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Hessian Matrix for the Networks Containing
Periodically Operated Switches
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(Received June 16, 1980)

In this paper, we will show that the Hessian matrix for the networks containing
periodically operated ideal switches can be precisely calculated without any analytic
expression, butin far less effort than that would be required by the pertubation method.

1. Introduction

For the optimization of electrical networks the gradient-based methods are normally
used, because several efficient methods for calculating the gradients of a network function
to a set of design parameters have been proposed. Among them the most widely used
is that of Fletcher and Powell®. This requires only first derivatives (the gradients),
but implicitly estimate second derivative information to speed convergence. Wing
and Behar? showed that Hessian matrix (matrix of second derivatives of network func-
tion) can be obtained from first- and second-network sensitivities and can be used to
solve optimization problems. David Agnew® developed an algorithm which can reduce
the amount of work required to generate the Hessian. S.W. Director” showed the
calculation procedure of second order sensitivities (the Hessian) with the aid of the ad-
joint network method, which is very useful for CAD.

However, we can’t apply these methods listed above directly to the networks contain-
ing switches, for example, switched modulator, variable active switched filter etc..

This paper deals with the calculating procedure of the Hessian matrix in the fre-
quency domain for the networks containing periodically operated ideal switches (switch-
ing networks). In a previous work?, the authors derived the adjoint network repre-
sentation for the linear netowrks containing switches. By the use of properties that
exist between the switching network and its adjoint network, we obtain new formulas to
determine the factors of Hessian matrix. The purpose of this paper is, first, to give the
calculation algorithm of Hessian matrix; next, to estimate the total number of network

analyses. And finally, a concrete example is shown to serve for an illustration.
2. Calculation of the gradients

In 4), we proposed the following definitions.

[Definition 1)  the adjoint network
(1) The adjoint network N has the same topology as the original network N, and Nis
obtained from N by the branch replacement rules proposed by S.W. Director and
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R.A. Rohrer®, hereat, each switch in N is also duplicated in N.

(2) ON-switch in N corresponds to ON-switch in N and OFF-switch in N to OFF-
switch in N.

(3) It is forbidden to observe N and N at the same time when the positions of the cor-

responding switches in NV and N are different.

[Definition 2]

The gradients in the switching network N are defined as the partial derivatives of

the gradient

the equivalent transfer function of N with respect to network parameters.

The outline of the gradient generations based on the adjoint network method will
be described below.

Consider the time interval nT, <t <(n+1)T, as shown in Fig. 1, where T\ is the

N, N, N, N,
Ty Ty ot = e o e - - Th =tof ot = = - o e T,
+ —> !
T ("% T3 Tk T pv1 Ty Gnr+1
(=nT,) (=(=+1T,)

Fig. 1. Notations for n-th switching period.

switching period. Each switching period 7 is divided into r subintervals 7,, 7,, --*,
Ty, *°*, T,, Which represent r different sets of switch positions. For the k-th subinterval,
the time invariant network N,, where ON-switches are short-circuited and OFF-switches
are open-circuited, is provided. As a result, the time invariant networks N;, N,, «-+,
N, +++, N, are provided in order of time according to the sets of switch positions. For
the adjoint network, Nl, NZ, cee, N,,, N, are also provided and they have one to one
correspondence to N;, Ny, +»+, N, -+, N,.

Consider a single input, single output linear network. By a suitable choice of ex-
citations for N and N, two analyses, one performed on N and another on N, are sufficient

Table 1. Summary of 3(Vy, Io)/0x calculation.

Element type Description
A Vo, Io)/0x
x in N and N
impedance Var=ZIz, ’ Iz,p.jz,;,
ZzZ IA/z_,,=Ziz,k _”ng
admittance Iy ;=Y Vy, ” Vy,kvy,k
Y Ira=YVrau ET5
inductance Viw=jwolly ; . IL,I:jL.k
L Via=jwoLl 14 TRETS
capacitance Ip y=jw,CVq ’ Vc,»“}c,k
c lou=jweCVa,u a2 O
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to determine the gradients.

Here, we make an appointment that capital letters  and V indicate phasors. - Let
epy Vo) and (f,,,,,, 19',’,,) be (current, voltage) of corresponding branch x in N, and
Nk. Denote the output current and voltage by I, and V,, respectively, the gradients
B(Vy, 1p)/0x with respect to various elements xs can be calculated by using the results

in Table 1.
input signal.

3. Algorithm to determine the Hessian matrix

In Table 1, &=1,/T, (k=1, 2, --*,r) and @, is the angular frequency of

We can observe that with network parameters P=[p,, ps, ***, Pi, Pj» ***s Pum)’ the

Hessian matrix is of the form

casse 62(VO: Io)

.....

%V, Ip) (Vo 1) ..
apt  OpOpy
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Fig. 2. Calculation of 82(V,, [)/0Y:0Y;.




24 Yoichi Jyo and Suemitsu MiNaMOTO

In this section, we propose the calculation procedure of 8%V, I))/0p;8p;. The
model we propose for development of our calculation procedure is shown in Fig. 2(a),
namely, a linear network N containing Y;, Y;, R, L, C, switches and various controlled
sources etc., where 0%V, I,)jdY;0Y; or 8%V, I,)/0Y;0Y; are to be found. In
Fig. 2(a), V, is the input voltage, Vy, ; is the branch voltage across the admittance Y;
and Vy,, is that of ¥;. Fig. 2(b) shows the adjoint network. The unit current source
f is added to Nk for the calculation of 82V,/0Y,8Y;, while the unit voltage source 170
is applied to N, for evaluating 8°I,/0Y;0Y .

From Table 1, we write the gradient in the form

Vo) <« Viilris

ayi = k=1 3k (2)
Then,
AV, 1) (Vg fOY )Py, 4+ Vi, 0V, 40T
ay( A >_hz=:l k Ykak HOVyr (3)

Now 8Vy, ,;/0Y; and af/,,,.,k/ay,- can be calculated in the same manner as the
product of two voltages. Fig. 2(c) is the adjoint network N}: Ti with Vy, , regarded as

an “output” voltage.

Then,
Wy x . VYJ-’?VTI//l:‘k
ay; — g, (4)
(k=1,2,-,1)

where 171[/;7",2 is measured across Y;-branch of N ZY" but with the excitation f OVY" =1lin
parall with Y; (the output branch) as shown in Fig. 2(c). The term 817,,,.,,,/6‘ Y; can
be similarly developed as

aVY,-,k Vyi"‘Vgl;:k
ay; ~ & (5)
(k =1, 2, )

where ngfk is measured across Y;-branch of N Vr, i, which is the adjoint network of

N, with the excitation I 17‘-—1 in parallel with Y; (the output branch), as shown in
Fig. 2(d).
Substituting Egs. (4) and (5) into Eq. (3)

FVo I) & VY;‘,kI}I{"l;kVYi.k%" VY!,kVYj,kygj:k

0Y,0Y; £ &7 - (6)

Similarly, we can obtain the next equation.

PVul) < VeV 5§%VY;,k+VYf.vaf,kV¥’§,ik

oy, oY, & o2 (7)
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From the properties of the adjoint network, we can obtain the following equations
(Appendix 1) '

Vy 5 Vy;
P = P, (8)
v, = 78, (9)
Then, Egs. (6) and (7) become
PV 1) | _ 3Ty B\ _ < VesVrsal Yot Ve, sl raV Vi
3Y,0Y, (“ 6Y,.8Y,~) & . LA (10)

This formula is symmetric in 7 and 5 as indeed it should be and can be calculated as
the product of three voltages.

The results corresponding to Z, Y, L and C branches are shown in Table 2. Other
types of branches can be handled in a similar manner.

“Table 2. Summary of 8%(V4,1)]0x;9x; calculation.

Z; Y;
v T
Z Iz,,hfzj ka ;,+Iz,,pjz,,n?z , Izg,kf’rj.kaff‘*‘ VYi-kfziJVYiik
= . 0% ¥=1 . 0% :
‘ v NI
Y r VeiaVrin y,fi‘*“ VY;.er;,th:'»
b3 0
k=1 i
L c,
Z L Izi.kflj,ﬁj;f.jb"}'Iﬂj.ﬁfgi,ki;i‘h o ZIZKJ'VOIJ?Z i+ Vo, kai.b o
Jwo 23— 5 J 0 2 3
N vy,
Y Vr;.tfz,.hf’y. +IL;.erf,kfzfi . Vrs.kf’ci.kf’y k+V01.er;.hVaj.
—.onz 6£ ]wo..gl ai
C Iz, ‘ R Iz,
L; r IL;.ka;.kafﬁ‘*'ij.kjtz.kaf.'k r I Vo jzfl'*' Vaj.ka;.-,thf,'h
e kgl 0% wsfgx 0%
R . ATg.
c; e VorrVo;4 Vorit VosuVou Vo ik
P 3%

The procedure for determining H of Eq. (1) can now be summarized.
Step 1 Determine all branch variables V, ., p s> Lp,p and Ip,,k (k=1, 2, -+, 7) of
the original network; -
Step 2 determine all branch variables V pisk? VP: o fp‘ 5 and 1 ok (=1, 2, -+, 1) of
the adjoint network;
Step 3 for any j, determine all branch variables ¥ {2D% and 1{V:D2 (i=1, 2, -, m)
in the analysis of adjoint network with a unit source across p;, for j=1, 2, +-+, m.
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To obtain numerical solutions, we must calculate the branch variables in the &-th
subinterval (k=1, 2, +++, r) for the original network, its adjoint network and the networks
of adjoint type constructed by regarding each branch as the output branch. M.L. Liou’s
state variable approach® is suitable for the properties required. The summary is as
follows. . o

For N,, the differential state equation and the output equation are obtained as

{ X, = Apx,+ By (11

¥ = Cyx,)+Du
(k=1,2, 1)

where X, is the state variable, & is the input-function vector, Y, is the output-fimction
vector, and A,, B,, C;, D, are constants.

Substituting A, B, C;, D, and other network parameters into M.L. Liou’s equa-
tion (Appendix 2), ’ ‘

T(p) = [Cie” "' Ry(p)—7:{C(A;—PI)"'B,— D;})|T, (12)

we can obtain the numerical solutions of all branch voltages and currents for N (k=1,
2, 1) o : . :
Similarly, we can calculate all branch variables for Ny, N§¥*"s and N{¥"Ds;,

4. Computational cost

It is common to regard the number of elementary arithmetic operations alone as the

measute of the computational effort. In

this section, we examine the question. , . Table3. Operation count.
The symmetry of H requires the :
. . step network no. of operations
calculation of only the upper (or lower)
triangular ‘matrix. The number of - 5 %’ i’
. . . ’ . k 4
operations required in each step to solve 3 N Dy m
the Hessian matrix is shown in Table 3. : —
total - r(m+2)

Therefore, a total of r(m-2) network

analyses are required.

On the other hand, if the partial derivatives are calculated by successive differencing
of p; (pertubation method), i.e.

B/ Y B (7 | R
Vo bo) . _ Ob; |pi=pOt+dpi 3 |pi=p o
Op; Op; ‘ A S (13)

p¥; initial value

4p;; small change of p;

a total of m(m+-2)/2 separate analyses are required after the first derivatives are estimated,
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and the computational effort can rise sharply with the number of parameters and becomes
intolerable for a large network. Since  m, this method is far better than the pertuba-
tion method, which is commonly used, at the point of view of computational cost.

5. Example

For the simple lowpass filter of Fig. 3(a), calculate 8?V,/0G,8G,. Fig. 3(b) is the
adjoint network, Fig. 3(c) is the network built by taking G, as the output branch and
Fig. 3 (d) is the adjoint network which results on regarding G, as the ‘output branch.

6 sw G, Sw

1
"

(C) N Ve, (d) N Ve,
Fig. 3. Example.
G1=G=1m¥, C=0.1pF
we=2 X108 rad/sec
@ =2 X 10° rad/sec
Assume that the switch SW is on in the interval [nT,, nT,+7,) and off in the in-
terval [nT,+7,, (n+1)T,), the original network N is divided into N; (SW is short-
circuited) and N, (SW is open-circuited). Simnilarly, N is divided into N and N, N7
into N7¢ and NY4, NV into NYé and N Ve ‘
Let the capacitor voltage be the state variable, we have the following equations by
inspection
for N,

c1 =

G+G, _ﬁ ! ) 14
c Ve, Cvt ‘ ( )
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V6,1 = —Vc,1+7, ' (15)
and for N,
ea=0 N (16)
G,
= A 17
Yg,,2 G+G, v (17)

From these equations, the constants of Eq. (11) are determined. Substituting the
constants A,=—(G,+G,)/C, B,=—G,/C, C;=~1, D,=1, 4,=0, B,=0, C,=0, D,=
G1/(G1+Gy) into Eq. (12), we can obtain the values of Ve,1 and Vi .

In the same manner, Vg, and Vg, , can be calculated. For N, NVé and NV&
as well, we can obtain the numerical results of f/c,.m 19'02,,,, t}:;,ffk and V::lk (k=1, 2)
from their state equations and output equations. The results are shown in Table 4,
where 9, is equal to 7,/T,.

Table 4. Numerical results of Example.

E+4n; 10"
82V4/0G,0G,
é
Calculation results From Eq. (20)

1.0 —0.62500E+7 + j0.62500E-+7 —0.62500E+7 + 70.62500E-7
0.8 —0.33370E+7 + j0.68484E+7 —0.33371E+7 + jO.68484E+7
0.6 —0.28586E+-6 + j0.56671E-+7 —0.28562E+6 + j0.56674E+7
0.4 0.13327E+7 + j0.29107E+7 0.13326E+7 + jO.29111E+7
0.2 0.78220E+6 -+ jO.52611E+6 0.78232E+6 + j0.52629E-+6

This is a special case that the equivalent transfer function ¥, (suppose that the
input ¥, equals to 1) of this network can be written under the condition w,<® (0=
2z|T,) as

Vom— G (18)
- HCIO)H+G+-G, A
where '
P =jw, (19)
The second order derivative of Eq. (19) with respect to G, and G, becomes
YV, _ G—G,—2p(C/s) 20)

86,66, {p(CIO)+G+ G}

Substituting the constants G, =G,=1m&, C=0.1 uF, w,=2x 10° radfsec and
@=2X10° rad/sec into Eq. (20) the analytic results shown in Table 4 are obtained.

Comparing the results found by the adjoint network method with the analytic re-
sults, we can say that the present method does work with high accuracy.
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6. Conclusions

The calculating procedure of the Hessian matrix for the networks containing per-
iodically operated switches is presented. To calculate all factors of the Hessian matrix
for the network with m parameters, a total of 7(m--2) networks must be analized, where 7
is the total number of the sets of switch positions. However, this method requires far
less effort than would be required by the pertubation method for a large network.

This technique is applicable to any periodically switched network configurations
and yields fast and accurate numerical results and, hence, is suitable for a large network

optimizations.
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Appendix

Appendix 1

Fig. A(a) is the adjoint network by regarding the ¥;-branch voltage Vy; as the output
voltage. Fig. A(b) is the adjoint network (of the adjoint network N,,) by regarding the
¥ ~branch voltage Vy,. as the output voltage.

0——0

V :.Y./lb fo Vyi=1 jo f>-l";‘=]. Yk
(a) (b)
Fig. A. Model to verify Vy'- = Vyz'.
The Tellegen sum for N7 and NV is
IVYf- v~ VVY' A7 =0 (A-1)

Since fOVYf =1and I OVY i=1, Eq. (A-1) becomes as
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Ve, — 5Vr
Vi =V,
The same proof holds for

Vi — DV
V¥ =Ty

Appendix 2

(A-2)

(A-3)

For the /-th subinterval of #-th switching period shown in Fig. 1, the state equation

and the output equation can be written as

X,,4(t) = Apx, i (1)+ Byu(t)
Y i(t) = Cpx, ()4 Du(2)
Opp SES0, 441
(kh=1,2, 7

At the switching instants we write

xn,z(au,z) = szn,l(an,2)+G2u(an.2)
xu,3(°n,3) = F;x?,2(6n,3)+G3u(an.3)

Xpi1,1(0n,p41) = E+1xn,r(”n,r+1)+Gr+1u("n,r+1)
where F), and G, are constants.
Let the input signal () be
ut) = e”; p = jo,

the equivalent transfer function 7'(p) becomes

T(p) = 3 [Cee s R(p)— 1 {C Ai—pD)B,— DY/,
where

77k=2“'£
f=1

Ry(p) = (A—pI) ™ {eAre "~} P,
+(Ay—pI) (Ay—pI) ™ {eAve™ s T} Bye?™s
P, =J ,
Pyzy = er“*'17"‘1Pk-1+Fk(Ak—l'°PI)—l
X {edk-1Te-1— k-1 T} P18, |+ G e
J o= (T I-M)H
M = F, 64" F,e4r-1"r-1... Foefi™s

H =3 L(A,—pI) {ehre"s—e?s1]} Byt 3 Nye?so:
k=1 k=1

L1 — I("_*_leArTrEeAr—],Tr—h..ﬁ'z
LZ — Fr+leAr"'rF"eAr-1Tr~1...F'3

Lr = E+l

(A-4)

(A-5)

(A-6)

(A-7)

(A=8)

(A-9)

(A-10)
(A-11)
(A-12)

(A-13)

(A-14)
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N1 == Fr+leAr7rFreAr ~1Tr-1.4 .F"agAszGz

N, = F,_*.leA'T'F,«eA' “1r =140 .F4eAa'sG3
: (a-15)
Nr—l = Fr+leA'TrGr

l_ Nr == Gr+1

I: unit (identity) matrix



