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Yoneharu  FuJriA" and Fojio

(Received June 15, 1979)

N!sHIDA*

   This paper describes a semantic translator between assembly languages and also its

experimental results. This translator translates a source p!ograms into.an object program

by partitioning the source program into segments and constructing somewhat optirnized

object parts of them using a theorem-proving technique.

1. Introduction

   The production of softwares needs many programmers and much time, what is more,

the debugging and the maintainance of softwares also need much labour. Therefore,

various automatic program-synthesis techniques have been much expected to be

developed.i)2) Unfortunately, however, they have not been developed yet enough to

some extent of practical use. On the other hand, there are alarge amount of accumula-

tion of usefu1 programs that have been produced for various computers, therefore, it is

also useful to find a transformation-technique which automatically converts a completed

program into a program for another computer.

   In this paper, a semantic transformation method of assembly programs is presented

and experimented. Atranslator presented here partitions a source program into segments

by parsing, applies a theorem-proving technique to each segment and yields an object

program which consists of somewhat optimized and relevant program pieces for an object

computer.

                  2. DescriptionEquationsoflnstructions

2.1 Adescriptionequation

   'I he function ofa sequence of instructions is represented by a change of a state of

memory and registers associated with the instruction sequence. In order to represent the

functions of instructions, a content function C(l, s) is introduced. It represents a vqlue

of a storage cell designated by a specified label l(i.e. a register's name or an address) at

the specified state s. The syntactic rules ofa content function are described as follows:

   <content function> :: = C(<label>,<state>)

   <label> :: = <register name>1<register variable>I<address name>1

              < address variable > i< content function > l< value >
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    < register name > :; = declared narnes ofregisters

    <register variable> :: = (Ri li = 1,2,･･･l

    <address name> :: = lnames ofaddressesI

    <address variable> :: == (gothic small letters}

    <state> :: == <state variable>l<state>;<instruction>

    <state variable> :: = slsi ls2 1･･･

    < instruction > :: = instruction of an assembly language.

    By the aid ofa content function, a description equation is defined as follows:

   < description equation > :: = < content function > = < value >

    <value> :: = <function>(< sequence ofarguments>) l<numerical value>

               < address > i< content function >

   < function > :: = arithmetic or logical function's name

   <sequence ofarguments> :: = <value>I<sequence ofarguments>,<value>

    As seen from the above, a description equation defines a value ofa label variable at a

certain state. If the state part consists of an instruction sequence the state part denotes

a state resulted from the application of the instruction sequence to the initial state.

    By using content functions, the equivalence of two sequence Si(i),･･･,S.(i) and

Si(2),･･･,S.(2) ofinstructions is described as follows:

       C(Ly,s;S,(');･･･;S.(i)) : C(y, s;S,(2);･･･;S.(2}).

   The above equivalence relation is the base of this translation method.

[Example 2.1] The description equation

       C(RL s;MVx, Rl) = C(x, s)

represents that the value ofthe register Rl at the state after execution ofthe instruction

`fMVx, Rl" is equal to the value ofan address x at the state before the execution of the

instruction. ･

{Example 2.2] The description equation

       C(Zy, s') = CO,, s) + C(x, s)

represents that the value of 7 at a stqte s' is equal to the sum ofvalues of y and x at

a state s.

2.2 Some properties of description equations

   Any instruction except for conditional ones is represented in terms of a set of

description equations which describes state change of a part of memory and registers

caused by the execution of the instruction. These description equations can be simplified

ln some cases.



                    A 71ranslator between Assembly Languages 17

   First, if an instruction is not a branch instruction, the change of IC is not necessary

to be represented for translation of assembly program, and can be represented by an

description equation.

   Second, if the left side ofa description equation Di occurs in another description

equation D2 then Di and D2 can becombinedinto one descriptionequation D3 by

the substitution ofthe right side of Di for each occurence ofthe left side of Di in D2 .

Finally, if S does not contain the label z asa destination operand, any term C(z, s;S)

having a label z, a state variable s and an instruction S can be simplified into an

abbreviated form C(z, s) because S has no effect on the label z.

[Example2.3] Suppose

       C(yi,s;Axi, yi)= C(yi, s)+C(xi, s) (1)
and

       C(z, s;A x,,yi;Syi, z) = C(z, s;A xi,yi)-CO,i, s;Ax,,y,) (2)

hold, then substitution of the right side of eq. (1) for the term C(yi, s; A xi, yi) in

eq. (2) yields,

       C(z, s;Axi,y,;Syi,z) = C(z, s;Axi,yi)-(C(yi,s)+C(x,,s)). (3)

Furthermore, the term C(z, s;A xi, yi) is simplified into C(z, s) beeause the instruc-

tion `fttl xi, yi " has not the label z as a destination operand.

   If the left side term of a description equation is contained in another description

equation, then the order of the two instructions corresponding to these description

equations cannot be changed. In this case, these two descriptions are said to be

dependent on each other.

                             3. Segment

   Source programs to be translated can be generally considered to be optimized

globally, therefore this paper is not concerned with the optimization of program parts

which causes serious changes of original program structure such as loops or branchs, but

concerned with generation of an optimized linear portion of the object program. For this

purpose, a linear part of source program is divided into some parts each ofwhich is called

a segment in order to generate an optimized linear portion of ah object program in an

efficient wayr A segment is defined as a maximum 1inear portion ofa program such that

every adjacent description equation is dependent on each other. In other word, a

                                                                   'segment is a linear portion that is computable by only one register and a partition to

segments is independent ofthe kind ofassembly languages. i '

                                                      '[Example 3.1] Consider' a 1inear part of a program which has the fbllowing description

                                                            'equations; '
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(1)

(2)

(3)

(4)

(5)

C(Rl, si ; MVx, Rl)

C(Rl, s2 ; A y, Rl) =

C(Rl, s3;Sz, Rl) =

C(R2, s4 ; MV u, R2)

C(R2, ss; A v, R2) =

= C(X, Si)

 C(Rl, s2J+ CO,, s2) where

C(Rl, s3)+ C(z, s3) where

= C(R2, s4) where
 C(R2, ss ) - C( v, ss) where

S2

S3

S4

S5

== si ; MVx, Rl

= s2;Ayl Rl

= s3;Sz, Rl

; s4 ; MV u, R2.

   The equations (1), (2) and (3) are dependent on each other and also the equations

(4) and (5) are so, but no dependency relation exists between the two groups (1), (2), (3)

and (4), (5). Therefore the linear part is divided into two segments (1) - (2) - (3)and

(4) - (5).

   The segmentation procedure is described as follows:

(1) Generate a description equation of each instruction in a source program, then

construct a flow graph of the source program and assign the description equation to each

node of the flow graph.

(2) Mvide the flow graph into linear pieces.

(3) For a linear piece, a serial nodes starting from the top node and depending on each

other is a segment. Remove the obtained segment from the linear pieces and repeat (3)

until the linear piece becomes empty.

(4) Repeat (3) for every linear piece.

   A segment thus obtained consists of several nodes which are serially numbered and

dependent on each other. The description equations at these nodes are combined into

one description equation by substitutions as mentioned in section 2.

[Example 3.2] The description equations in Example 3.1 are combined into two descrip-

tion equations by substitutions and then simplified, as mentioned in section 2, as follows:

   C(Rl, si ; MVx, Rl; Ay, Rl; Sz, Rl) = C(x, si)+C(y, si)- C(z, si)

   C(R2, s4 ; MVu, R2; Sv, R2) = C(u, s4)- C(v, s4).

   Each description equation of a segment is used fbr generating a sequence ofinstruc-

tions written in an objective assembly language. For this purpose, the state part of the

left side of the description equation is replaced by an undetermined state variable s, then

an instruction sequence of the object program is found which satisfies the undetermined

state variable in terms of the object assembly language.

   The following properties of a segment are used to remove redundant inferences in a

theorem-proving process at generation of an object program from each segment.

[Property 3.1] If the label part ofa description equation D ofasegment contains no

function, the sequence of instructions which satisfies the undetermined state variable in

the description equation D needs only at most two transfer instructions for loading a

data on a register and for storing the content of the register into an address.

(ProoO The input-output relation ofa segment can be realized by using only one register.

Therefore, this segnent requires only the initial transfer of data to a register and the final
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transfer of the data from the register to a memory address.

[Property 3.2] If the description equation D ofa segment contains no content function

in the label part of the left side and contains a nesting of the n-th degree ofthe content

functions in the right side, the sequence of instructions satisfying the description

equation D containsatmost 2n+2 transfer oPerations.

(Proof) One nesting of a content function is realized at most two transfer instructions,

therefbre the realization of a nesting of the n-th degree content functions needs at most

2n transfer instructions. Furthermore, the content function in the left side of the

description equation D needs at most two transfer instructions. Therefbre the total

number of transfer instructions is at most 2n+2.

{Corrollary 3.1] Suppose D is a description equation which has one content function in

the left side and also a nestingofthe n-th degree ofcontent functions and m operations

in its right side. Ehen the realization ofa sequence ofinstructions satisfying the undeter-

mined state part of D needs at most 2n+m+2 instructions.

(Proof) The corrollary is evident from Property 3.1 and Property 3.2.

4. TransformationofSegments

   In order to obtain an instruction sequence written in an object language equivalent to

an instruction sequence contained in a source program, a theorem-proving technique is

applied to a set of description equations which are written,in the object language and

involve some undetermined state variables. Let D be a description equation containing

an undetermined state variable s in the left side and A(s) be an answer clause, and con-

struct a clause NDvA (s) called an objective clause. Then the state part ofthe derived

literal of the answer clause A from the objective clause contains the object sequence of

instructions.

   In derivation of the answer clause A, the form of unification applied to a pair of

terms in description equations is somewhat different from the usual one at the respects

that state part of the content function has a kind of a right operation form and that there

are several kinds of variables such as registers and addresses of memory. Therefore, the

unification applied here, first, rewrites the state part of C(l, s;Si;･･･;S.) temporalily

into the corresponding left operator form C(l, S.(S.-i(･･･(Si(s))･･･))) then takes

the operands of each Si(i -- 1,･･･,n) as variables or constant terms andthen perfbrms

the usual unification under the condition of inhibition of the substitution between the

different kind variables.

   From the above, the unification procedures are summarized as follows:

(l) Transform the state parts of given description equations into left operator forms.

(2) Apply the usual unification to the description equations. If the substitution is

permitted then go to (3), otherwise search the other substitution and repeat (2). If no

permitted substitution exists the description equations can not be unified.
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(3) Apply the inverse transformation of (1) to tlie unified description equations and

output the result.

   [Ihe derivation of the answer clause A is based on the set ofsupport strategy which

has an objective clause NDvA as the support set. Since al1 clauses except the support

set are unit clauses, the above strategy reduces to a unit resolution or an input resolution.

Furthermore, the theorem proving routine obtains an optimized derivation of the answer

clause A by rejecting derivations which exceed the bound mentioned in corrollary 3.1

and by searching a shorter derivation.

[Example 4.1] C(w, s) = C(x, s)+ CO,, s) - C(z, s)･･･(1) is a clause describing a

function of an objective program part. Suppose that the associated instructions of the

object assembly language are defined by the fo11owing description equations respectively:

    C02, si;MVx, y)=C(x, si), (2)
    C(y, s2;Ax, y)= C(y, s2)+C(x, s2) (3)
and

    Cly, s3;Sx, y) = C(y, s3)-C(x, s3). (4)
   By the aid of the reflexive axiom z = z, the answer clause A is derived linearly as

shown in Fig. 1.

      (1) (2)
            ------ Rl/y, x/X, s/si

   -"C(w, s) = C(Rl, s; MV x, Rl) + C(y, s; MV x, Rl) - C(z, s; MV x, Rl) V A(s)

              (3)
            .--... Rl/y, y/X, s; MV x, Rl/s,

   --C(w, s) = C(Rl, s; MV x, Rl;A y, Rl) - C(z, s; MV x, Rl;A y, Rl) V A(s)

              (4)
            ------ Rl/y, z/X, s; MV x, Rl;A y, Rlls3

   -"C(w, s) = C(w, s; MV x, Rl;A y, Rl;S z, Rl) V A(s)

              (2)
            ------ w/y, Rl/X, s; MV x, Rl;Ay, Rl;S z, Rll si

   --C(w, s) =C(w, s; MV x, Rl;A y, Rl;S z, Rl;MV RI, w) VA(s)

              z=z
            ------ C(w, s)1Z, s; MV x, Rl;A-y, Rl;S z, Rl;MV RI, w/s

   A(s; MV x, Rl A y, Rl;S z, Rl; MV RI, w)

                  Fig. 1. A derivation of an answer clause.
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                 5. Implementation and Experimental Results

    Based on the translation principles described in the preceding sections, a translation

system of an assembly program was implemented and a translation experiment was

performed on a mini-computer with a magnetic disk.

   The translation system transforms each instruction in a given source program into

some description equations using a dictionary which involves description equations of

each instruction in the source language. In parsing ofa source program, the conditional

branch instructions are treated separately from the ordinary instructions and they are

represented by a fbrm "if <branch condition > then < description equation >else < descrip-

tion equation >". Based on the description equations and the above expression ofbranch

instructions, the translation system generates a flow graph which has the line numbers

attached to the description equations by the procedure 3.1 at the nodes. Then the

translation system divides the fiow graph into several segments by the dependency

relations of description equations and obtains for each segment a description equation

which contains an undetermined state variable in its content function.,Next, the transla-

tion system generates the object sequences of instructions from the description equations

using the theorem-proving, technique with the aid of the dictionary for the objective

assembly language.

   The experimental system up to the present has some constraints in application fbr

its conciseness. First both a source computer and an object computer are assumed byte-

machines. Second, the name of an address is assumed to be unique. For example, the

address named for Lta 7;42 in a sequence of instructions such as

               '･･･; on71tll DS 2F; D,47;42 DS 2F; ･･･'

can be also represented as DA7;41+4, but only DA7;42 is adopted as the name.

Finally, the optimization of the assignment of registers is not taken into consideration. If

an object computer has fewer registers than a source computer,a register of the object

computer is used for several registers of the source computer in multiple ways.

   Fig. 2 is a schematic diagram of the whole translation process described in section 4,

where solid lines and dotted lines denote flows of control and data respectively. The

translation system consists ofabout 26 KB in an assembly language. The translation time

excluding transfer time between the main memory and a disk was about O.2 seconds fbr

every instruction in a segment. Fig. 3 and Fig. 4 show examples ofa source program and

the translated object program together with some related description equations involved

in dictionaries for the translation.
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Fig. 2. Flow chart of the whole process.

LOOP

OWARI

LDI

LDI

LDI

AD
SB

AD
SBR

BRN
BRN
ST

SND

R3, 100

Rl,O

R2, 1

Rl, DATA, R3

Rl, BBB

RI XYZ  '
R3, R2, SNZ

OWARI･

LooP

R1, KEKKA

c(Roe, soo; LD Roo, .xoo) = c(xoo, soo)

C (ROI, sd1; LDI ROI, xOl) = xOl

C(R02, s02; LD R02, xe2, R03)

   = C(x02 + C(R03, s02), s02)

C(x03, sd3; ST R04, x03) = C(R04, s03)

C(x05 + C(R06, sd5), s05; ST R07, x05, R06)

   = C(R07, s05)

C(R08, s06; AD R08, xe6)

   = C(R08, s06) + C(x06, s06)

C(R09, s06;AD R09, $x07)

   = C(R09, s06) + C (C(xe7, s06), sd6)

C(RIO, sd7; AD RIO, x08, Rl1)

   m C(RIO, s08; SB RI2, x09)

C(R12, s08; SB R12, x09)

   = C(R12, sd8) - C(x09, s08)
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C(R13, s09;SB RI3, $xlO)

   = C(Rl3, s09) - C(C(xlO, s09), s09)

C(R14, slO; SB R14, xl1, R15)

   = C(R14, slO) - C(xl1 +C(R15, slO), slO)

C(ROO, sOO; ADR ROO, ROI, SRN) ,

   = c(Roo, soo) + c(Rol, seo)

C(ROO, sOO; SBR ROO, ROI, SNZ)

   = C(ROO, sOO) - C(ROI, sOO)

C(IC, sOO; BRN xOO) = xOO

Fig. 3. An example of a source program and related description equations

of a source language.

LOOP

OWARI

MV
MV
MV
A
s

A
s

BZ

B

MW
END

= 100, R3

= e, Rl

= 1, R2

DATA (R3), Rl

BBB, Rl

XYZ, Rl

R2, R3

OWARI

LOOP

RI, KEKKA

C(xOl, sOO; MV xOO, xOl) = C(xOO, sOO)

C(C (ROO, s02), s02; MV x02, (ROO))

   = C(x02, s02)

C(ROI, s03; MV = x03; ROI) = x03

C(xe4, se4; MV (R02), x04) = C(C(R02, sd4), s04)

C(R03, s05; MV x05, R03) = C(xe5, sd3)

C(x07, sd6; A x06, x07) = C(x07, sd6) + C(x06, s06)

C(x09, s07; A x08(R04), x09)

   = C(x09, s07) + C(xo8 + C(R04, sd7), s07)

C(R06, sl1;A x14, R06) = C(R06, sl1) + C(x14, sl 1)

C(xl1, s08; S xlO, xl1) = C(xll, se8) - C(xlO, se8)

C(R04, s09;S xl2, R04) = C(R04, s09) - C (xl2, s09)

C(x13,slO;S(R05),x13)

   = C(x13, slO) - C(C(R05, slO), slO)

?ZP C(IC, sOO;BNM xOO) = xOO

?zz cac, soo;Bz xoo) = xoe

cac, soo;B xeo) = xoo

Fig. 4. A translation result and related deseription equations of an object lar!guage.

6. Conclusion

   The experimental result shows that the aim of reconstructing an optimized linear

pieces of an object program by the aid of a theorem proving technique is achieved under a

few restrictions. The restriction on uniqueness of each address name is removable in the

practical system because it is not essential. The restriction on the address unit is

theoretically removable but removal ofit is considered to cause much inefficiency.

   The other important problem in practice is the optimization of register assignment.
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It needs a global optimization based on a flow chart of an object program and is left in

future study.
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