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Optimum Structural Design Considering Costs Caused

by Failure of Structures

Yoshisada MUROTSU *, Masaaki YONEZAWA **, Fuminori OBa ***
and Kazukuni NIwa ****

(Received November 15, 1977)

This paper deals with an optimum structural design based on reliability analysis.
An expected total cost is defined as a sum of the structural cost and the expected loss
caused by failure of a structure. The optimum design problem is set up to minimize the
expected total cost. A feature of this problem lies in that the optimum value of reli-
ability is determined together with the optimum structure. An algorithmic procedure is
presented to solve the problem by applying stochastic programming and a uni-dimen-
sional search technique. Design examples are provided of a three, and a thirteen,
member trusses.

1. Introduction

Loads acting on structures and strength of the structural elements are sometimes
subject to random variations. In such a case, structural reliability, or alternatively, the
probability of failure has been used as a criterion for structural safety. Applying
reliability analysis, optimum design problems have been studied! ™~ to determine the -
structure minimizing the structural cost or weight.

The authors treated in the previous papers!®-11) 2 problem to determine the
optimum structure minimizing the structural cost or weight under the specified failure
probability of the structure and proposed an efficient algorithmic procedure to solve the
problem by applying stochastic programming. However, there are some cases where the
allowable failure probability can not be specified. In such cases, alternative formulations
of the optimum design problems are necessary.

In this paper, a problem is considered to determine simultaneously the optimum
value of failure probability and structure when the costs caused by failure of the structure
are specified. For this purpose, defined is the expected total cost which is taken as a
sum of the structural cost and the expected costs due to failure of the structure. An

algorithmic procedure is developed and numerical examples are presented.
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2. Statement of Problem

Consider a structural system in which safety margins of failure modes are described
by a linear combination of the resistances of elements and loads acting on the structure.
That is, the safety margins of failure modes are given by

n 1
Z; = ZayR; — X byl (i=1,2,,m), (1)
j= j=
where R; = structural resistance of the j-th element,
L; = load acting on the structure,
a;; = resistance coefficient determined by the position and condition of the

j-th element related to the i-th failure mode,
b;j = load coefficient determined by the position and magnitude of the j-th
load related to the i-th failure mode,

n = number of structural elements,
! = number of loads,
m = number of failure modes.
Failure of the structure occurs if any value of Z; (i =1,2, --,m) is negative,

ie., any one of failure modes happens. When structural resistances, R;’s, and loads,
L;’s, exhibit statistical variations and thus they are treated as random variables, safety
margins, Z;’s, become also random variables. Hence safety of the structure must be
evaluated in statistical terms. Let F; be the event of failure of mode i and 1:;, survival
of mode i. The failure probability of the structure can be written as

P; = Prob (Fy) +Prob (Fy N F;)+Prob (F; NFy NF3)+ -
+Prob (FyNF,N---NF,_{NF,)

1—Prob (FyNF, N NFy). ()

Structural resistance, R;, is a function of dimension of the element, A;, such as
cross-sectional area and strength of the material, Cy;, (e.g., yield stress) to be used,
both of which are in general ‘rzindom variables. However, only Cy;’s are treated as
random variables in this paper, while A4;’s are given as deterministic variables. As the
design variables, the resistances of structural elements are adopted, and the dimensions of
structural elements are assumed to be determined by the mean values of structural
resistances and strengths of the materials, R—, and C_y-, ie.,

4; = 4; (R;, Cyy). ®3)

The structural cost is a function of the dimensions of structural elements when the
materials to be used are specified, and thus from Eq. (3) it can be written as

He = He (Ry, Ry, =+, Ry). 4)
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Now consider the case where failure probability P is determined by specifying only
the mean values of structural resistances, Ei’s, if the probabilistic natures of the loads,
L_j’s, are given. Such a case is experienced when R;’s are Gaussian random variables
with known coefficients of variation.

Let Hy(Pr) denote the expected costs caused by failure of the structure, such as
cost of reconstruction, cost of compensation, cost due to loss of social prestige, etc.,
when failure probability is Py.

The expected total cost Hp is defined by

HT = HC + Hf(Pf) (5)

The problem to be considered is as follows:
PROBLEM “Given the configuration of the structure and the materials to be used,
determine the structural resistances, Ej’s, to minimize the expected total cost.”

It should be noted here that by solving the problem the optimum value of failure
probability, or alternatively reliability, of the structure is determined together with the
optimum structure.

3. Solution of Problem

It takes much time to calculate multi-dimensional probability distribution functions
for evaluating failure probability of the structure, P, in Eq. (2). Further probability
thus evaluated is an approximate one, using any method so far developed for calculating
multi-dimensional probability distribution functions. Thus, it is desirable to employ a
search method to attain the optimum solution without using the derivative of Py, which
requires much processing time and may result in accumulation of errors. For the
purpose, consider a subproblem:

SUBPROBLEM “Specified the allowable probability level, Py,, determine the optimum
values of the resistances, R;’s, to minimize the structural cost, Hc, under the constraint:

Pr < Py 6).”

This subproblem is equivalent to the problem treated in the previous paper,!®:11

and can be solved efficiently by the algorithmic procedure proposed previously. An

important property of the solution to the subproblem, which will be proved in the

following section (see LEMMA 1), is that the solution to the subproblem is attained on

the boundary, ie., Pr = Pr. Consequently, the solution to the original problem is

obtained by sequentially solving the subproblem. The algorithmic procedure is given as

follows:

Step 1: Specify the initial value of Pg,.

Step 2: For the given value of Pg,, solve the subproblem and calculate the expected
total cost corresponding to the optimum solution thus obtained. If optimality
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condition for the original problem is satisfied, stop the calculation. Otherwise,
go to Step 3.

Step 3: Applying a uni-dimensional search technique,13) the value of Py, is adjusted so
as to minimize the expected total cost, Hy. Go to Step 2.

The flow chart for the above procedure is given in Fig. 1, and the mathematical back-

ground is given in the next section.
START

Specify Ppy

!

Solve SUBPROBLEM
min -Hp

under Pr < Pp,

!

Adjust Pfa HT:HC+ Hf(Pf)

Fig. 1. Algoﬁthmic procedure for solving problem.

4. Mathematical Background of Algorithmic Procedure

Let the design variables be expressed by n-dimensional vector R =(R,R,, -,
R)T  andits design space be a subspace of n-dimensional Euclidean space E", ie.,
I' CE™, where superscript T means to take transpose of vector. The structural cost,
He, and failure probability, Py, is a function of the design vector R, and thus they
are rewritten as

HC = Hc(R), Pf = Pf(R) for ReET.

In structural systems, the structural costs increase in general as the design variables
are taken to be large, while failure probabilities decrease for the cases considered. Hence
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the following conditions are satisfied in general:

(C1) He(R) is componentwise increasing, ie., for some jE€ [1,2,- "+, n]
and for any R' and R? €T suchthat R? — R'= (R} —Rj)e>0,
Hc(R) is increasing along [R',R*]. e isa n-dimensional unit vector
with the j-th element of unit and all others of zero.

(C2) Pr(R) is componentwise decreasing, i.e., Pr(R) is decreasing along [R',
R?] asdefinedin (C1).

The following lemma holds for the solution to SUBPROBLEM :
LEMMA 1: The solution to the subproblem is attained on the boundary of the pro-
bability constraint, i.e., Pr(R*)=Pp,.

PROOF. For any vector R contained in an open set:
G A [RIP(R) < Ppl,

iie., R! €G, there existsa number ¢ >0 which defines the e-neighbourhood of R!:
0.(R") A [R|IR'—=RI<e] CG.

Consider a vector R® whose elements R;’ are identical with those of R! except the

i-th element, i.e.,

R?=Rtl_e/2y R;):R]l (]=1,2,,n,]$l),

and which satisfies
R € 0. RY) CQG.

From the condition (C1), the following inequality holds between the structural costs
corresponding to R and R!

Ho(R'Y) > Ho(R®).

Consequently, R' can not be an optimum solution to SUBPROBLEM (q. e. d.).
For the expected total cost, the following lemma holds:

LEMMA 2: If the failure probability, Py, is specified to be Pr,, the expected total
cost, Hp, is minimum for the solution to the subproblem.

PROOF.  For the specified value of Pr, the second term of Hyp is constant, ie.,
Hy(Pr) = Hy(Py,) = constant. Then

H.(P.) A min Heo+ He (P
7(Pra) A REF’szpfa[ ct He(Pp)]

min Heq+ Hf(Pfa)
RET,Pr=Pg,

= min He+ He(Pyp) .
RET,Py<Py,
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The last relation follows from LEMMA 1 (g. e. d.).
From LEMMAs 1 and 2, the following lemma concerning the solution of the original
problem holds:

LEMMA 3: The solution to the original problem is obtained by sequentially solving the
subproblem.

PROOF. From LEMMAs 1 and 2, the following relation results:

Hep,y & min Hy & miin Hp (Pra)

= min | min (He + Hp(Pp)) ]
Pfq RET,Pr=Pgy

= min [ min He+ Hf(Pfa) ]
Pfa RGF,Pf=Pfa

= min | min He+ He(Prr)] (g ed).
Pfg RET,Pr<Pp,

Denote the structural cost corresponding to the optimum solution of the subproblem
for a specified value of Py, as. HZ (Pp,), ie.,

HA(Pe,) = min Ho(R
c( fa) RGF,Pf(R)SPfa C( )

The following lemma holds:
LEMMA 4: HJZ(Py,) is a decreasing function of Pp,.

PROOF. For the specified values of the allowable failure probability such that P}a <P;a,
consider the corresponding feasible regions:

F'A [RIP(RY<PL], F*A[RIP(R)SP,].
The condition (C2) yields

F!' C F*.
Hence HE (Pfla) > HE (P;a)

from LEMMA 1 (q. e. d.).
Finally it is clear from LEMMA 3 that the following proposition holds concerning
the algorithmic procedure for solving the original problem:

PROPOSITION: The solution to the original problem is obtained by the procedure given
in Section 3, performing uni-dimensional search with respect to the allowable failure
probability.

It should be remarked here that the algorithm does not always work well if the
expected total cost, Hp, is not unimodal with respect to the allowable failure pro-
bability; Pg,. In that case, optimization should be started from a number of initial
values of Py,, and search for the global minimum is to be carried out since the solution
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from any one initial value may be a local minimum.

5. Numerical Examples

5.1 Design of three member statically indeterminate truss
Consider a plastic design of an statically indeterminate three member truss structure
shown in Fig. 2. The failure of the structure occurs when any two members among three

Fig. 2. Three member statically indeterminate truss.

collapse. Thus the following three fajlure modes are considered as primary modes of
failure and their safety margins, Z;’s, are given by

i) Members 1 and 2 collapse both in tension:

V2 V2, V23 +1)
v 2

Z, =R, + R, +

2 2 L2 2 (7)

ii) Members 2 and 3 collapse both in tension:

22 = —\/sz +R3— \/ELI — \/5(\/5_])
2 2 4

LZ ) (8)

and #ii) Members 1 and 3 collapse in compression and tension, respectively:

Z3=\/2§R1+\/25R3—L1+%L2- ©)

The failure probability of the structure is calculated as

Py = Prob(Z, <0) + Prob(Z; >0 N Z, <0)+Prob(Z, >0N Z, >0N Z; <0)
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In this example, the resistance of the member, R;, is related to their respective cross
sectional area, A;, and yield stress, C;, as

Rj = Cy; 4;. (11)
The structural cost is given by
3

Hg = X Cmjdjlid;, (12)
]:

where  C,,;= material cost of the j-th member per unit weight,
d; = specific weight of the j-th member,

and }; length of the j-th member.

The expected loss due to structural failure is given by
Hf(Pf) = CfPf. (13)

Consider the case where the resistances of the members, R;’s, and the loads, L;’s
are independent Gaussian random variables and the coefficients of variations, CVg; and
CV.j, and the means of the loads, L_j, are given. Then the failure probability of the
structure is determined by specifying the mean value of the strengths, 15,-.

For example, when the cross sectional area, A4;, is deterministic variable and the
yield stress, C);, is Gaussian random variable with known mean, C_yj, and coefficient of
variation, CV,;, the resistance of the j-th member, R;, becomes Gaussian random
variable with the coefficient of variation equal to CV,; as seen from Eq. (11). Con-
sequently, A;’s are determined as 1?,-/ C_yj. Further the safety margins given by Egs.
(7)—(9) become Gaussian random variables, and thus to evaluate failure probability, Py,
three dimensional Gaussian distribution functions need to be calculated. For the

12)

purpose, the method developed in the previous paper “’ is used. Data concerned are

listed in Table 1.

Table 1. Data concerned for three member truss.

i lj in CVgj Cyjksi Cpmjd;$/in® Likips  CVp;

1 60v2 0.05 40 0.03 100 0.2

2 60 0.05 40 0.03 150 0.2
60v2 0.05 40 0.03

Fig. 3 illustrates a search procedure in Steps 2 and 3 given in Section 3, using the
quadratic approximationl3) for the case of Cr = 1038.

The optimum solutions are listed in Table 2 for various values of Cy. As the value of
Cr becomes large, ie., the cost due to failure of the structure becomes large, the
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H7.(Pg)
17.70¢

Cf= 102§

17.661

17.62

s
-

(7)) U,

[=2%
~3
[v]
o
—
o
—_
—

Pry (x107%)
Fig. 3. Sequences searching for optimum failure
probability using quadratic approximation method.

Table 2. Optimum solutions for various values of Cf (three member truss).

Cs$ | R,kips  R,kips R, kips Pf HQS | HZS
10° 70.0 132.0 62.4 9.64x10°* | 1471 | 15.67
10° 89.2 140.0 70.4 7.79x107% | 16.85 | 17.63
10° | 105.2 146.8 76.8 6.79x107* | 18.61 | 19.29
10° | 119.3 152.8 82.4 6.16x 107 | 20.15 | 20.77
106 | 132.0 158.0 87.2 571x1077 | 2155 | 22.13
H, HY
$
Py
1072 22 {
HC //g
V H,
10-* 20 <
1074 18 /
10°% 16 -
Y X
v r
10°¢ 14 \
1077 12
107 10° 10° 10 10°
s

Fig. 4. Effect of cost due to failure of structure on optimum
solution (three member truss).
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optimum failure probability becomes small, while the structural cost becomes large.
This fact is also schematically shown in Fig. 4.

5.2 Design of thirteen member statically determinate truss
Consider a plastic design of a thirteen member statically determinate truss shown in
Fig. 5. The safety margins of failure modes are given by

Fig. 5. Thirteen member statically determinate truss

(,=V31,, ,=/6-2V61,, I, =100 in).

z, = R, —09186L; —0.6124 L, —0.3062 L3
z, = R, —03029L, —0.6058 L, —0.3029 L,
z; = R; —0.5303L, —0.3535L, —0.1768 L,
zs = R, —1.0000L,

zs = Rs +04186L; —0.3876 L, —0.1938 L,
z¢ = Re —0.1835L, —0.3670 L, —0.1835 L,
z, = R, —0.3062L, —0.6124 L, —0.9186 L, (14)
zg = Rg —0.3029 L, —0.6058 L, —0.3029 L,
zy = Ry —0.1768 L, —0.3535 L, —0.5303 L,
Zw = Ry —1.0000 L,
Zy = Ry —0.1938 L, —0.3876 L, +0.4186 L,
Zy2 = Ry —0.5303 L, —0.3536 L, —0.1768 L,
Zy3 = Ry3 —0.1768 L, —0.3536 L, —0.5303 L .

Failure probability may be evaluated by Egs. (2) and (14). However, dimension is
too high to exactly calculate it, and thus the approximate formula developed in the

1) will be applied in the following calculations.

previous paper
The structural cost and the expected loss are assumed to be given in the similar
manner as in the previous example.

The resistances of structural elements and the loads acting on the structure are
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assumed to be independent Gaussian random variables. The data concerned are listed in
Table 3.

The optimum solution for some values of Cy is given in Table 4. It is seen that the
optimum structure is of symmetric form. The minimum expected total cost for the given
value of the allowable failure probability, H7 (Py,), is plotted against the allowable
failure probability, Pp,, in Fig. 6. It is interesting to note that the minimum expected
total cost is not so sensitive to failure probability in this case, which is also true in the
previous example as shown in Fig. 3.

Table 3. Data concerned for thirteen member truss.

CVrj CVyj Conjd; Ljkips Cvy,

0.15 40 0.01 20 0.15

Table 4. Optimum solutions for thirteen member truss.

Cr R, R, R, R, R, R, Py, HZ  HJ

10 95.63 67.10 59.23 58.08 17.00 40.71 | 2.15x10°* | 25.11 27.26
10° | 116.01 81.35 72.37 70.17 20.52 49.45 | 2.70x10°°5 | 30.43 33.13

ﬁx :R_7’ Ez :Esx §3:R9:1€12:§13’ §4:§10’ Es =1€u kips

1] Ll
HS HE
34.0

HE (Pr)=HZ (Ps,) + He (P fr

30.0 r G =He Fra) * Hy (Pra) 10.0

He(Pg,) =10* x P

il L 3.0

26.01 i 6.0

| HE (Pga) | 4.0

22.01 | 2.0

3 i ‘ i 0.0

10-5 1074 10-3

Fig. 6. Minimum expected total cost and minimum structural cost plotted
against allowable failure probability (thirteen member truss).

6. Conclusion

An optimum design problem is considered to minimize the expected total cost
defined as a sum of the structural cost and the expected loss caused by failure of the
structure. A feature of this problem lies in that the optimum value of failure probability
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is determined together with the optimum values of the structural elements. A method is
proposed to solve the problem by applying stochastic programming and a uni-dimensional
search technique. Numerical examples are presented to illustrate the design procedures.
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