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               and Shigeru MiwA***

               (Received June 15, 1979)

Kazukuni NrwA**

   Failure criteria of redundant truss structures are generated by using Matrix Method.

Failure probability of the structure is estimated with its lower and upper bounds. An

efficient method is proposed which evaluates the bounds by selecting only the dominant

modes of failure, repeating branching and bounding operations in search of the modes.

Numerical examples are provided to demonstrate the validity of the proposed method.

                            1. Introduction

   Many studies have been made of reliability analysis of structural systemsi)'"8).

However, they are limited to simple types of structures. This may be caused by the

following two reasons, viewed from methodologies required for reliability analysis.

There are many modes of failure in structural systems and generally they are neither

statistically independent nor exclusive events. Consequently, in order to exactly evaluate

the failure probability, some methods are needed for calculating joint probabilities with

their correlation considered. Another reason is due to a fact that there are no systematic

procedures developed for generating the failure criteria of the structures - particularly of

those with redundancy. For the former problem, approximation methods are proposed

by the present authors and their validity has been demonstrated.9)'iO)'ii) An Approach

to the latter problem is also proposed which generates the failure criteria by using Matrix

Method. Based on the criteria, the failure probability is estimated by evaluating its lower

and upper bounds.i2) However, there is some room left to be improved fbr the

evaluation of the bounds.

   In this paper, an efficient method is proposed which selects oniy the dominant

modes of failure by repeating branching and bounding operations in search of the modes

and finally evaluates the lower and upper bounds by calculating their failure probabilities.

To illustrate the applicability of the proposed method, numerical examples are provided

of a statically indeterminate 16-member truss structure with three degrees of redundancy.
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             2. GenerationofFailureCriteriaofTrussStructures

   'lhere are many modes of failure in structural systems, depending on the configura-

tion of the systems, the loading conditions, etc. It is not easy to find al1 possible modes

of failure for the structures composed of many members. A systematic method to

generate the failure criteria is presented in the following of the structural members and

the structural systems.

   Consider a truss structure which consists of n members. The configuration and

materials to be used are also assumed to be specified. Failure ofa member occurs when

the internal force exceeds the strength of the member. The safety margin defined

as difference between the strength and the internal fbrce is expressed in the form:

      Zi = Ri(C3,bAi)hSi(t4i,A2,''',An;Li,L2,''',Ll) (1)

where Zi : sa fety margin of the i-th member

      Ri : strengthofthei-thmember

      Si : internal force ofthe i-th member

      Clpi : allowable stress of the i-th member determined by the material to be

             used

      Ai : cross sectional area of the i-th member

      Li : external load applied to the structure (i = 1, 2,･･･,l)

      n : numberofmembers
      l : numberofloads

The strength Ri in equation (1) is easily determined by specifying the material and

dimension of the member. On the other hand, the internal force Si is complex to

evaluate, and thus it is derived by applying Matrix Methodi3).

   Let (eil and (6il denote the nodal force and displacement vectors of the i-th

member in the local coordinate system shown in Fig. 1. The member stiffhess equation is

  .wntten as

                                         zfe ( .f.i)
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where

and

   (eil = [ki] i6il

   (eilT : (x]9,yiL,ziL,.x}R,yiR,ziR)

   (6ilT = (uiL,viL,wiL,uiR,viR,wiR)

[ki ] is the member stiffaess matrix given by

      EiAi[ki] =
        li
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In equation (5), Ei' and li indicate a modulus of elasticity and length of the i-th

member. The displacement and nodal fbrce vectors are related to those referred to the

global coordinate system by the transformation:

       $',ii;,[fi,](S-S'ii (6)

where (di l and (e-i l are the displacement andnodal fbrce vectors ofthe i-thmember

referred to the global coordinate system and [71t] the transformation matrix. Con-

sequently, the member stiffhess equation in the global coordinate system is given by

       (e-il - [k-i] (dil (7)
where

       [ki] = [71f]-i{ki] [71f]

           - [7}]T[ki] [7}]

   The stiffhess equations ofall the members are formed in the similar manner and they

are transformed from the local coordinate system to the global. Next, the global nodal

displacement vector (dl is formed by rearrangingthe displacement vectors (dil of

the individual members. The global nodal force vector (LI correspondingto (dl is

also defined, which includes the applied external loads. Further, the total structure

stiffaess matrix {K] is generated by superimposing the individual member stifThess

matrices. Then, the total structure stiflfhess equation is written as

       [K] (dl == ILI (8)
where {K] is given by

              nn       [K] =,.Z,'[k-i] = ,li.],' [7'li]T{k,] [Tlr] (g)
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                             nln equation (9), the summation iZ.i' denotes superimposing the member stifihess

matrices of all the members. The displacement vector of the i-th member (6il in the

local coordinate system is related to that in the global coordinate system (dil by the

transformation (6), while (di I is determined by solving equation (8). Consequently,

the nodal force (eil is given in the form:

       Ieil = [q] ILI ao)
where [Ci] =[ki] [Tli] [Ki]-i, and [Ki]-i is the matrix formedbyextracting the

elements concerned with the i-th member from the matrix {K] -i .

   In case of the truss structure, the internal force to be considered is the nodal fbrce

.XltR and it is written in the form:

                  i       Si=X}R =iZ.,biiLi ･ (11)
where bij is the element ofthe matrix {Clf] referred to XlrR and Li. It shouldbe

noted that the coefficients bii･ of a statically determinate truss are constant while those

ofa statically indeterminate truss become functions ofthe cross sectional areas Ai of

the members.

   Substituting equation (11) into equation (1) enables the failure criterion of the

i-th member to be determined as fbllows:

                 ll       Zi -- sign (iZ.,biiLi)'{C[yiAi - i;.,biiLi] (i2)

where sign(.)denotes the sign of('). The yield stress ±oy is taken as the allowable

stress Clyi in equation (12) when the member fails in tension or compression failure

while the buckling stress -oc is taken when instability in the compression member is

considered.

   Next, consider a failure criterion of the structural system. In case ofa statically

determinate truss, the structural failure arises when any one member is subject to failure.

Consequently, the failure criterion is given by

       Zi K-O for Vieil,2,-･･,nl (13)
   In case of a statically indeterminate truss, failure in any one member does not

necessarily result in complete failure of the structural system. Structural failure is

assumed to occur in the fbllowing manner. When any one member fails, redistribution of

the internal fbrces arises among the members in survival and a member next to fail is

determined. After repeating the similar processes, complete failure of the structural

system results when the members up to some specified number pk are lost. Complete

failure of the structure is determined by investigating singularity of the total structure

stiffriess matrix [K(Pk)] formed with the members in survival. 'Ihat is, the criterion

for complete failure is given by
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where l(･)l is the determinant ofamatTix (').

    Consider now a combination of the members to determine complete failure of the

truss, which is denoted as (rki,rk2,･･･,rkpkl according to the sequential orderof

failure (rkpke(1,2,･･･,ni, ke (1,2,･･･,mI). m is the'total number ofthe

combinations of the members to cause complete failure of the structure, which depends

on the configuration of the structure, the number of the members n and the degrees of

re dundancy s. The upper bound of m is given by m = .q,+i) == n(n -1) ･ ･ ･ (n - s)

/((s +1)s･･･2･1l. ln the state where p members,i･e･, rki,rk2,･'･,rkp (P <Pk),

fail, the residual strength of those members are added to the nodes as external fbrces,

corresponding to the types of failure. Then, stress analysis of the structure composed

of the members in survival is carried out once again by applying Matrix Method, and the

safety margins of the members in survival are determined as follows:

   Zi(P) = sign (iZ.i, biiLi(P)) ' [ C5, iAi - iZ.i, biJ･Li(P)] ' (1 5)

          for i e (1, 2, ･･ ･ , n l, i ein (rkl, rk2,･' ･ , rkp l

where Li(P) represents the resultant external fbrces with the artificial fbrces ,added

corresponding to the residual strengths of the members in failure. For example, wriien a

member of a brittle material fails in tension, the residual strength is put to zero while in

case of a ductile material the strength of the member R(.) is taken as the residual

strength.

   As mentioned,above, complete failure of the redundant truss occurs if all of pk

members are subject to failure. Hence, a criterion fbr complete failure ofthe structure is

expressed by using the safety margins of the members to fail as

       Z, k(pP -i) SO (p =1, 2, ･･･,pk) (1 6)

The criterion (16) depends on the sequential order of failure of the members. Therefore,

it is seen that there exist (pkl) failure modes fbra combinationofthe members (rki,

rk2, ''',rkpkl which make complete failure of the static.ally indeterminate truss.

Consequently, the total number of the failure modes becomes Z                                                    Pk!･
                                                k=1

              3. MethodforEvaluatingLowerandUpperBounds

   Let Wki,Wk2,･･･,Wkpkt be (pk!) failureeventscorrespondingtoacombina-

tion of the members (rki, rk2,･･･,rkpkl which make complete failure of the

redundant truss. When the sequential order of failure of the members is rki,rk2,･･･ ,

rkpk, the failureevent Wkq isexpressedas

   Wkq = 4(,O,) n4£S)A'''A4,(,P,k-i) Vqe {1,2,･･･,pk!I (17)
                                             '
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where 4k(pP.)i is the event that the safety margin Z,k(pP.)i ofthe member rkp+i given

by .equation (15) becomes negative. In the statically indeterminate truss, complete failure

of the sthucture arises when any one event Wkq (k = 1,2,･･･,m,q = 1,2,･･･,pk!)

among kZ. i pk/ events occurs. Consequently, the failure probability is given by

                 m Pkt
      P)'=PrOb [,U--, ,U., Wkq] (18)
in order to exact!y calculate equation (18), ad the failure events must be specified by

investigating all the possible failure paths to complete failure of the truss. However, it

is too complicate to carry out in practice. 'Iherefore, instead of. directly calculating

equation (18), the failure probability is estimated by evaluating its lower and upper

bounds.

   Alowerbound ItfL is estimated as

      IltrL=ZI,f,X PrOb[Wkq] (19)
   An upper bound Ilfu is evaluated by the probability that any one member of the

statically indeterminate truss fails: i2)

             n      Ilhu=,;., Prob [i71i] (2o)
Equation (20) is easily evaluated by calculating one-dimensional probability distribution

function.

   wnen all the modes of failure are counted, another upper bound is evaluated by

             m Pkt
      "IlfU=k;, q;, PrOb [Wkql (21)
   An algorithmic procedure is given below which systematically evaluates a lower and

upper bounds by selecting only the dominant modes of failure. An underlying idea of the

algorithm is based on the concept of Branch and Bound methodi4) in combinatorial

programming problems.

StepO (Settinginitialvalues)

       Specify the number of the members n and the degrees of redundancy s. Let k

      be a parameter to denote the stage of the structural failure. The number of the

      members in survival in the k-th stage is designated as tk. Set k= 1, tk =n,

      lltrL =O and jP):u =O.

Step 1 (Selecting amember to fail)

      i) If 7k >O, generate the safety margins Z,(･k'i). Select amembernext to fail

      by the criterion:

         ltob [4(,O)] = ,ftyzx Prob [4(O)] for k=1 (22)

         Prob {4(,O)n4(,k-i)] = mpx Prob [F;SP)njFfk-')1 for k)2 (23)
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Step 3

Step 4

Step 5
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Put tk = tk -1 and go to Step 2.

ii) If tk=O, put k==k-1.

  a) If k>O, go to Step 4.

  b) If k =O, go to Step 5.

(Checking structural failure)

i) If s=O, go to Step 5.

ii) If s>O, check the singularity of the total stiffness tnatrix [K(k)] formed

with the members in survival, i.e., those except the members ri,r2,･･･,rk in

fadure. When l [K(k)] l =O, structural failureoccursandthen go to Step 3.

Otherwise,go to Step 1 with k=k+1 and tk =n-k+1.

(Calculating failure probability of a failure mode)

Calculate the failure probability of a failure mode by

  IliL == Prob[4(,O)n4(,')n･･･n4(,k-')] (24)

Put Il)u= lliu+llft･ If RtlL>JFIfL, set IlhL =Rt!L andgotoStep4･

Otherwise, go to Step 1.

(Determing members to eliminate)

Eliminate the members from consideration which satisfy

  Prob ["F}(O)] /llfz<10-7 for k=1 (25)
  Prob [4(,O)AjF?(k-i)]/Ilfz <10-7 for k2;2 (26)

where 7 is a given constant (see Appendix). The maximum contribution of the

excluded failure modes to the structural failure probability is given by Prob

[F,(･O)] for k :1 and Prob [F,(,O)niFISk-i)] fork;ll;2. Consequently,put

    RI･u=Il;u+Prob [jFISO)] for k==1 ' (27)

        = P;u+Prob [F,(O,)njF}<k-')] for k)2 (28)

Go to Step 1 with tk == tk - tk

(Determing an upper bound)
i) Ifs==O, put Ilfu = efi) = i;iProb[F150)],

             jPha = mmpc Prob [Fli(O)] .

                    i
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li) If s>O, compare lll:u to ef1)= iZ." 1prob [I71i(O)] .

If R;u<1}S'), Ilfu= lltu. Otherwise, llfu= lltSi).

   illrrL and Rhu

lity ofthe structure.

is given in Fig. 2.

thus obtained yield a lower and upper boundS ofthe failure probabi-

 A flow chart illustrating the algorithmic procedure mentioned above
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Fig. 2. Flow chart illustrating algorithmic procedure to evaluate lower and upper

bounds.
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                        4. Numerical Examples

   Numerical examples are presented to demonstrate the applicability of the methods

proposed for generating the failure criteria and fbr perfbrming reliability analysis. It is

assumed that adowable stresses of the members and the applied external loads are

statistically independent Gaussian random variables, while the dimensions of the

members such as cross sectional area, length, etc. are deterministic. Then, the safety

margins given by equations (12) and (15) become Gaussian random variables and the

failure probability is evaluated by calculating multi-dimensional Gaussian distribution

functions.9),10),11)

   Consider a 16-member truss structure with three degrees of redundancy shown in

Fig. 3. The data c' oncerned are given in Table 1. Buckling failure modes are tentatively

                         y
                         '

                         ,.45kN 16

12 13 14
15 91.44

.45klhl 11

7
8 9

10 91.44

.45kN 6

ij .

2 3

1

4 5 91.44

x'-

Lni.g ,.g

      Fig. 3. Statically indeterminate 16-member truss with three degrees of redundancy.

excluded. Table 2 compares the calculated lower and upper bounds to those of reference

12. The upper bound is estimated in reference 12 by using jpfli). It is seen that the

lower and upper bounds are improved in case of low failure probabilities. The intervals

between the lower and upper bounds are narrow, and thus they give a good estimate of

the failure probability of the structure. Fig. 4 illustrates an example of search trees in

the evaluation of the bounds by repeating branching and bounding operations in search

of the dominant modes of failure. For a truss structure composed of 16 members with

three degrees of redundancy, the maximum number of possible failure modes is

calculated as 16 × 15 x 14 × 13 = 43680. The above example shows that only 29 modes

of failure are taken into account for evaluating the lower and upper bounds, which

saves greatly the computation time.
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              Table 1.

(1) Data ofmaterials

   Mlean value ofyield stress;

      iu" 2.76 x loS fu
   Mbdulus ofelasticity;

      Ei -- 2.06 x loii th

(2). Dataofdimensions

Data of statically indeterminate 16-member truss

(i = 1, 2,･･･,16)

(i=1 ,2,･･･,16)

Mlember number
Area
Ai em2

Radius

    2ri cm

77keickness

 ti mm

   1
 2, 5
 3, 4, 14

  6
7, 8, 10

  9
11, 12, 15

 13, 16

3.35

8.64

5.76

2.29

4.03

7.35

1.58

2.29

2.43

4.45

3.03

1.70

2.43

3.82

1.36

2.14

2.3

3.2

3.2

2.3

2.8

3.2

2.0

2.3

(3) Dataofinitialdeflection

     w-, 1:S =O.1, CVw, =O･1

     Table 2. Lower and upper bounds of failure probabMties for statically indeterminate

            16-member truss when buckling failure modes are excluded (7 = 5).

CVoyir CPCLi
Lower bounds UPper bounds

boposedmethod Ref 12 Piv
IltS1)

O.02

O.05

O.1

O.05

O.1

e.1

O.1

O.2

1.95 x lo- io

1.48 x 10'9

7.63 x lo-s

7.63 × lo-S

4.50 × lo- 3o

1.68 x lo-te

2.73 x 10'`

1.56 x lo-s

2.08 x lo- io

3.41 x 10- 7

1.80 x lo-3

3.16 x 10-3

1.51 x lo-9

3.87 x lo'6

3.84 x lo'3

2.68 x lo-s

Mean value ofproeessing time rBurroughs B-6 7001 : 1041 seclease

   For the calculations presented so far, no consideration has been given to buckling

failure of the compression members. Effect ofbuckling failure is discussed on the failure

probability of the statically indeterminate 16-member truss. The members are tubular

with dimensions given in Table 1. Buckling stress of the member with initial defiection

under compression is assumed to be given as foilowsi5) :

   oc == +S- (oy+ aE + WsO aE)[l - 1 - (4 qE oy)/(oy+ oE + WsO oE)2 ] (2g)

where oy : yieldstress

aE = T2E7(l2CS)2: Euler's buckling stress

S=:vCI71;i- : radiusofgyration

wo : initialdeflection

l : geornetricalmomentofinertia

A
l

:

:

cross sectional area

length
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1st

Stage
2nd
Stage

3rd
Stage

4th
Stage

7

,5

2.20 x lo-g

(3.58 x 10-`)

9

3

1.39 x lo-9

5

(1 .08 x lo- n)

      3 '2. 76 x lo'7

7

1.92 x lo-9)

(2.91 x 10-7)

3

6

9

6

5

9

3

6

11

1.47 x 10'g

1.68x lo-io

1.93 x lo-ts

1.50 x lo-is

1.63 x 10'N

3.23 x lo- i6

1.48x 10-9

5.19 x lo- is

(3.01 x lo- io)

(3.12x 10-6)

6

3

6

1

2

       11
(3.44 x lo-io (1 .46 x

3

7

3.40 x lo-to

10-7)

15

3

7

4

10

8

3

6

                                                      3

                                   (7.70xlO-S) 7
             (S>'---(!) o.o

          (2.44xlO'iO) Legend
             (ll>------),--d(l) o.o m"-<li)-).--- A:selectedmember
                                          (B) B: prob [Fvi(O)nF;Sk-i)]
          (7.54 x 10-,i )

             mo o.o mp c C:gfa'1".re.P.'3,b.abmatY
         (1.92 x 10'")

        Ftg. 4. Search trees in evaluating lower and upper bounds of failure probability.

Yield stress and initial deflection are assumed to be statistically independent Gaussian

random variables. By application of the first order approximation, the mean and

coefficient of variation of buckling stress are calculated as

2

6.07 x lo- ,e

2.85 x lo- ie

1.84 x lo-:o

2.50 x lo-te

3.25 x lo-io

2.71 x lo- to

3.09 x lo- io

'3.72 x 10'M

4.28 x lo-ts

2.42 x 1o- ss

6.57 x le'"

1.44 x lo- io

1.90 x lo- t2

7.el x lo-i4

3.29 x lo- ze
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   5i ･ = -ll- (a-y + qtir + ll;! oE ) [i - i - (4 oE o-y )1(o-y+ oE+ WsO aE)2 ]

   cvbc (C Vb-y O-y)2 +(oE AS)2 (C VI,,, w-, )2

           (o-y + oE + WsO oE) 1 - (4 oE o-y)/(o-y + oE +llli,L .E)2

Buckling stress is approximated as a Gaussian random variable with the mean and

coefficient ofvariation given by e.quation (30). Data concerned are given in Table 1. The

estirnated lower and upper bounds are given in Table 3 for the various values of the

coefficients of variation. The intervals between the lower and upper bounds are com-

     Table 3. Lower and upper bounds of failure probabdities for statically indeterminate

            16-mernber truss when buckling failure modes are included (7 = 5).

(30)

CV  oYi cVLi
Lower boundS UPper bounds

Ptoposed method Ref 12 PYU ef1)

O.02

O.05

O.1

O.05

O.1

O.1

O.1

O.2

1.43 × 10-9

8.45 x 10'9

7.63 x lo-s

4.15 × lo-3

1.43 x lo-9

8.45 x lo-9

2.80 x lo-s

1.51 x 10-3

9.08 x lo-9

3.92 x 10"7

3.55 x 10'3

6.64 × lo-3

6.51 x lo-s

3.87 x 10-6

5.e8 x lo-3

6.34 x le-s

  Mlean value ofprocessing time
                          2203 seclease
         rBurroughs B-6 70Q/

paratively narrow and thus they yield a good estimate of the failure probabihty. Ehe

calculated lower bounds are also compared in the table to those of reference 12. It is

seen that the proposed method gives an improved estmate. Comparing the values with

those of Table 2 indicates that the failure probability is greatly influenced by inclusion

of buckling failure mode of the compression members. Consequently, instabihty

criterion and its variability need to be consolidated for reliability analysis of the truss

structures.

                           5. Conclusion

   Reliabthty analysis ofredundant truss structures is carried out by evaluating its lower

and upper bounds. Failure criteria of the structures are generated by using Matrix

Method. An efficient method is proposed which calculates the lower and upper bounds

of the structural failure probability by repeating branchng and bounding operations in

search of the dominant modes of failure. Through numerical examples, it is shown that

the proposed method yields a narrow interval estimate of the structural failure

probability and also saves greatly the computation time.
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             Appen(lix - Determination of a boundmg criterion.

   For a structure composed of n members with s-degrees of redundancy, themaxi-

mum number of the failure modes is given by .P(,+i) =n(n-1) ･ ･ ･ (n -s), consider-

ing the case where structural failure in al1 t.he modes occurs if and only if (s + 1)

members are subject to failure. Consequently, the maximum number ofthe members to

be eliminated in the bounding operations becomes .P(,+i)-1. When the contribution

of the eliminated members to the upper bound is to be limited to IlfL × 10'-6, the

following condition must be satisfied:

       {nRy+1 -1] ×10-7 < nP(s+1)× 10-7 S 10-6

                  s         i7)6+ iZ. olog (n-i) (A.1)
In case of n == 16, s=3 and 6 =1, 7)5.64. It shouldbe noted that the condition

(A.l) corresponds to the severest case.


