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An Algorithm for Graph Isomorphism

Atsuro SENo*, Kunio FuKuNAGA** and Tamotsu KAsAi**

              (Received November 15, 1977)

   The present paper describes an algorithm for finding efficjently the isomorphic

graphs by using a new method which represents some given graphs in a Euclidean space

named graphic space. The graph isomoTphism is determined on the basis of a vertex-

vector and a distance between two graphs defined in the graphic space.

   It is shown that the processing time of the algorithm proposed in this paper is

given as a function of the number of vertices, n, in the graph and is generally propor-

tional to n` (logn)2.

                            1. Introduction

   The problem of determining whethe.r two given graphs are isomorphic or not is

important in its applications to many fields as well as study of property between the

graphs.

   The isomorphism of two labeled graphs with n vertices can be determined easily

by the comparisons of n times between the corresponding labeled vertices of the graphs.

In the case where the given two graphs have no labeled vertices, however, the determina-

tion of isomorphism must be done by the comparisons of n ! times between n vertices

of the graphs. Therefore, the time required to determine the isomorphism of the graphs

is proportional to n! and the larger the value of n is made, the more rapidly the

processing time is increased. From this fact, if the value of n is larger than 10, it can be

seen that the determination of the graph isomorphism becomes almost impossible.

   Many methods fbr decreasing the number of comparisons between the vertices of

two graphs have been discussed and the efficient procedures for the graphs which have no

particular subgraph have been devised.i)'2) However, it is difficult to solve generally

the problem by applying these procedures to general graphs.

   There are a few procedure3)N5) for obtaining the solution by comparing the eigen-

values of adjacency matrices representing the relation of connection in each of the given

graphs. However, since these procedures depend on only comparison between the eigen-

values of adjacency matrices, they leave something to be desired and there are some

scopes for discussion.

   In this paper, first, a new method which represents a graph in an n dimensional

Euclidean space is introduced.6)'7) Scuh a space is called a graphic space and the
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representation of the graph in this space is done on the basis of the weights associated

with each edge of the graph. Next, an efficient algorithm to determine the graph

isomorphism by using this representing method is described.

   This algorithm has an excellent feature that there is no need to consider many

comparisons between the vertices even if in the case where the given graphs have no

labeled one, and it is possible to decrease the processing time required to determine the

graph isomorphism. It is shown that the processing time by this algorithm is proportional

to n4 (logn)2 if the given graphs are represented with a proper accuracy in the graphic

space.

   Finally, in order to make sure of efficiency of the algorithm described in this paper,

a result applying it to two graphs with 50 vertices is shown as an example.

                           2. Graphic Space

   Let G be a given connected andnondirected graph with m edges ei (i -- 1,2, ･ ･ ･ ,

m) and n vertices vi (i =1,2,''･,n), and also let di (i=1,2,･･･,m) be the

weights associated with each of m edges. In tliis paper, each weight is regard as the

strength of'combination between both end vertices of the edge.

   We now consider a graphical representation of the relation between edges and

vertices in a graph. This is done on basis of "Theory and Examples of Quantification

(II)" 8) and is given by ajoint distribution diagram taking vertices on the quardrature axis

and edges on the longitudinal axis in the plane of the second order. The correlation

coefficient p between edges and vertices on the joint distribution diagram is defined and

the proper numerical values are given to each edge and vertex so as to make the maximum

value of p.

                                      V5 V6
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e2
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Fig. 1. An example ofgraph G.

   For example, we considera graph G as shown in Fig. 1. Ifa mark "o" is used to

show the relation of connection between edges and vertices, the joint distribution

diagram as shown in Fig. 2 is obtained.
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Fig. 2. Ajoint distribution diagram forgraph G ofFig. 1.
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Thejoint distribution diagram with maximum correlation coefficient.

    By the way, the maximum value of correlation coefficient p is obtained when the

marks " o " distribute along a straight line passing through the origin of coordinate in Fig.

2. According to this-cQnsideration, the proper numerical values are given to each of edges

and vertices, and thejoint distribution diagram of Fig. 2 is rearranged. Thus, the resulting

joint distribution diagram becomes as shown in Fig. 3. In this figure, the neighboring
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vertices are combined strongly each other and the distant vertices weakly. [herefore,it

follows from this that the vertices are located in proportion to the weights of edges by

maximizing the correlation coefficient.

   In order to calculate practically the correlation coefficient, let xi (i = 1,2,''',n)

be the variables showingthe positions ofthe vertices vi (i = 1,2,''',n) on the X-axis

and yi (i = 1, 2,''',m) be the variables showing the positions ofedges ei (i = 1,2,

'''
,m) on the Y-axis. Then, it is supposed that the joint distribution diagram gives

the probability distribution of two variables by considering the weights of edges:

      P(X=xi, Y=yi)=6iidilTo, (1)
where

            ( 1 ifedge ei isincidentatvertex vi,

       6ii = i o otherwise,

and

             nm      To: .2 Z6ii 4i･ ' . (2)
            1=1l=1
If we take Eq. (l) as the probability density function P'(xi,yi), twoprobability func-

tions for X and Y, P(xi) and PO,i), are

               m      Pi (xi)=iZ.,P(xi, jVi), ' (3)
                n      P, (yi)= .Z P(xi, jvi). (4)
               J=1

Furthermore, from the definition, the variances of X and Y, ox2 and oy2, andthe

covariance of X and Y, Cxy, are represented, respectively, as follows:

              nn      ox2 = [iZ.,xi Pi (xi)] - [i2.iip, (xi)]2,

              mm      oy2 = [iZ.lyi2 P, Cy i)] - [ iZ. ljviP, Cyi)]2 ,

              nm nm      Cxy = iZ., iZ.,xiYiP(Xi, yi) - [iZ.,xiPi(Jclr)][iZ.,jviP2(yi)]･

Frorn Eqs. (5) 'v (7), the correlation coefficient p is given by

            Cxy
      p= ･           ax uy

   For xi and yi, the conditions to obtain a maximum value of p,

                       '       eO.Pi = O, (i = 1,2,''',n)

(5)

(6)

(7)

(8)

･(9)
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and
ap
    == o,
ojyi

(i h- 1, 2, ''', m) (1O)

lead to

       AX =XC.¥, 8) (1 1)
where A = { aik ] is an n x n symmetric matrix, C=: [ ekk] is a di agon al matrix

and X is a column vector which is given by

       X= (xi, x2, ･･･,x.)t, (12)
where the superscript t means "transpose of" the matrix and the elements xi U == 1, 2,

''' ,n) are the variables showing the position of the vertices b U = 1,2,`'',n) on

the X-axis in thejoint distribution diagram. The entries aik and ckk ofthematrices

A and C are

       dyk == ll- iZr16ki6Jidi , (13)
              m

       ckk=i£. iki di =2akk, a4)
and the parameter X is given by

Now let Xi,X2,''',Xn (1 lllXi lll;X2 lll'''}) X. Ill; O) be the eigenvalues obtainingby

solving Eq. (11), and alsolet X(k) be the eigenvector associated with eigenvalues Xk

(k == l,2,''',n). Then, X(k) is

       X(k)=(xik, x2k, ･･･, x.k)t, (16)
where the maximum absolute value of the elements is normalized to 1.

    By the way, the greater the correlation coeflficient p is made, the better the relation

between edges and vertices is represented. Therefore, the accuracy of the representation

in the Euclidean space depends on the value of p. As is evident from Eq. (11), if the

weights of the edges in one of two given graphs are proportional to those in the other,

the eigenvectors of the two graphs have the same elements.

   In order to make correlation for the matter as just mentioned above, we now define

a vector named vertex-vector. This is made from the eigenvector by using the average

value do ofthe weights di (i = 1,2,･･･,m) andthe correlation coefficient p.

    [Definition 1] (Vertex-vector)

   The vertex-vector X) U= 1,2,''',n) for the vertex vi U= 1,2,''',n) ina

graph G are defined as follows:
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                                     '          X]f "= (VXi Xi2, VtX5 Xi2, ''',VXTr xir)/do, (17)

where ,r ($ n) is the number of dimensions of the vertex-vector, which relates to the

accuracy of representation of the graph in a Euclidean space,and xik (k = 1,2,''',r)

has been defined in Eq. (l6).

   If we take the value of the vertex-vector in the coordinates as the position of the

vertex, the graph G can be represented inaEuclidean space of r dimensions. In the

following, we call the space where the graph is represented in such a method `igTuphie

    11spaee .

   In the representing method of the graph in the graphic space, each vertex-vector is

obtained on the basis of the weights of edges. Consequently, if a given graph resembles

anothgr given one in the construction of edges and vertices or in the weights of edges,

the arrangements of the vertices in the graphic space resemble each other, and if the

graphs are different in the construction of edges and vertices, the arrangements of the

vertices in the graphic space are also different. Therefore, when two given graphs are

represented in the same graphic space, it can be considered that they are very similar if

their vertices are arranged likewise, and not otherwise. From this, we now define a

distance between two graphs as follows:

    [Definition 2] (Distance between two graphs)

    Consider two given graphs G. and Gb with n vertices･ Let [Vai,Va2,''',Van]

be the set of vertices in G. and [vbi,vb2,･･･,vb.] be the set of vertices in Gb

corresponding to v.i (i = 1,2,''',n), and also let Xbi and Xbi be the vertex-vectors

for v.i and vbi, respectively. Then the distance between G. and Gb, D(G.,Gb),

is defined as

       D(G,, Gb)- i .Sl ll .xhi xbi lL2 (is)
                        1=1

       is the numbero

                                         '                      r

where r fdimensions ofthe vertex-vectors .Mhi and Xbi.

   Thus, by this definition we have the foliowing theorems:

   [Theorem 1] The distance between the graphs satisfies the pseudo-distance. In

other words, the distance on any given graphs G., Gb and G. whose vertices cor-

respond with one another satisfies the following conditions:

                              --       (1) D(Ga, Gb)=O, (19)
       (2) D(Ga, Gb) =' D(Gb, Ga), (20)
       (3) D(Ga, Gb)+D(Gb, Gc) lll D(Ga, Ge)･ (21)

   (ProoD It is clear from the definition that the conditions (1) and (2) are satisfied.

Let vbi and v.i (i= 1,2,''',n) be the verticesin Gb and G. correspondingto

the vertices v.i (i=1,2,''･,n), andalsolet X.i, Xbi and X.i be the vertex-vectors
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for the vertices v.i, vbi and v.i. Then, from the property ofa Euclidean space of

dimensions, it is clear that

          11 JXbi - Xbi 11 + ll Xbi - Xbi ll lll ll j¥bi L Xei 11 ,

          il 'Ki2 - Xb2 ll + ll Xb2 - Xb2 11 2; li Xb2 - Xc2ll ,

               ･.･- - - - - - -

          ll Xbn - Xbn 11 + 11 jXbn - Xcn 11 lll; "Xbn - Xcn li ･

These equations lead to

67

 r

         n
        iZ.,(ll ･¥di- Xbi 11 + Il xbi- x.i el)2 }l

Since it is generaily satisfied that

we have

 n
iZ.,ll ･Xbi- igill2 +

 n
iZ.,li Xbi - x,i112+

 n
iZ. , Il Xbi - Jr2,i ll 2 ;ll

 n
iZ. i 11 Xbi - Xci ll2)

 n
i2. , ll "Kii m X2ri ll2 .

 n
f2. ,( Il Xbi- X,ill + 11 X,i-xbill)2 ,

 n
2 11 Xbi- Xci ll2･

i--1

Using the distance between the graphs defined just befbre, we obtain

      D(Ga, Gb)+D(Gb, Gb) }I D(Ga, Gc)･ QED･

   [Theorem 2] The distance between two graphs G. and Gb, D(G.,Gb), equals to

O, when they are isomorphic. That is, the necessary condition for graph isomorphism is

               D(Ga, Gb) == O･ (22)

                  3. Algorithm for Graph Isomorphism

   The representation of the graphs in the graphic space described in Chapter 2 is

obtained by maximizing the correlation coeflficient between edges and vertices based

on the weights ofedges. By this procedure, a given nondirected graph can be represented

uniquely in the graphic space. Therefore,iftwo given graphs are representedin the same

graphic space and the positions of the vertices in a graph are compared with those in the

other, we can determine whether the graphs are isomorphic or not. We now give the

algorithm for determining isomorphism of two nondirected graphs G. and Gb with n

vertices by the representing method of the graphs in the graphic space.

   Step 1. Let [v.i,v.2,･･･,v..I and [vbi,vb2,･･･,vb.] betheverticesin
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the given graphs G. and Gb, respectively. Determine theminimum numberofdirnen-

sions of the graphic space, r, required to represent separately the vertices in each graph

and represent al1 vertices in the graphic space of r dimensions. Then let [Xhi,Xb2,

'''
,Xbn] and [Xbi,Xb2,''',Xbn] be thevertex-vectors for G. and Gb whose

eigenvalues do not overlap each other.

   Step 2. Make acorrespondence between the vertex-vectors for the vertices in Ga

and Gb, which locate at the nearest distance, in the graphic space of r dimensions.

If the vertex-vectors for the vertices in G. and Gb have one to one cqrrespondence,go

to step 3. In contrast with this, if they have no one to one correspondence, the graphs

Ga and Gb are not isomorphic. Stop.

   Step3. Suppose the vertex-vectors Xhi and Xbi (i = 1,2,-･･,n) have oneto

one correspondence. If the distance of graphs, D(G., Gb), is zero, go to step 4. If the

distance is notzero, the graphs G. and Gb arenotisomorphic. Stop.

    Step4. Arrange the rows and the columns corresponding to vbi jn the adjacency

matrix of Gb in the same order as those corresponding to v.i i'n the adjacency matrix

of G.. After this arrangement,if and only if the adjacency matrices of G. and Gb

are the same,twographs G, and Gb areisomorphic. Ifnot,theyarenotisomorphic.

                    4. Processing Time of Algorithm

   In this chapter, the processing time of the algorithn described in Chapter 3 is

evaluated by calculating the number of products and comparisons of the weights of edges.

   First, each eigenvalue and eigenvector in the eigen equation (11) are obtained by

using "Pbwer Method" in step 1 .

   Let Xi,X2,''',Xn (lXiI)1X21)''')1X. 1) be theeigenvalues ofan n×n
matrix A. Then any n dimensional vector x can be represented by the linear combina-

tion ofthe eigenvectors ui (i = 1,2,'`',n) as

                n           x== Zeiui, (23)               i--1

where ci (i = 1,2,''',n) are constants.

   Multiplying this vector x by A repeatedly, we have

Ax

A2x

.

   n
= £ ci )ti ui ,
  i--.1

 = i2.lci )L3･ ui ,

   ---
AMx

. .

= iz." lcix:.n ui = x ri (c,u, + iz." 2ci(-i)it-)mui) .

(24)
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Therefore, if

       1)til >1)NL2I lll; l?t31 ) ''' lil: 1)tnl,

the right side of the last equation in Eq. (24) approaches ciXiMui when m approaches

infinity, and the smaller the value of 1X2/Xil is, the faster its convergence wi11 be. If

       Xi = X2 and 1X21 > 1X3l ) ･･･ ) 1X. 1,

the right side of last equation in Eq. (24) approaches XiM (ciui + c2u2) when m

approaches infinity, because

       Amx = x,p (c,ui+c,u,+iz."3ci( xX'i )m ui). (2s)

   From the matters described aboved, it can be seen that AMx converges to the eigen-

vector, which corresponds to the maximum eigenvalue (the first eigenvalue Xi), in all

cases when m approaches infinity.

   Next, from the first eigenvalue Xi, the correspondingleft eigenvector ui and right

one ui' , we make anew matrix B as

                        '                     Ul Ul      B=A-Xi (.,,.,') (26)
where (ui,ui') is the inner product. The secondeigenvalue X2 and thecorresponding

eigenvector u2 can be obtained by applying Power Method to the matrix B. Further-

more, the other eigenvalues and eigenvectors can be obtained in turn by using the sarne

way. However, it is clear that the error is stored and the accuracy decreases according

to decrease of the eigenvalues.

   Fig. 4 shows the flow chart for obtaining the eigenvalues by means of Power Method.

In this figure, 6 is the standard value which determines the completion ofconvergence

to the eigenvalues and the eigenvectors.

   In step 1. Eq. (1 1) is changed as

           AX =: XX, (27)
and Power Method is applied to this equation.

   From the property of the correlation coefficient, n eigenvalues exist in the range of

O to 1. Let Xi,X2,''',X. be theireigenvalues under the condition 1 ;li Xi lll X2 lll;'''

) X. )O. Since the speed ofconvergence to each eigenvalue and eigenvector depends on

X21Xi for Xi 7E X2, if the value of lXi - X2l is less than the constant e, it is very

difficult to converge because the number of iterative calculations considerably increases.

However, it can be seen that the value of 1Xi - X2 l is Kln at least, where K is a

constant. (See Appendix.) From this fact, we get the following lemma:

                           ,
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      Fig. 4. The flow chart for obtaining the eigenvalues ofan n xn symmetric

            matrix A.

    [Lemma 1] When a graph of n vertices is represented in the graphic space, the

number of times of the iterative calculations, m, required to obtain the eigenvalues and

theeigenvectors with anaccuracy e=Kln andthenumberoffigures, P=Ko+logn,

where Ko is a constant, by means ofPower Method, is given by m =O(n logn).

   (ProoO The condition for determining the convergence to the eigenvalue and the

elgenvector ls

       (X2 /Xi )M < e = Kln .

Since the speed ofconvergence decreases according as the vaiue of 1Xi - X2 i decreases,

in the case where Xi,X2,･･･,X. exist with the same intervals of 1/n between O and1,

and the maximum eigenvalue Xi is 1, we get '
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           X2/Xi = 1- lln.

Then,

       lim (1 - 11n)nlnn = lim (11e)lnn = 11n.

      n-ee n-oe
This equation leads to

       m =nlnn =Knlogn = O(n logn).

Thus, the required solutions is obtained by carrying out the iterative calculations of

   In the block@in Fig. 4, we multiply the vector X by the n xn matrix A. Thus,

we get the following lemma:

    [Lemma 2] When a graph of n vertices is represented with an accuracy e =K/n

in the graphic space by Power Method, the processing time required to multiply once

X by A underthenumberoffigures, P=Ko+logn, isnotmorethan O(n2 logn).

   From Lemmas 1 and 2, we obtain the following theorem:

    [IIheorem 3] The processing time to represent with an accuracy e =K/n the

graph of n vertices in the n dimensional graphic space is O(n4 (logn)2) atmost.

   In Theorem 3, if a given graph is not regular or has no any regular subgraph, that

graph can be represented in the r dimensional graphic space, where r (< n) is the

constant which does not depend on n. Therefore, the processing time in this case is

O (n3(logn)2) at most.

   Since it is clear that the processing time in steps 2, 3 and 4 is less than O (n3),

this algorithm for graph isomorphism can be done generally with the processing time

of O(n4(log n)2) at most in total, and if the graph is not regular, it becomes

O(n3 (log n )2 ).

   As an example, we now determine the isomorphism of two nondirected graphs

G. and Gb as shown in Fig. 5. These are the graphs made by removing two edges

from a nondirected regular graph of degree 4 with 50 vertices and 100 edges, and the

weights of their edges are all 1. If an accuracy e takes the value O.O05, that is, P =4

and Ko = 2 + log 2, all vertices of each graph can be represented separately in the 2

dimensional graphic space. Thus, the determination ofisomorphism ofthese two graphs

finished in 66.24 seconds. In Fig. 5, the corresponding vertices between G. and Gb,

which were determined by carrying out the algorithm, are shown by the same number

associated with them.

   In order to get an

presenting the graphs in

      5. Conclusions

effective algorithm for graph isomorphism, an approach of re-

 the r dimensional Euclidean space called graphic space was
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An example of isomorphic graphs.
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43
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used, and the vertices of the given graphs were expressed as points in this space. Such a

method for representing the graphs is also usefu1 to survey the property of the graphs, for

example, the center vertex, eccentricity and the like.

   The distance among the vertices in the space, which depends on the strength ofcom-

bination among them, gives a good contribution in determining the graph isomorphism.

In other words, the distance between the graphs defined from that among the vertices in

the graphic space is an important value for this purpose. Tlie aigorithm described in this

paper is based on the distance between the graphs in the graphic space, and if and only

if the distance between two graphs in the space equals to zero, it is determined that the

two graphs are isomorphic. Furthermore, the processing time of this algorithm was given

as a function of the number of 'verticesi n, and it was also shown that the processing

time was generally proportional to n4(log n)2. Therefore, it is possible to use this

algorithm for the graphs of realistic size. However, the processing time increases rapidly

with increasing of n, so a subject for further discussion is to find the algorithm whose

processing time is less than that of the algorithm described in this paper.
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Appendix

   We now examine how far the value of lXi - X2

Ai,X2,''',Xn (1 )Xi >X2 )X3 )''')ixn >O),

 I becoines small. The eigenvalues,

of the eigen equation,

AX = XCX        ,
(A-1)

are obtained from

IA - XCI = O. (A-2)

Since Eq. (A-2) can be changed into

xk (ai-ksc n-k + aA-k-lxn-k-1 +'''+al'x +ae' ) = O, (A-3)

the eigenvalues Xi and X2 are obtained as the solutions of

n-k
£

h=O
aA xh = o, (A-4)

where ai-k=O･

   Now let the elements of the matrices A and C in Eq. (A-1), and the coefficients

ah' (h = O, 1,''',n-k) in Eq. (A-3) be expressed with P figures. If Eq. (A-4) is

divided by the coefficient, aA-k , of the highest order, it becomes

                      n-k-1
               xn-k+ Z ah xh = O, (A-5)
                       h=O

where ah = ah' laA-k (h = O, 1,･･･,

above equation take the following values:

n-k- 1). It is clear that the coefficients in the

ah =O or lahl > 1/loP (h = O,1 ,･･･ ,n-k-1). (A-6)

Suppose n-k =2 . Then, from Eq. (A-5)

1x, - x,1 = VE?,-:-2M;, (A-7)

Since Xi SX2,

MIN IXi - X21 = lai1> 111oP.
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If P=Ko +logn,

           MIN lXi - X2 l > 1/10Ke'iOg" = Kln .

For n - k ;ll3, Eq. (A-5)is solved into factors as

           n-k

            n(x-bh)=O. (A-8)           h=1

From the relationship of the solutions and the coefficients, we have

           O< bh fS l (h = 1, 2,･･･, n-k) (A .9)

and

           n-k
            nbh == ao>1/10P. (A-lo)
           h=1

It is necessary that two eigenvalues Xi and X2 satisfy the conditions ofEqs.(A-9)and

(A-10), and that one of them approaches most closeiy to the other. Thus, if b3 = b4 =

'''= b.-k =1 for the first eigenvalue Xi, the result obtained from Eq.(A-8)is the

same as that in the case where n - k == 2.

   From the above considerations, we may conclude that the difference between two

eigenvalues, lXi - X2 l, of Eq.(A-1)is K/n at least.


