1}}}(k=1,2)$ from their state equations and output equations. The results are shown in Table 4, where δ_{1} is equal to τ_{1} / T_{s}.

Table 4. Numerical results of Example.
$E+n ; 10^{n}$

δ	$\partial^{2} V_{0} / \partial G_{1} \partial G_{2}$	
	Calculation results	From Eq. (20)
1.0	$-0.62500 E+7+j 0.62500 E+7$	$-0.62500 E+7+j 0.62500 E+7$
0.8	$-0.33370 E+7+j 0.68484 E+7$	$-0.33371 E+7+j 0.68484 E+7$
0.6	$-0.28586 E+6+j 0.56671 E+7$	$-0.28562 E+6+j 0.56674 E+7$
0.4	$0.13327 E+7+j 0.29107 E+7$	$0.13326 E+7+j 0.29111 E+7$
0.2	$0.78220 E+6+j 0.52611 E+6$	$0.78232 E+6+j 0.52629 E+6$

This is a special case that the equivalent transfer function V_{0} (suppose that the input V_{s} equals to 1) of this network can be written under the condition $\omega_{0} \ll \omega(\omega=$ $2 \pi / T_{s}$) as

$$
\begin{equation*}
V_{0}=\frac{G_{1}}{p(C / \delta)+G_{1}+G_{2}} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
p=j \omega_{0} \tag{19}
\end{equation*}
$$

The second order derivative of Eq. (19) with respect to G_{1} and G_{2} becomes

$$
\begin{equation*}
\frac{\partial^{2} V_{0}}{\partial G_{1} \partial G_{2}}=\frac{G_{1}-G_{2}-2 p(C / \delta)}{\left\{p(C / \delta)+G_{1}+G_{2}\right\}^{3}} \tag{20}
\end{equation*}
$$

Substituting the constants $G_{1}=G_{2}=1 \mathrm{~m} \delta, C=0.1 \mu F, \omega_{0}=2 \times 10^{3} \mathrm{rad} / \mathrm{sec}$ and $\omega=2 \times 10^{5} \mathrm{rad} / \mathrm{sec}$ into Eq. (20) the analytic results shown in Table 4 are obtained.

Comparing the results found by the adjoint network method with the analytic results, we can say that the present method does work with high accuracy.

6. Conclusions

The calculating procedure of the Hessian matrix for the networks containing periodically operated switches is presented. To calculate all factors of the Hessian matrix for the network with m parameters, a total of $r(m+2)$ networks must be analized, where r is the total number of the sets of switch positions. However, this method requires far less effort than would be required by the pertubation method for a large network.

This technique is applicable to any periodically switched network configurations and yields fast and accurate numerical results and, hence, is suitable for a large network optimizations.

References

1) D.A. Calahan, Computer-Aided Network Design, McGraw-Hill, New York (1974).
2) O. Wing and J.V. Behar, IEEE Trans. CAS-21, 643, (1974).
3) D. Agnew, IEEE Trans. CAS-25, 600, (1978).
4) Y. Jyo, H. Fujiwara and S. Minamoto, Paper of Technical Group on Circuit and System Theories of IECE, Japan, CST78-123, (1979).
5) S.W. Director and R.A. Rohrer, IEEE Trans. CT-16, 318, (1969).
6) M.L. Liou, IEEE Trans. CT-19, 146, (1972).

Appendix

Appendix 1

Fig. A(a) is the adjoint network by regarding the Y_{j}-branch voltage $V_{Y_{j}}$ as the output voltage. Fig. A(b) is the adjoint network (of the adjoint network \hat{N}_{k}) by regarding the Y_{i}-branch voltage $\hat{V}_{Y_{i}}$ as the output voltage.

Fig. A. Model to verify $\hat{V}_{Y_{i}, k}^{\nabla_{Y_{j}}}=\hat{V}_{Y_{j}, k^{2}}^{\hat{V}_{Y_{i}}}$.
The Tellegen sum for $\hat{N}^{V_{Y_{j}}}$ and $\hat{N}^{\hat{V}_{Y_{i}}}$ is

$$
\begin{equation*}
I_{0}^{\hat{V}_{Y_{i}}} \cdot \hat{V}_{Y_{i}, k}^{V_{Y_{j}}}-V V_{Y_{j}, k}^{\hat{V}_{Y_{i}}} \cdot \hat{I}_{0}^{V_{Y_{j}}}=0 \tag{A-1}
\end{equation*}
$$

Since $\hat{I}_{0}^{V_{Y_{j}}}=1$ and $I_{0}^{V_{Y_{i}}}=1$, Eq. (A-1) becomes as

$$
\begin{equation*}
\hat{V}_{Y_{i}, k}^{V_{Y_{j}}}=\hat{V}_{Y_{j}, k}^{\hat{V}_{Y_{i}}} \tag{A-2}
\end{equation*}
$$

The same proof holds for

$$
\begin{equation*}
\hat{V}_{Y_{j ; k}}^{V_{Y_{i}}}=\hat{V}_{Y_{i}, k}^{\hat{V}_{Y_{j}}} \tag{A-3}
\end{equation*}
$$

Appendix 2
For the k-th subinterval of n-th switching period shown in Fig. 1 , the state equation and the output equation can be written as

$$
\left\{\begin{array}{c}
\dot{\boldsymbol{x}}_{n, k}(t)=\boldsymbol{A}_{k} \boldsymbol{x}_{n, k}(t)+\boldsymbol{B}_{k} \boldsymbol{u}(t) \tag{A-4}\\
\boldsymbol{y}_{n, k}(t)=\boldsymbol{C}_{k} \boldsymbol{x}_{n, k}(t)+\boldsymbol{D}_{k} \boldsymbol{u}(t) \\
\sigma_{n, k} \leqq t \leqq \sigma_{n, k+1} \\
(k=1,2, \cdots, r)
\end{array}\right.
$$

At the switching instants we write

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{n, 2}\left(\sigma_{n, 2}\right)=\boldsymbol{F}_{2} \boldsymbol{x}_{n, 1}\left(\sigma_{n, 2}\right)+\boldsymbol{G}_{2} \boldsymbol{u} \boldsymbol{u}\left(\sigma_{n, 2}\right) \tag{A-5}\\
\boldsymbol{x}_{\boldsymbol{n}, 3}\left(\sigma_{n, 3}\right)=\boldsymbol{F}_{3} \boldsymbol{x}_{n, 2}\left(\sigma_{n, 3}\right)+\boldsymbol{G}_{3} \boldsymbol{u}\left(\sigma_{n, 3}\right) \\
\vdots \\
\boldsymbol{x}_{n+1,1}\left(\sigma_{n, r+1}\right)=\boldsymbol{F}_{r+1} \boldsymbol{x}_{n, r}\left(\sigma_{n, r+1}\right)+\boldsymbol{G}_{r+1} \boldsymbol{u}\left(\sigma_{n, r+1}\right)
\end{array}\right.
$$

where $\boldsymbol{F}_{\boldsymbol{k}}$ and $\boldsymbol{G}_{\boldsymbol{k}}$ are constants.
Let the input signal $u(t)$ be

$$
\begin{equation*}
u(t)=e^{p t} ; \quad p=j \omega_{0} \tag{A-6}
\end{equation*}
$$

the equivalent transfer function $\boldsymbol{T}(p)$ becomes

$$
\begin{equation*}
\boldsymbol{T}(p)=\sum_{k=1}^{\boldsymbol{r}}\left[\boldsymbol{C}_{k} e^{-p \eta_{k}} \boldsymbol{R}_{k}(p)-\tau_{k}\left\{\boldsymbol{C}_{k}\left(\boldsymbol{A}_{k}-p \boldsymbol{I}\right)^{-1} \boldsymbol{B}_{k}-\boldsymbol{D}_{k}\right\}\right] / \boldsymbol{T}_{s} \tag{A-7}
\end{equation*}
$$

where

$$
\begin{align*}
& \eta_{k}=\sum_{i=1}^{k-1} \tau_{i} \tag{A-8}
\end{align*}
$$

$$
\begin{align*}
& +\left(\boldsymbol{A}_{k}-p \boldsymbol{I}\right)^{-1}\left(\boldsymbol{A}_{k}-p \boldsymbol{I}\right)^{-1}\left\{e^{A_{k} \tau_{k}} e^{-\phi \tau_{k}}-\boldsymbol{I}\right\} \boldsymbol{B}_{k} e^{p \eta_{k}} \tag{A-9}\\
& P_{1}=J \\
& \boldsymbol{P}_{k(\geq 2)}=\boldsymbol{F}_{k} e^{\boldsymbol{A}_{k-1} \boldsymbol{1}_{k-1} \boldsymbol{P}_{k-1}+\boldsymbol{F}_{k}\left(\boldsymbol{A}_{k-1}-\boldsymbol{p} \boldsymbol{I}\right)^{-1}}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{J} \boldsymbol{\operatorname { m o m }}\left(e^{p T_{s}} \boldsymbol{I}-\boldsymbol{M}\right)^{-1} \boldsymbol{H} \tag{A-10}
\end{align*}
$$

$$
\begin{align*}
& \boldsymbol{H}=\sum_{k=1}^{r} \boldsymbol{L}_{k}\left(\boldsymbol{A}_{k}-p \boldsymbol{I}\right)^{-1}\left\{e^{A_{k} \tau_{k}} e^{p \eta_{k}}-e^{\rho \eta_{k+1} \boldsymbol{I}}\right\} \boldsymbol{B}_{k}+\sum_{k=1}^{r} \boldsymbol{N}_{k} e^{\rho \eta_{k+1}} \tag{A-12}
\end{align*}
$$

$$
\begin{aligned}
& I \text { : unit (identity) matrix }
\end{aligned}
$$

[^0]: * Department of Electronics, College of Engineering

