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The purpose of this paper is to describe a method for estimating material damp-
ing by the loss factor for a higher mode of vibration and radiation sound pressure of
a beam under vibration. Application of this method to a simply supported beam
comes to the following conclusions: The material damping of the beam at each mode
of vibration can be obtained from the stress distribution function of the beam at
each mode of vibration and energy absorption function. The relationships between
the amplitude of acceleration and the radiation sound pressure, and between the
material damping and the radiation sound pressure are not influenced by any mode
of vibration.

1. Introduction

The method for estimating the loss factor from the stress distribution function and
the energy absorption function has been reported by LazanV. As the stress distribu-
tion function is based on the quasi-static deformation of a member, however, the stress
distribution function at higher mode of vibration can not be given by Lazan’s method.
This paper describes a method for calculating the stress distribution function from the
normal functions acquired by the analysis of undamped vibration and for evaluating
the material damping of higher modes of vibration by the loss factor.

The vibration of the structures such as a machine and building generated by excit-
ing force radiates sound. Although the mechanism of the sound radiation has been
investigated from many aspects, the relationship between the acceleration amplitude of
the structure and the sound pressure is not yet satisfactorily clarified. Layleigh? and
Morse® have studied on the sound pressure due to the sound radiation out of a beam with
bafflle. The sound pressure radiated by the vibration of the beam without baffle has
scarcely studied. '

In the case of the vibration of the beam without baffle, the sound is radiated from
the front side and rear side of the beam with the phase difference of 180°, and interference
takes place between sound waves. Thus we cannot neglect the dimension of the cross-
section, the acceleration and frequency of vibration and the distance from a sound source
to a receiving point when the sound pressure is to be estimated. Therefore, the rela-
tionship among the external excitation, the vibration of the beam and the radiated sound

pressure should be analyzed by taking into account Young’s modulus, the moment of
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inertia, the length of the beam, the amplitude of acceleration, the exciting frequency
and the boundary condition at beam ends. The mechanism of the sound radiation from
a vibrating beam without baffle is assumed to be equivalent to that from two pulsating
spheres that have a phase difference of 180° and the same acceleration as the beam.

2. Estimation of material damping

The material damping of the member can be evaluated by various measures, but
this paper applies the measure described below. Let U and D be the maximum elastic
energy and dissipating energy per unit cycle, respectively. Then the loss factor? is

given by
D
=, 1
1=5F (1)
If the whole member is distributed by uniform stress, Eq. (1) can be rewritten as
7 = 4U[2=UIV ), (2)

where V, is the total volume of the member, 4U is the specific damping energy or the
dissipating energy per unit cycle and unit volume.

In general, it is said that the specific damping energy is affected by stress amplitude,
frequency, temperature and stress history, and is influenced considerably in paticular by
the stress amplitude. The specific damping energy is calculated from the loss factor
which is given by the experiment of a simple shape test specimen. Lazan® has obtained
the experimental equation for steel

o \23 o \8
4U(o) =0.0703(_) +o.422(-) (3)
9f 9f7 "

This equation is called the energy absorption function, in which the dimensions of
4U(o), the stress amplitude o and fatigue limit o, are kgf/(cm®-cycle), kgfjem® and
kgflcm?, respectively. If the deformation of material is linear, the specific damping
energy 4U is proportional to (o/c,)? and the energy absorption function is approximately
linear to the maximum stress amplitude at the low stress region.

When the member is deformed by applying force, the internal stress distribution is
nonuniform. The function expressing the state of the stress distribution is called the

stress distribution function. The stress distribution function becomes

f(o/ow) = d(V[V )/d(0]0,), (4)

where g, stands for the maximum stress amplitude and ¥V the volume subjected to the
stress below o.

As the maximum elastic energy dU acting on a volume element dV is expressed as
o*dV|2E, k
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s J, Holondo | (5)

is obtained from Eq. (4). On the other hand, the same computation as in Eq. (5) yields

p=Ve g%AU(o) F(a/o,)da , | (6)

0, Y0

since dD is 4UdV. From Eqs. (1), (5) and (6), the loss factor can be written in the
form®

& r'" 4U(0)f(a/s,)do

o S:m o*f(o/o,)do

77:

(7)

4

3. Stress distribution under flexural vibration

The slender beam of isotropic body whose state is uniform in the direction of the

axis as shown in Fig. 1 is simply supported. In this case, the normal function of z th
mode of vibration is

y
i
x T4
.
le ! ]
I T

I: length of beam, h: depth of beam
Fig. 1. Model for a simply supported beam

W, = C sin (nzx|l) , (8)
where C is a constant and / is the length of beam. The stress amplitude of # th mode of
vibration 6,(x, ¥) can be written as ‘

&w, . o\ . P 7
o, = —Ey 0 ——EyC(-—f) sin (mtT) . - (9)

If the coordinates where o, becomes maximum are (x,, ¥,) and % is the thickness of
beam, they become

% = 1J(2n), and 7y, = hj2, (10)

which settle the place where W, is maximum. For the maximum values of o,, W,, we
have

. |
Omn = —"—E(ﬂ) W : 1)
Y

from Egs. (8), (9) and (10). Equal stress contour lines can be written in the form
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Y (%[%m) : ; (12)
h 2 sin (nmx[l) S

These results are summarized in Fig. 2, and the state of the stress distribution is shown

in Fig. 3.
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g: stress, 0,: maximum stress, 7%: depth of beam, # : mode number
I: length of beam, parameter: ¢/o,,

Fig. 2. Equal stress contours of the simply supported beam
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Fig. 3. Stress distribution and mode of vibration

4, Stress distribution function and material damping

If the stress distribution function f(¢/o,,) and the energy absorption function 4U(a)
are given, we can express the material damping by the loss factor » from Eq. (7).
From Eq. (12), the intersect of the equal stress contour line with the outer fiber of the
beam is written-as
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2/l = lnx)sin™ (o,00,,). a (13)
Since the equﬁd stress contour line of the beam is symmetric with respéct to x axis, the

part of beam volume in which stress is less than o,, can be calculated by doubling the
area of the range of 0= y<h/2. Let the width of the beam be replaced by w, I becomes

h if2n
V. = 4nw (E—xl+g ydx> . . (14)
1

Now, let {=0,/0py K=0;/0p,, ¢=(1—C})"?, ¢=tan{sin"'¢/2}. Since V,=whi, the
volume stress function becomes

V|V, = (2/z)(sin"* {—( log 8) . (15)
The stress distribution function expressing the rate of volume variation by means of

the variation of o, can be expressed by
f=(2/7f){¢—~log ¢—§253(~;;+¢)}. (16)

The results of Eqs. (15) and (16) are shown in Fig. 4. Substitution of Eq. (13) and (16)
into Eq. (7) conducts us finally to

1 C 2.3 (: 8
S {0.0703(__> +0.4zz<_> }dC
E J K K . 17
7 7ol i . (17)
m S cofde
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Fig. 4. Volume stress function and stress distribution function



60 . Yasufumi Kumg, Setsuo Maepa and Fumio HasHiMoTO .

T L B B B R T [llllll[» L

1.0

vt

0.5

1

0.1

I

=3

w
ooy gl

Loss factor 3

@
=3
—

NEERN|

0.001 3 v eat] 1 sl | |
10 50 100 500 1000 ) 3000

Maximum stress amplitude ¢, (kgf'cm?)

fatigue limit 1900 (kgf/cm?) material (steel)
Fig. 5. Relationship between loss factor and maximum stress amplitude

The calculated result of this equation is shown in Fig. 5.

5. Estimation of radiation sound pressure

The mechanism of radiation from the beam can be modelled as shown in Fig. 6.
When the vibration of the pulsating sphere radiates spherical waves, the velocity potential

on a sphere of radius R is given by

A -
¢ =2 gi@t=kR) 18
R (1)

where R, 4, @, k and ¢ denote the distance from the center of the sphere O to the receiv-
ing point P, an unknown constant, angular frequency, wavenumber and time, respecti-
vely. The particle velocity becomes

du _ 9 19)

The present analysis assumes that the paxticle velocity at the radius of the pulsating
sphere a is equal to the vibration velocity of the beam V,,e/*".
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P(r,0)

RI

Vibrating beam without baffle

A,s Acceleration amplitude of surface  A4,, Acceleration amplitude of spherical

of beam sound surface
h’  Thickness of beam k  Distance between pulsating spheres
O Origin (center of cross-section of 7 = Receiving distance

beam) 6  Sound receiving angle

Receiving distance
6  Sound receiving angle

-

Fig. 6. Relationship between cross-section of beam and pulsating spheres

[%‘ ]R=a =4 1'+‘“—a]zkae"‘“’""“) = Vet | (20)

is obtained from Egs. (18) and (19). The unknown constant 4 is determined as

@&
A=V, —gf* (21)
1+4jka

where V,, is the amplitude of vibration velocity. From Egs. (18) and (21), the velocity
potential is reduced to

6= @ Va'n eI @t=kR) ‘ . (22)
R 14-jka

If the sound radiation of the pulsating sphere is elucidated, the model shown in Fig.
6 can be analyzed on the basis of Eq. (22). Since the sound radiated from the vibrating
beam without baffle is equivalent to that from two pulsating spheres, the radius of the
pulsating sphere a depending on the dimension of cross-section of the beam is determined
experimentally. The sound pressure at the receiving point P’ corresponds to that on
the circle of the pulsating sphere model including the receiving point P. Consequently,
the velocity potentials at the receiving point P

+= 2 La-n—ejkaej(m—m , and (23)
R 1-4-jka
¢ = — a_z A—el’k“ei(ﬂt—k}a’) ‘ . 2
R’ 1+jka

are obtained from Eg. (22).
R and R’ in Egs. (23) and (24) are expressed as

' h r
R =17 ]"—‘—r' cos 0+’47 y and . (25)
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R= r\/ 1+—f— cosﬁ—l—g? (26)

with reference to Fig. 6, where 7 and 8 denote the receiving distance and the receiving
angle, respectively. Substitution of Eqs. (25) and (26) into Egs. (23) and (24) results in

P V £ '(wt—-r‘/l—— cos 6+4h72) -
= k) P ‘ @
1——cos? —|—
and
. , 7 7z
o — az Vo,,e’k" e](wt-r/1+—f— cos 0+Z;2) . (28)

Since the velocity potential at the receiving point P is equal to the sum of the velocity
potential ¢, and ¢_, we have

& L, SR , (‘/m;l) —Jkr(/ m..l)
Jka

117k | = = -
Jrea ’ ~ Vl—— cos 04— «/1—{—— c050-+——h—»
7 4r r 4r*

¢ =

: : (29)
Thus, the sound pressure p is obtained from Eqgs. (30) and p=jwo¢ as

—jkr ‘/1—-—— cos 0+—— 1) —]kr /1+——cos 0+——~1)
e

& PGl 472
P =jwp =V,
1+k ! /\/l—i c050+—“’ : /\/1 +— cos0+__
: r 4r?
(30)
where o is the density of the air.
The sound pressure level is calculated by
SPL = 20 1ogmﬂ%£ (dB), (31)
0

where p, is 0.0002 pbar. Besides, by letting 4,,=®V,,, Eq. (30) is rewritten as
- L
. . gtk |, Jkr(/l—-- cos 0-1————1) e ]kr(}/l-l-—— cos 0+— 1)

Dnl_:'k e ’
Jrea 4 ,\/1——icosﬁ+— )\/1 —!——;—cosﬁ—}—;‘:r—2

(32)

p=jed

where A,, stands for the amplitude of acceleration at nth resonance of the vibrating
beam.

The radius of the pulsating sphere 4 can be determined by substituting the radiation
sound pressure and the amplitude of acceleration obtained experimentally. The results
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of several measurements were substituted in Eq. (32). The radii of the pulsating spheres
were averaged in order to minimize the effect of the errors in the measurements and the
influence of background noises on the sound pressure. As the results, the radius a” of
the equivalent sphere for the beam with the arbitrary width @ and thickness % of the
beam is determined as

a = 0.924-+0.00774w—0.0270% . (33)

On consideration for the material damping, the amplitude of acceleration A4,, at
nth mode of vibration in the simply supported beam excited at its center is given by

Aon e wft
L o
INT) 2

‘where F, denotes the amplitude of the exciting force, , the # th resonant angular fre-
quency and I the moment of inertia of area. By taking #/w=0.1, A/r=0.5 and w as the
parameter, the calculation of Eqgs. (31), (32), (33) and (34) for the radiation sound pressure
in relation to the amplitude of acceleration is shown in Fig. 7. Fig. 8 gives the relation
between the radiation sound pressure and the material damping. It is seen from Fig. 7
and Fig. 8 that in the case of the simply supported beam, the radiation sound pressure in
relation to the material damping and to the amplitude of acceleration are independent of
the mode of vibration.
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w: beamwidth, A: thickness of beam, 7: receiving distance,
#: sound receiving angle :

Fig. 7. Relationship between sound pressure level and amplitude
" of acceleration )
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Fig. 8. Relationship between sound pressure level and loss factor

6. Conclusion

In order to estimate the material damping and the radiation sound pressure of ma-

chine structure, how to estimate the material damping and the radiation sound pressure

of the component of machine is considered. The summary of the results is as follows:

1)

2)
3)

4)

)
2)
3
M
5)

6)
7)

The stress distribution function of the member at each vibration mode may be cal-
culated from the normal function.

The stress distribution function in each vibration mode become almost similar values.
The material damping of the beam can be obtained from the stress distribution func-
tion of the beam at each mode of vibration and the energy absorption function.

The relationships between the acceleration amplitude and the radiation sound pres-

sure, and between the material damping and the radiation sound pressure are not
influenced by the mode of vibration.
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