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   The purpese of this paper is to describe a method for estimatingmaterial damp- '

ing by the loss factor for a higher mode of vibration and radiation sound pressure of

a beam under vibration. Application of this method to a simply supported beam

comes to the fo11owing conclu$ions: The material damping'of the beam at each mode

of vibration can be obtained from the stress distribution function of the beam at

each mode of vibration and energy absorption function. The relatiopsliips between

the amplitude of acceleration and the radiation sound pressure, and between the

material damping and the radiation sound pressure are not influenced by any mode

of vibration.

                               1. Introduction

    The method fbr estimating the loss factor from the stress distribution function and

the energy absorption function has been reported by Lazani). As the stress distribu-

tion function is based on the quasi-static deformation of a member, however, the stress

distribution function at higher mode of vibration can not be given by Lazan's method.

This papqr describes a method for calculating the stress distribution function from the

normal functions acguived by the analysis of undamped vibration and for evaluating

the material damping of higher modes of vibration by the loss factor.

    The vibration of the structures such as d machine and building generated by exeit--

ing fbrce radiates sound. Although the mechanism of the sound radiation has been

investigated from many aspects, the relationship between the acceleration amplitude of

the structure and the sound pressure is not yet satisfactorily clarified. Layleigh2) and

Morse3) have studied on the sound pressure due to the sound radiation out of a beam with

baMle. The sound pressure radiated by the vibration of the bearn without baMe has

scarcely studied.

    In the case of the vibration of the beam without baMe, the sound is radiated from

the front side and rear side of the beam with the phase difference of 1800, and interference

takes place between sound waves. Thus we eannot neglect the dimension of the cross-

section, the acceleratlon and frequency of vibration and the distance from a sound source

to a receiving point when the sound pressure is to be estimated. Therefbre, the rela-

tionship among the external excitation, the vibration of the beam and the radiated sound

pressure should be analyzed by taking into account Young's modulus, the moment of

  * Department of Industrial Engineering, College of Engineering.

 *W Department of Industrial Engineering, Faculty of Science and Technology, Kinki University.



56 ' Yasufumi KuME, Setsuo MAEDA and Fumio HAsHIMoTo

inertia, the length of the beam, the amplitude of acceleration, the exciting frequency

and the boundary dondition at beam ends. The mechanism of the sound radiation from

a vibrating beam without baMe is assumed to be equivalent to that from two pulsating

spheres that have a phase difference of 1800 and the same acceleration as the beam.

                    2. Estimation of material damping

    The material damping of the member can be evaluated by various measures, but

this paper applies the measure described below. Let U and D be the maximum elastic

energy and dissipating energy per unit cycle, respectively. Then the loss factor4) is

given by

               D ' ,
          rp ==
              2xU

If the whole member is distributed by uniform stress, Eq. (1) can be rewritten as

          op == dev(2xevV,), (2)
                                     'where Pk is the total volume of the member, dU is the specific damping energy or the

dissipating energy per unit cycle and unit volume.

    In general, it is said that the specific damping energy is affected by stress amplitude,

frequency, temperature and stress history, and is influenced considerably in paticular by

the stress amplitude. The specific damping energy is calculated from the loss factor

which is given by the experiment ofa simple shape test specimen. Lazan5) has obtained

the experimental equation for steel

          du{a)==o.o7o3( ;)2'3+o.422(;))8. (3)

This equation is called the energy absorption funodon, in which the dimensions of

liU<o), the stress amplitude o and fatigue liinit af are kst7(cm2.ttycle), kgf7cm2 and

kstcm2, respectively. If the deformation of material is linear, the specific damping

energy dU is proportional to (a/af)2 and the energy absorption function is approximately

linear to the maximum stress amplitude at the low stress region.

    When the member is deformed by applying force, the internal stress distribution is

nonuniform. The function expressing the state of the stress distribution is called the

stress distribution function. The stress distribution function becomes

         f<a/o.) :d(PZ/V,)/d(a/o.), (4)
where a. stands for the maximum stress amplitude and V the volume subjected to the

stress below o.

    As the maximum elastic energy dU acting on a volume element dV is expressed as

                        'a2dV72E, ,' ' ' '' '
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          U=2EV.k. ,iliM oY<o/am)da･ ,. (s)

is obtained from Eq. (4). On the other hand, the same computation as in Eq. (5) yields

          Di. :Ei S,crMdu(a)f(o/o.)da, ., (6)

since dD is dUdV. From Eqs. (1), (5) and (6), the loss factor can be written in the

                                    '

                             '                 ea.
          v - -l7 )o s:".III;¥.;a.l, iM,idO. - (7)

               3. Stress distribution under flexural vibration

    The slender beam of isotropic body whose state is uniform in the direction of the

axis as shown in Fig. 1 is simply supported. In this case, the normal function of n th

mode of vibration is

                     pt

x h

                     F-----!--------

                       l: length of beam, h: depth of beam

                    Fig. 1. Model fbra simply supported beam

          PV], ==Csin (nnx/l), (8)
zzer:ioCn'2"1.iOfftla",.,,,tg,/iltiElilS;.`.h,,',ielg.Flb)::,℃.M.nvSheS`resssampi't"deofnthmole,o;

If the coordinates Where a, becomes maximum are (x., y.) and h is the thickness of

beam, they become

          x. == IZ(2n), and v. :h/2, (10)
which settle the place where PK is maximum. For the maximum values of o., PVh, we

have

                  '                                    '          antn= {liLE (!!7'L )2Wmn, ' '' (1 1)

                                        '           tt                    ttfrom Eqs. (8), (9) and (10). Equal stress contour lines can be written in the form
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          -;i- -:,g,O."(O.m.".)p). ,,,-･, '',it, (i2)

These results are summarized in Fig. 2, and the state of the stress distribution is shown
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     Fig. 2. Equal stress contours of the simply supported beam
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        .4. Stress.･disnibution function and material damping

    If the stress distribution functionf(o/a.) and the energy absorption function dU(a)

are given, we can express the material damping by the loss factor n from Eq. (7).

From Eq. (12), the intersect of the equal stress contour line with the outer fiber of the

beam is written･as ,.- ,-･ ･･･ ･- ,･ -, . -' . -.. ..･.･,.･ ',･ -. , ..･ ･ '-' ,' , ･,.-
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          xll :11(nx)'sin-i(a./am.). ' ' (13)
Since the equal stress contour line of the beam is symmetric with respect to x axis, the

part of beam volume in which stress is less than o. can be calculated.by doubling the

area ofthe range' of 05y$h/2. Let the width of the beam be replaced by w, Vbecomes

          v== 4nw(g.,+jll,2"y dx). (14)
              '
Now, let C = o./a.., K==:ofla.., g== (1-C2)if2, ¢==tan {sin-Li op12}. Since K :wh4 the
volume stress function becQmes

          V/4=(21x) (sin'-i C-4 1og ¢). (15)
    The stress distribution function expressiRg the rate of volume variation by means of

the variation of a. can be expressed by

         f== (2/n)(q- log g- S9 (-}-+ ¢)]. (16)

The results of Eqs. (15) and (16) are shown in Fig. 4. Substitution of Eq. (13) and (16)

into Eq. (7) conducts us finally to

          op - .k. !:(O 0703([ilis'):243v+dOc422(Ijli')81dC (17)
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          Fig. 5. Relationship between loss factor and maximum stress amplitude

The calculated result of this equation is shown in Fig. 5.

                    '                      t.
                           '                  5. Estimat'ion of radiation sound pressure

    The mechanism of radiation from the beam can be modelled as shown in Fig. 6.

When the vibration of the pulsating sphere radiates spherical waves, the velocity potential

on a sphere of radius R is given by '

          g5 r- iii- ei(Wt""kR), (18)

where R, A, to,k andtdenote the distance from the center of the sphere O to the receiv-

ing point P, an unknown constant, angular frequency, wavenumber and time, respecti-

vely. Theparticlevelocitybecomes ,...,,,

                  a¢'          du

          i, =-5k･ ... .. (19)
The present analysis assumes that the Pa.rticle velocity at the radius of the pulsating

sphere a is equal to the vibration velocity of the beam l7},e,'"t.
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Fig. 6. Relationship between cross-section of beam and pulsating spheres

 [glllL]R=, =Al-FaL21'kaej(tot-k") == vh.ejwt .

          (18) and (19). The unknown constant A is determined as

 A == Pib.i+"L2ik.eik",

is the ampiitude of vibration velocity. From Eqs. (18)

61

(2e)

is obtained from Eqs.

where Vb. and (21), the velocity
                             '                                           'potential is reduced to ' '
                                  '                                                                      '
          ¢ =-:2Sl+PXLbik"aej'k"e"("t-kR). ' (22)

    If the sound radiation of the pulsating sphere is elucidated, the model shown in Fig.

6 can be analyzed on the basis of Eq. (22). Since the sound radiated from the vibrating

beam without baMe is equivalent to that from two pulsating spheres, the radius of the

puisating sphere a depending on the dimension of cross-section of the beam is determined

experimentally. The sound pressure at the receiving point P' corresponds to that on

the circle of the pulsating sphere model including the receiving point P. Consequently,

the velocity potentials at the receiving point P

          ¢+=ft2 1+Vfah"aejk"e'(eet-kR), and (23)

                                   '          g6.-=-t4,1+P'fa}"aejk"ei(et-"kR') ' ' (24)

are obtained from Eq. (22). ･,
Rand R' in Eqs. (23) and (24) are expressed as ･

           R=riVi-k cos e+ iel, and (2s)
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          R'=rV i+k cos e'+ 4h,2, (26)
                      '                   '
with reference to Fig. 6, vyhere r and e denote the receiving distance and the receiving

angle, respectively. Substitution of Eqs. (25) and (26) into Eqs. (23) and (24) results in

          ¢' = (i +",i2zea) , ,vf i-litl "lik,a e+t/i,}f:i, e' (to'-rV`'-3 cos e+?l:'i2) (27)

and

          ¢-.- a2 ,' Vb.alka el'(tet`'"'rV'1+?COSe+S･}).' (2s)
            - (i +Lika) r ,vl i+-l:- cos e+tl:,L2

                                                    '
Since the velocity potential at the receiving point P is equal to the sum of the velocity

                              'potential di+ and ¢-, we have

¢-
i+a
j2k.v},ejkae'(",`-k"e-'

,'

vik'(
iV
-tiiitl3,C.iSee+'tli/lli'ii'ilTe'-','v,kr(iVii",.C,OSee+'il/llli2,2-i) .

                                                                      (29)

Thus, the sound pressure P is obtained from Eqs. (30) and p =u'i p¢ as

   '                         '

p==jtop,+a
fa2 .ilh.ejkae'`n;-k"e"

,'vt,kr

li//;,e,.CiS,e+"ti/lllJll2;.i.),--eM','v(le'il'/li+lttif',--:-:-ijeitfl/i'll2-')

                                                                      (30)

where p is the density of the air.

    The sound pressure level is calculated by

          spL -= 2o iog,, P!V2 (dB), (3i)
                         Po

where po is O.Ooo2 ptbar. Besides, by letting A,.=:':'toVl,., Eq. (30) is rewritten as

p==-7'pA,.i+"
fa2 .eikaej(wi/kr)e-j

,v'

tler(ii/il-lh3,.C,OSee++ti/lliilri,'-i)-e-j,'vtk'i(i/iii3,.C,1See++41il,lltr,22Li),

                                                                      (32)

where A,. stands for the amplitude of acceleration at nth resonance of the vibrating

    The radius of the pulsating sphere a can be detetmined by substituting the radiation

sound pressure and the amplitude of acceleration obtained experimeritally. The results

'
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of several measurements were substituted in Eq. (32). The radii of the pulsating spheres

were.averaged in order tQ minimize the effect of the errQrs in the measure, inents and the

infiuence of background noises on the sound pressure. As the results, the radius a7) of

the equivalent sphere for the, beam with' the arbitrary width w and thickness h of the

                           'beam is determined as ' ' '.

          a=O.92zF+O.O0774w---O.Q270h. (33)
    On consideration for the materiai damping, the amplitude of acceleration A.. at

nth mode of vibration in the simply supported beam excited at its center is given by

          A,F'b" =' ,.,(iil)4-ls-･ (34)

where Pb denotes the amplitude of the exciting force, to. the n th resonant angular fre-

quency and l the moment of inertia of area. By taking h!w==e.1, h/r==O.5 and w as the

parameter, the calculation of Eqs. (31), (32), (33) and (34) for the radiation sound pressure

in relation to the amplitude of acceleration is shown in Fig. 7. . Fig. 8 gives the relation

between the radiation sound pressure and the material damping. It is seen from Fig. 7

and Fig. 8 that in the case of the simply supported beam, the radiation sound pressure in

relation to the material damping and to the amplitude of acceleration are independent of

the mode of vibration.
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                               6. 'Conclusion

    In order to estimate the material darnping and the radiation sound pressure of ma-

chine structure, how to estimate the material damping and the radiation sound pressure

of the component of machine is considered. The summary of the results is as follows:

1) The stress distribution function of the member at each vibration mode may be cal-

    culated from the normal function.

2) The stress distribution function in each vibration mode become almost similar values.

3) The material damping of the beam can be obtained from the stress distribution func-

   tion of the bearn at each mode of vibration and the energy absorption function.

4) The relationships between the acceleration amplitude and the radiation sound pres-

    sure, and between the material damping and the radiation sound pressure are not

   infiuenced by the mode of vibration.
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