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   Maximum Likelihood Estimation of Location
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Hidetoshi NAKAyAsu", Ken'ichi MoRi"* and Shigeo KAsE"*

(Received November 15, 1977)

    This paper is concerned with the problern of rnaximum 1ikelihood estimation of the

location and scale parameters in some distribution from･multi-censored samples. The

estimation procedure performed here gives:

(1) general formulae of calculating maximum 1ikelihood estimators for the location-

    scale type distribution from multi-censored samples,

(2) asymptotic variance-covariance rnatrix ofML£stimates and                                          '(3) method of determining the confidence regidn fbr location and scale parameters by

   the iikelihood ratio test theory.

A numerical exarnple using CFRP fatigue test data illustrates the proposed method in

case where it is applied to multi-censored samples.

       N
1. Introduction

   Studies on the maximum 1ikelihood estimation problem from censored sampies have

been made by Coheni), Wingo2) and many other researchers. Their approaches, however,

are based on some specified distributions, i.e., normal, log-normal, Weibull and others,

and the procedures derived are oflimited use. In terms of censored type, few approaches

have treated multi-censored samples.

   The principal reasons why we discuss maximum likelihood estimation of location and

scale parameters from multi-censored samples are as follows:

(l) In life testing the censored sample arises frequently at various stages, and

(2) The general formulae of calculatingML-estimates forlocation-scale type distribution

   do not prevail which appears frequently in the field of life testing.

As a numerical example for iilustration of the proposed method, its application to multi-

censored sample from CFRP fatigue test data is discussed.

                         2. Multi-censoredsamples

    Let N be the total number of specimens, and n the number of failure specimens.

Suppose that censoring occurs in k stagesat time 7}(> 7}-i), U=1,2,3,''',k)

and ts surviving specimens are removed (censored) from testing at i-th stage. Then we

have

* Graduate Student, Department ofIndustrial Engineering, College ofEngineering.

** Department ofIndustrial Engineering, College ofEngineering.



112 Hidetoshi NAKAYASU, Ken'ichi MORI and Shigeo KASE

                           k
                  N=n+ .Z ts., (1)
                           1=1 .
There are two types of censoring: In type I censoring, which is of primary interest here,

7} is fixed, and number of survivors at these times is random variable. In type II

censoring, number of survivors is fixed and 7> is random variable. ri is independent of

life span x.

   When failure times xi (i = 1,2, 3,''',n) are observed, the likelihood function L

for type lmulti-censored sample becomes . .,

              nk       L = C,".,f(Xi; ,e) ifl.,[1 - F(7}f; e)lri , ･ - , (2)

where

            C : normalizingconstant,

           e : parameters,
           f(x) : probability density function (p.d. f.), and

           F(x) : cumulativedistributionfunction (c.d.f.).

         3. Maximum likelihood estimation based on multieensored sarnples

3.1 Loeationscaletypedistribution

    Location-scale type distribution which is widely used to repr,esent the statistical

interpretation of lifetime is defined as3)

       dF[(x-b)/a] == f[(x-b)/a]d[(x-b)/a], (3)
                                                            '
where a and b denote scale andlocationparameters,respectively. By thetransforma-

tions

            x-b       Y= ,･, , gly) :lnf[(x-b)/a],
                                     , (4)
             T-b                  , and ･ h(Y) : ln [1 - F(Y)] ,        Y=
              a

 likelihood function, Eq. (2), is written by

                nk       L = ,g ,".,exp [g (yi) ] ifi.,exp [ h ( Y))] ･ (5)

 Taking logarithm of Eq. (5) except constants, we have

                                                                '               n 'k '       lnL == -Zg07i) -nina+ .Z r?h(Y}). (6)
              i--1 J=1
 Differentiation of Eq. (6) with respect to a and b enables us to obtain likelihood equa-

                                                               ' tion such as
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       ,Z.,g' (IYi) + iZ., ts h'( }')) == O , (7 .a)

                                                          t/                                                 'and

       ,Z.,yig' O'i) +n+iZ., ts y}h'( y})= o, (7-b)

where prime means the differentiation with respect to y or Y. The solutions of

simultaneous equation (7) give ML-estimates of a and b.

3.2 Asymptoticvariance£ovarianoematrix

   The asymptotic variance-covariance matrix for the above ML-estimates, a and b",

can be derived from Fisher's information matrix3). The

estimates for location and scale parameters

     , o2 inL o2 inL
                         Oa2 aaOb

            I= -E                        o2 1n L o2 in L

                        abOa ob2

may, from Eq. (6), become

            nk ,n k           ,£.,g;" - iZ.,tsh7' .,Z.,yig;1 + iZ.,
         i
   Ir -liT, iz.n,yig;, + iz.k,4 n h}t ･,Z.",y?･ giY - n

where

                  gi" : g" (lyi)

and

                  hi" - h"(y)).

Hence, inversion of the matrix, Eq. (8-b) gives asymptotic

in.the form:

                          '                n ･k nk          , ,Z.iyi2 giJ'.L,n +iZ..,,:i,hY -,Z.,yig;･' T-i2.,,,:i y}h;･'

   V ==

        detl n k n k               ", £. ,yigl" - iZ. ,ts Y} h;' ,Z. ,g;･' - iz. ,G h;'

                        -A
3.3 Confidence region of a" and b based onlikelthood ratio

   In order. to determine the confidence region ofML-estimates aA

the likelihood ratio test theory. I.et Ho be the hypothesis

information

ts ny hJ'

   k
' ･£ bh7
  1=1 a

b

matrix

A
a
s

vqrlance-q,ovarlance

a=ti.

b=b
.

and b"
,

'

of ML-

(8-a)

(8-b)

mat.nx

(9)

consider
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                                   '

                  Ho: er= ero, (10-a)
against the alternative one

                              '
                  Hi: er #ero, ' (10-b)
where

           e, : parametersofunderlyingdistribution,

           e,o : givenparametervalues in Ho, and

           r : numberofparametersin Ho.

Since there is no general UMP (uniformly most powerful) test in this case, it is usually

convenient to utilize the likelihood ratio.

   From the value defined by

           j", == [e,lmaxL(e,o,e,)], (11)
                      es

likelihood ratio is written as

            x.. L(e,,, e",). (12)
               ･ L(e)

The statistic -2 log X lies in the region (O, oo) and is asymptotically distributed in X2

form with r degrees offreedom3). Therefore, (1 - e) confidence set results in

            e,= [e,ol-2 1ogXS x,2 (e)], (1 3)

and (1 - e) asymptotic confidence region of a and b must satisfy the relation

            L(a, b) sg exp[- X;2(e)l･L(a", b"). (14)

               4. Applioation to double exponential distribution

4.I Estimationprocedure .
    Double exponential distribution which is a type of extreme value (asymptotic

smallest value) distributiQns belongs to location-scale family. The estimation method

in section 3 can be applied to this distribution as an example of location-scale type.

 Its p.d.f. and c.d.£ are

            f(x) = -ltr exp [( Xib)-exp(Xib)] , (is-a)

 and

                                  x-b                                       )] , (15-b)            F(x) == 1 - exp[-exp(
                                    a
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 respectively, whose mean and variance are given by

            pt :b - a7,

 and (7:Euler'sconst.,O.577･･･) (16)
            o2 = rr2a2 .

                   6

    The transformations corresponding to Eq. (4) are

                x-b
            y: , , gtv) =y - exp (y),
                                   i , (1 7)                 T-b
            y=                       , and h(Y) == -exp(Y).
                  a

Likelihood function and its logarithmic form can be easily derived from Eqs. (5) and (6)

as

       L = .C. exp[iZ.",yi - ,Z.",exp o,i)-iZ.k,,:i exp(y]i)], (is)

and

                          nn k       inL == ln C-nlna+ .Z yi - Z exp (]yi)- Z                                              ts exp (#). (1 9)
                                i--1                          1=1                                           i--1

The differentiation ofEq. (17) with respect to jv and Y yields

       gl･ =1- exp O,i), g;' =: -exp (7i),
                                                                (20)
       h;･ = -exp(ny), and h;･' == -exp(U).

Thus, likelihood.equation is reduced to the following simple simultaneous equation :

       na +iZ.i(xi -b) - Z" (xi-b)exp( Xiib) == o, (21.a)

and

       --il-+-2- £*exp(Xiib)=o, (2i.b)
where Z* signifies summation over the entire ?V observations, and

   Z"(xi -b)6 exp ( Xiib) == iz."i(xi -b)6 exp ( Xiib)

                              k                           +iZ.p(7] -b)6 exp(-LTLi;-eLb ), (6 == o, 1,2)

                                                                (22)
                         'and

       z* exp ( Xii b) == iz."iexp ( Xiib) +iziu exp (--iT-zz-Lb ) .
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   From Eqs. (9) and (20),

is written in the form :

V == (i).-!
a      b=b

the asymptotic variance-covariance matrix of MLestimates

    n
A.,

' (detI)a=a
        b=b

i2

i-s
aA

     -A    x-b
      d

a"2 + ! Z*(xi- b")2 exp( Xi .- S ) (23)

Further the confidence region by use of likelihood ratio can be obtained by the same

procedure as described in section 3.3.

4.2 Numerical calculation method of likelihood equation

   It has been shown in the previous section that maximum likelihood estimators are

given by Eq. (21). After a little reduction, this simultaneous equation can be rewritten

as the simpler form :

                £"xi exp (liLt) '- .,

                 £"exp(ii)

and

            b=a[ln Z"exp (it)- ln n], (24-b)
                            '                                                     '
where

       z*xi exp (-l!Lt) = iZ." ', xi exp (it)+iZi tr 7} exp (-Z)t),. (2s-a)

           '
and
       Z"exp (::Lt) = i;, exp (it)+ iZi ts exp (?). (25-b)

Because Eq. (24-a) is free ofparameter b, this estimation procedure may be initiated

from solving Eq. (24-a) with respect to a. Since Eq. (24-a) is non-linear in a, however,

it can not be explicitly soived but requires numerical methods to calculate the estimates.

For this purpose, the following procedures of evaluating Eq. (24-a) can be considered:

(1) Construct a recurrence equation for a.

            ...1 = £"XieXP(ijllti) - .- (m ,. o,1,2,･･･) (26)

                     z*exp(tV.)

    which is derived from Eq. (24-a) and gives the ML-estimate a as a convergent

    solution of a.. Since successive solution of Eq. (26) shows usually oscillating

    behavior, substitute a modified approximation such as
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                 '            r m am +1 +am                 -2 . ., (27)           am+1

   into a. in the right-hand side ofEq.(26). '

(2) Apply Newton-Raphson's method to

                       z *xi exp (7t) -

           f(a) =a -                                    +x == O, (28)                        2* exp (it)

   then we have a".

Another estimate 5 is also easily obtained by substitution of a" into Eq. (24-b). Ilhe

momentestimators for a and b are

               vgs,

and

           b= i'+a7, (29-b)
                     .z tsn '

           i'=x-+'=k' , (30-a)
                     iZ.,ri

and

       s' = [ -jlt ,Z.",(xi - x-')2 + iZie'(77 - x")2 1i£, ts ]g. (30-b)

The estimate a" in Eq. (29-a) may be used as an initial value in Eqs. (26) and (28).

                  5. An example in CFRP fatigue 1ife testing

   Let double exponential distribution mentioned in section 4 be assumed as a lifetime

distribution of CFRP, then the estimation procedures in section 4 give ML-estimates,

variance-covariance matrix and confidence region.

   Table 1 shows observed data4), and each observed value presents the number of

cycles to fatigue failure. Total number of specimens exposed to life test is 59 (N == 59),

in which ri and r2 are numberofspecimenscensoredattime Ti and T2 (Ti ==1.44

and 712 = 3.31), respectively. Throughout the life test, qumber of failure specimens

is 18(n=18). ･
   Table 2 stands for the calculation results of estimates of scale and location para-

meters, (a, b). In this table, (a"o, 6o) are the initial values used in numerical calculation

which are obtained by themoment method. (di,Si) and (a"2, 62) are ML-estimates

obtained as solutions of the likelihood equation Eq. (24). (a"i,6i) calculated by a

recurrence equation Eq. (26) coincide with (a2, b" 2) which are the results by (2) in
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Table 1. Uni-CFRP fatigue test data at stress level 90 kg/mm2

(pulsating load type)

i xi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 O.30 (× 104)

 O.44

 O.63

 O.70

 O.93

 1.02

 1.03

 128
 1.34
-i16-6-"- Ti

 1.76

 1.77

 1.80

 2.22

 2.83
'g:s-i--- T,

10.94

14.50

* Censoredsampie

  T, =1.44
  ri = 22
  T, = 3.31

  r, =19
 (N =59, n= 18, k=2)

Table 2. ML£stimates

a, = 4.31798

b, = 7.79750

4
,
b
,

= 3.7965 1

= 8.58636

a, =3.79651

S, = 8.58636

section 4.2. However, procedure (1) prefers to (2) because calculation of estimates by

the former converges faster than by the latter. Furthermore containing the evaluation of

derivative, calcu!ation in (2) is more complicated than that in (1). Consequently, the

processing time required for the former calculation becomes less than the latter. It is

also seen from the table that moment estimates (ao, 6o) which are taken for the initial

values in numerical calculation are fairly different from ML-estimates.

   The asymptotic variance-covariance matrix of MLestimates (ai, b"i) is given in

Table 3. The confidence region by likelihood ratio is illustrated in Fig. 1. This figure

clarifies that the MLestimates are within the narrower confidence region compared to

that from moment estimates.

   Table 4 represents the comparison between observed probability and theoretical one.
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Table 3. Variance-covariance matrix

Vn
V21

O.O0349

-O.07253

Vn=
V2a =

-O.07253

2.33922

Table 4. Comparison between observed probability and

theoretical probab ility (N = 59, n = 18, k = 2)

i xi Obs. prob. Theor. (i) Theor. (ii)

 1
2

3

4

5

6

7

 8.

9

10

11

12

13

14

15

16

17

18

 O.30 (x i04)

 O.44

 O.63

 O.70

 O.93

 1.02

 1.03

 1.28

 1.34

 1.66

 1.76

 1.77

 1.80

 2.22

 2.83

 8.83

10.94

14.50

O.O16667
O.033333
O.050000
O.066667
O.083333
O.100000
O.ll6667
O.133333
O.150000
O.179762
O.209524
O.239286
O.269047
O.298809
O.328571
O.546825
O.765079
O.983333

O.106614
O.110390
O.115714
O.117735
O.124611
O.127401
O.127715
O.135790
O.137797
O.148967
O.152623
O.152993
O.154108
O.170508
O.197102
O.655713
O.844151
e.991330

O.145251
O.166698
O.197848
O.209851
O.250952
O.267612
O.269480
O.317008
O.328592

O.390773
O.410157
O.412090
O.417883
O.497221
O.602893
O.979051
O.993089
O.998946

5.5

5

4.5

g
ga 4g
･

2
st 3.5

3

2.5

O.5

O.8

x

o

1-e=O.9

o ML£stimates

x Moment estimates

5 6    7 8 9 10 11             u
     locationparameter u

Ftg. 1. Confidence regionofestimates

12
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The observed probabiiity is calculated by the median rank method in [4] , while there

are two selections of parameters for calculation of theoretical probability: (i) ML-

estimates a" i and b" i obtained in consideration of multi-censored sample, and (ii)ML-

estimates calculated only from failure times xi (i = 1,2,3,''･,n). As seen in Table 4,

the theoretical probability (i) agrees better with the observed probability than (ii).

                              6. Conclusion

   An established procedure of ML£stimator from multi-censored samples is success-

fu11y proposed. Furthermore a calculation method of variance-covariance matrix and a

determination procedure of confidence region for ML-estiamtes are also derived from

the likelihood theory. A feature of this present method lies in its potentiality to propose

the general formulae of estimating location and scale parameters from multi£ensored

samples. A numerical example of CFRP fatigue test data as a multi-censored sample

suggests that present method is applicable to analysis of life test for other materials.

1
)

2
)

3
)4)
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