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Optimum Structural Design Considering Costs Caused

              by Failure of Structures

Yoshisada MuRoTsu*, Masaaki YONEzAwA**, Fuminori OBA***

                 and Kazukuni NrwA****

                 (Received November 15, 1977)

   This paper deals with an optimum structural design based on reliability analysis.

An expected total cost is defined as a sum of the structural cost and the expected loss

caused by failure of a structure. The optimum design problem is set up to minimize the

expected total cost. A feature of this problem lies in that the optimum value of reli-

ability is determined together with the optimum structure. An algorithmic procedure is

presented to solve the problem by applying stochastic programming and a uni-dimen-

sional search technique. Design examples are provided of a three, and a thirteen,

member trusses.

                             1. Introduction

    Loads acting on structures and strength of the structural elements are sometimes

subject to random variations. In such a case, structural reliability, or alternatively, the

probability of failure has been used as a criterion for structural safety. Applying

reliability analysis, optimum design problems have been studiediA"9) to determine the

structure minimizing the structural cost or weight.

    The authors treated in the previous papersiO)'ii) a problem to determine the

optimum structure minimizing the structural cost or weight under the specified failure

probability of the structure and proposed an efficient algorithmic procedure to solve the

problem by applying stochastic programming. However, there are some cases where the

allowable failure probability can not be specified. In such cases, alternative fbrmulations

of the optimum design problems are necessary.

    In this paper, a problem is considered to determine simultaneously the optimum

value of failure probability and structure when the costs caused by failure of the structure

are specified. For this purpose, defined is the expected total cost which is taken as a

sum of the structural cost and the expected costs due to failure of the structure. An

algorithmic procedure is developed and numerical examples are presented.
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                        2. Statement of ftoblem

   Consider a structural system in which safety margins of failure modes are described

by a linear combination of the resistances of elements and loads acting on the structure.

That is, the safety margins of failure modes are given by

            nl       Zi = iZ. laii Ri - iZ. ,bii Li (i = 1, 2, ･･･, m), .(1)

where Ri -- structural resistanceofthe i-thelement,

       Li -- loadactingonthe structure,

       aii = resistance coefficient determined by the position and condition of the

            ]'-th element related to the i-th failure mode,

       biiny = load coefficient determined by the position and magnitude of the i-th

             load related to the i-th failure mode,

       n = numberofstructural elements,

       l = numberofloads,

       m = numberoffailuremodes.

    Failure of the structure occurs if any value of Zi (i -- 1, 2,''',m) is negative,

i.e., any one of failure modes happens. When structural resistances, Ri's, and loads,

Li's, exhibit statistical variations and thus they are treated as random variables, safety

margins, Zi's, become also random variables. Hence safety of the structure must be

evaluated in statistical terms. Let Fi be the event of failure ofmode i and Fi survival

ofmode i. The failure probability ofthe structure can be written as

       Rf = Prob (Fi)+Prob (Fi nF2)+Prob (Fi nF2 nF3)+･･･

                              +Prob (Fi nF2 n'''nLn-i AEn)

          == 1- Prob (Fi AF2 n'''n4. ). ' (2)
                                       tt                                             '                                           '
    Structural resistance, Ri, is a function of dimension of the element, Ai, such as

cross-sectional area and strength of the material, Clyi, (e.g., yield stress) to be used,

both of which are in general random variables. However, only Clyi's are treated as

random variables in this paper, while Ai's are given as deterministic variables. As the

design variables, the. resistances of structural elements are adopted, and the dimensions of

structural elements are assumed to be determined by the mean values of structural

resistances and strengths ofthe materials, Ri and C3,i, i.e.,

                Ai -- Ai(Ri, Clyi)･ (3)
    The structural cost is a function of the dimensions of structural elements when the

materials to be used are specified, and thus from Eq. (3) it can be written as

                Hc = Hb (R-i, R-2,''', R-n)･ (4)
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   Now consider the case where failure probability Ilf is determined by specifying only

the mean values of structural resistances, Ri's, if the probabilistic natures of the loads,

Li's, are given. Such a case is experienced when Ri's are Gaussian random variabies

with known coeMcients of variation. ･
    Let Hlf(Rf) denote the expected costs caused by failure of the structure, such as

cost of recobstruction, cost of compensation, cost due to loss of social prestige, etc.,

                               'when failure probability is llf. '
   The expected total cost HT is defined by

                HT == Hb+E(f(Rf). (5)
   The problem to be considered is as follows:

PROBLEM "Given the configuration of the structure and the materials to be used,

determine the structural resistances, Ri's, to minimize the expected total cost."

   It should be noted here that by solving the problem the optimum value of failure

probability, or alternatively reliability, of the structure is determined together with the

optlmum structure.

                         3. Solution of Problem

   It takes much time to calculate multi-dimensional probability distribution functions

for evaluating failure probability of the structure, Ilf, in Eq. (2). Further probability

thus evaluated is an approximate one, using any method so far developed for calculating

multi-dimensional probability distribution functions. Thus, it is desirable to employ a

search method to attain the optimum solution without using the derivative of Ilf, which

requires much processing time and may result in accumulation of errors. For the

purpose, consider a subproblem:

SUBPROBLEM "Specified the allowable probability level, Ilft,, determine the optimum

values ofthe resistances, Ri's, to minimize the structural cost, Hc, under the constraint:

                     I7KIIfa (6)."
   This subproblem is equivalent to the problem treated in the previous paper,iO,ii)

and can be solved eflflciently by the algorithmic procedure proposed previously. An

important property of the solution to the subproblem, which will be proved in the

following section (see LEMMA 1), is that the solution to the subproblem is attained on

the boundary, i.e., Ilf == Rfz,. Consequently, the solution to the original problem is

obtained by sequentially solving the subproblem. The algorithmic procedure is given as

follows:

Step 1: Specify the initial value of llfti･

Step 2: For the given value of llfa, solve the subproblem and calculate the expected

       total cost corresponding to the optimum solution thus obtained. If optimality
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      condition for the original prob!em is satisfied, stop the calculation. Otherwise,

  , go to Step 3.
Step 3: Applying a uni-dimensional search technique,i3) the value of llfz, is adjusted so

      as to minimize the expected total cost, HT. Go toStep 2. '

   The flow chart fbr the above procedure is given in Fig. 1, and the mathematical back-

ground is given in the next section.

START

SpecifyPfa-

SolveSUBPROBLEM
min･Hc

underPfSPfa

AdjustPfa HT==Hc'Hf(Pr)

HT:mm?

Yes

STOP

Fig. 1 . Algorithrnic procedure f6r solving problern.

            4. Mathematical Baekground of Algorithmic Procedure

   Let the design variables be expressed by n-dimensional vector R =(Ri,R2,･･･,

Rn)T and its design space be a subspace of n-dimensional Euclidean space E", i.e.,

r C E", where superscript T means to take transpose of vector. The structural cost,

Hc, and failure probability, llf, is a function of the design vector R, and thus they

are rewrltten as

            Hb = Hc (R), Rt･ == Ilf(R) for REP.

   In structural systems, the structural costs increase in general as the design variables

are taken to be large, while failure probabilities decrease for the cases considered. Hence
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the following conditions are satisfied in general:

   (Cl) Hb(R) is componentwise increasing, i.e., for some iE[1,2,･･･,n]
        and for any Ri and R2 E r such that R2 - Ri = (Ri -Rii･ )ei > O,

        Hc(R) is increasing along [R',R2]. ¢ is a n-dimensional unit vector

        with the i-th element of unit and all others of zero.

   (C2) Ilf(R) is componentwise decreasing, i.e., Ilf(R) isdecreasingalong [Ri,

        R2] as defined in (Cl).

   The following lemma holds for the solution to SUBRR OBLEM :

LEMMA 1: The solution to the subproblem is attained on the boundary of the pro-

bability constraint, i.e., Rf(R") == Ilfa･

RROOE For any vector Ri contained in an open set:

               G .A. [R 1 ,llf (R) < llfa ],

i.e., Ri EG, there existsanumber e>O which defines the e-neighbourhood of Ri:

               O, (R i) -A [R ll R' -R li < e] C G.

Consider a vector RO whose elements Ri are identical with those of Ri except the

i-th element, i.e. ,

              RP･ -Rl-e/2, R,O･ -R,i･ (i-1,2,'･',n,ili),

and which satisfies

              RO e Q, (Ri) C G.

From the condition (Cl), the following inequality holds between the structural costs

correspondingto RO and Ri

              Hc (Ri) > Hc (RO).

Consequently, Ri can not be an optimum solution to SUBRROBLEM (q. e. d. ).

   For the expected total cost, the following lemma holds :

LEMMA 2: If the failure probability, Iltr, is specified to be Ilfa, the expectedtotal

cost, HT, is minimum for the solution to the subproblem.

RROOPI For the specified value of Ilf, the second term of HT is constant, i.e.,

H)･(-Flf) == H7(Ilfb) == constant. Then

              HOT(Iltt,) .A, min                                 [ Hc + Hf (Ilf) ]
                        ReV,Pf=Pfo

                      = min Hc + Hlf (llfa)
                        ReT,Pf=Pfa

                      == min Hc+fl[f(Rfb)･
                        Rer,PfSPfa
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The last relation follows from LEMrm 1 (q. e. d.).

   From LEMMAs 1 and 2, the following lemma concerning the solution of the original

problem holds:

LEMMA 3: The solution to the original problem is obtained by sequentially solving the

subproblem.

RROOI[: From LELIItfilttlAs 1 and 2, the following relation results:

   HTmin =A RM,i.n HT =A m.%n Hg(llfa)

               ' ==min[ min (Hc+LLf(Ilf))]
                         Rer,Pf=Itfa                     Pfa

                  =min[ min Hc+Hlf(lltb)] ･
                         Rer,Pf=llfa                     lp
                   == min[ min Hc+L(f(]P!fb)] ' (q.e.d.).
                     Rfzi ReP,llff{Pfti

   Denote the structural cost corresponding to the optimum solution of the subproblem

for a specified value of llfa as HcO (Iltb), i.e. ,

               H.O (Ilfb)= min Hc (R)
                         Rep,Ilf(R)s;llfa

   The following lemma holds:

LEMMA 4: HcO(Ilt?,) is a decreasing function of Ilt?i .

RROOE For the specified values of the allowable failure probability such that ]P!iL, <RjL,,

consider the corresponding feasible regions:

                                                '               Fi =A [Rlll,(R) f{; Il,L,), F2 ,A. [R1llf(R) f{g Pljiz].

The condition (C2) yields

               Fi c F2 .

Hence H.O (llh)> Hg (jPjl)

from LEMMA1 (q. e. d).

   Finally it is clear from LEMMA 3 that the fo11owing proposition holds concerning

the algorithmic procedure for solving the original problem:

PROPOSITION: The solution to the original problem is obtained by the procedure given

in Section 3, performing uni-dimensional search with respect to the allowable failure

probability.

   It should be remarked here that the algorithm does not always work well if the

expected total cost, HT, is not unimodal with respect to the allowable failure pro-

bability, Ilfa. In that case, optimization should be started from a number of initial

values of Ilfb, and search for the global minimum is to be carried out since the solution
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from any one initial value.may be a local minimum.

                   '

          , 5. Numerical Examples
                           '
5.1 Deslgn ofthree member statically indeterminate truss

   Consider a plastic design of an statically indeterminate three member truss structure

shown in Fig. 2. The failure of the structure occurs when any two members among three

R,

L,

 R,

4se 4so

R,

4se

                Fig. 2. Three member statically indeterminate truss

collapse. Thus the following three failure modes primary
failure and their safety rnargins, Zi's, are given by

i) Members 1 and 2 collapse both in tension:

                       vEi N6
            Zl = Rl+ 2 R2+ 2 Ll-

ii) Members 2 and 3 collapse both in tension:

                  vEi v5
            Z2 = 2 R2+R3- 2 Ll-

and iii) Members 1 and 3 collapse in compression and tension, respectively:

                  v5 v5
            Z3 = 2 Ri+ 2 R3-L,+-

   The failure probability of the structure is calculated as

   llf = Prob (Zi < O)+Prob (Zi ;)OA Z2 < O)+Prob (Zi 2.>OnZ

      = 1 - Prob (Zi ;}r OAZ2 }) OnZ3 ;}) O)

   .

6oe

  L,

 are considered as

vr7(vEi+1)
           L2,
      2

v5 (v`ii - i)
           L2,
     4

1
  L2-
2

        >onz

modes of

  (7)

  (8)

  (9)

3<O)

  (1O)
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In this example, the resistance of the member, Ri, is related to their respective cross

sectional area, Ai, andyield stress, Clyi, as

               Ri=CYi Ai. (1 1)
The structural cost is given by

                     3

               Hc=i£., CVnidi ij Aj, (1 2)
where Cini= material cost of the i-th member per unit weight,

      di -- specificweightofthe i-thmember,

and b == length ofthe i-thmember.

   The expected loss due to structural failure is given by

               H7 (&)- q&. (i3)
   Consider the case where the resistances of the members, Ri's, and the loads, Li's

are independent Gaussian random variables and the coefTicients ofvariations, CVIRi and

CVLi, and the means of the loads, Li, are given. Then the failure probability of the

structure is determined by specifying the mean value of the strengths, Ri.

   For example, when the cross sectional area, Ai, is deterministic variable and the

yield stress, (Zyi, is Gaussian random variable with known mean, C3,i, and coefficient of

variation, CVIyi, the resistance of the i-th member, Ri, becomesGaussian random

variable with the coefficient of variation equal to CVIyi as seen from Eq. (11). Con-

sequently, Ai's are determined as RilClyi. Further the safety margins given by Eqs.

(7)-(9) become Gaussian random variables, and thus to evaluate failure probability, llf,

three dimensional Gaussian distribution functions need to be calculated. For the

purpose, the method developed in the previous paperi2) is used. Data concerned are

listed in Table 1 .

Table 1. Data concerned for three member truss.

i liinCVRiC-yiksiC.idi$/in3 iikipsCVLi
6whO.0540O.03
60O.0540O.036oGo.os4oo.o3

100O.2
150Q.2

   Fig. 3 illustrates a search procedure in Steps 2 and 3 given in Section 3, using the

quadratic approximationi3) for the case of c)r = 103 $.

   The optimum solutions are listed in Table 2 for various values of C),. As the value of

Cl7 becomes large, i.e., the cost due to failure of the structure becomes large, the
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Hg(iti?,)

  17.70

17.66

17.62

1i
i
lI
l

1
t

1
1
l

Ck = lo3 $

i
l
l
l

t

t

1

1
,

t

t

1

l

t

t

1

t

i

t

t

Fig. 3.

5. 6. 7. 8. 9. 10. 11.
            Rfz, (x1o-4)

Sequences searching for optimum failure

probability using quadratic approximation method.

Table 2. Optimum solutions for various values of CIf (three member truss).

Cf$ R- ,kips R- ,kips R- ,kips Pf Hg$ H8$

102 70.0 132.0 62.4 9.64 × 10-3 14.71 15.67

lo3 89.2 140.0 70.4 7.79 × 10-4 16.85 17.63

lo4 105.2 146.8 76.8 6.79 × lo-s 18.61 19.29

10s 119.3 152.8 82.4 6.16 × 10-6 20.15 20.77

106 132.0 158.0 87.2 5.71 × 1O-7 21.55 22.13

Hg, H8

   $
,Flt'

10-2 22

10-3 20

10-4 18

10-5 16

10-6 14

10-7

Fig. 4.

 12

   102 103 lo4 105 lo6
               9$

Eflfect of cost due to failure of structure on optimum

solution (three member truss).

H$ ･HS

'

'
/

'

P
f
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optimum failure probability becomes small, while the structural cost becomes large.

This fact is also schematically shown in Fig. 4.

5.2 Design of thirteen member statically determinate truss

   Consider a plastic design of a thirteen member statically determinate truss shown in

Fig. 5. The safety margins of failure modes are given by

2 8

6 11

1 7

4 5 10

3 12 13 9

                         L, L2 L,

                Fig. 5. Thirteen member statical!y determinate truss
                      (li = VEi'lo , l2 = Vli-=5Vl;'lo , lo = 1oo in).

         z, = R, -O.9186L, -O.6124L2 -O.3062L3

         z2 == R2 -O.3029L, -O.6058L2 -O.3029L3

         z3 == R3 -05303Li -O.3535L2 -O.1768L3

         z4 = R4 -1.0000Li

         zs == R, +OA186Li -O.3876L2 -O.1938L3

         z6 = R6 -O.1835Li -O.3670L2 -O.1835L3

         z7 = R7 -O.3062Li -O.6124L2 -09186L3 (14)
         zs = Rs -O.3029Li -O.6058L2 -O.3029L3

         zg = Rg -O.1768Li -O.3535L2 -O.5303L3

         zlo= Rio rl.OOOOL3
         zii = Rii -O.1938Li -O.3876L2+O.4186L3

         zi2 == Ri2 -O.5303L, -O.3536L2 -O.1768L3

         z,3 : Ri3 -O.1768Li -O.3536L2 -O.5303L3.

   Failure probability may be evaluated by Eqs. (2) and (14). However, dimension is

too high to exactly calculate it, and thus the approximate formula developed in the

previous paperii) wil1 be applied in the following calculations.

   The structural cost and the expected loss are assumed to be given in the similar

manner as in the previous example.

   The resistances of structural elements and the loads acting on the structure are
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assumed to be independent Gaussian random variables. The data'concerned are listed in

                                                            '

   The optimum solution for some values of CIf is given in Table 4. It is seen that the

optimum structure is ofsymmetric form. The minimum expected total cost for the given

value of the allowable failure probability, HTO(Iltb), is plotted against the allowable

failure probability, Rt2,, in Fig. 6. It is interesting to note that the minimum expected

total cost is not so sensitive to failure probability in this case, which is also true in the

preyious example as shown in Fig. 3.

                Table 3. Data concerned for thirteen member truss.

CVRi CVyi Cmidi
L""
ikips CVLi

O.15 4e O.Ol 20 O.15

Table 4. Optimum solutions for thirteen member truss.

C
f

R-
,

R-
2

R-
3

R-
4

R-
s

R-
6

Pfa HS Ho
T

104

los

95.63

116.01

67.10

81.35

59.23

72.37

58.08

70.17

17.00

20.52

40.71

49.45

2.15x10'4

2.70×lo-s

25.11

30.43

27.26

33.13

Hg Hg

  34.0

Ri =R7, R2 =Rs, R3 =Rg =Rt2 =R13, R4 =Rio, Rs =Rn kips

30.0

26.0

22.0

H$ (Rfd) -ag (ilf2, ) + Hlf(ilfa )

      1ij(Rfa) = 104 × I>?,

l

l

1

Hg (ilfa )

  10-s

Fig. 6.

                  10-4 lo-3                       h
Minimum expected total cost and minimum structural cost plotted

against allowable failure probability (thirteen member truss).

ig

10.0

8.0

6.0

4.0

2.0

o.o

                           6. Conclusion

   An optimum design problem is considered to minimize the expected total cost

defined as a sum of the structural cost and the expected loss caused by failure of the

structure. A feature of this problem lies in that the optimum value of failure probability
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is determined together with the optimum values of the structural elements. A method is

proposed to solve the problem by applying stochastic programming and a uni-dimensional

search technique. Numerical examples are presented to illustrate the design procedures.
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