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An Algebraic Approach to the Composition of
Multi-valued Logical Functions

Yoneharu Funta* and Fujio NISHIDA*

(Received June 4, 1977)

This paper describes some algebraic properties of multi-valued logical functions
and then shows an application of the properties to the minimal expression problem
of logical functions. The relation of homomorphism of logical function is intro-
duced. It is shown that the homomorphic relation is preserved by compositions of
functions. Both a set of directed graphs which represent feed-forward logical
circuits and an equivalence relation on the set are introduced. It is also shown
that using the equivalence relation and the homomorphism, minimal expressions
of multiple-valued logical functions are derivable from the minimal expressions of
the simpler functions. Finally, an example is shown in which two minimal ex-
pressions of a two-valued logical function yield 12 minimal expressions of four-
valued logical functions by the aid of the derived theorem.

1. Introduction

From an algebraic viewpoint, a logical function is considered as a mapping from
a Cartesian product of a truth set M to M. From this point of view, the problems
related to the composition of logical functions are important. The problems of the
completeness of functions are studied by many tesearchers”:?+®, On the other
hand, the problems of compositions have not yet been studied so much®-¥. With
regard to the relation between internal structures of functions and those of their
compositions, few authors have investigated such a problem described in this paper.
The authors introduce here the concept of homomorphism of logical functions and
further, both a set of directed graphs which represent feed-forward logical circuits
and an equivalence relation on the set. Using the equivalence relation and the
homomorphism, the authors show that the minimal expressions of multiple-valued
logical functions are derivable from the minimal expressions of the simpler functions.

2. Definitions of Fundamental Concepts

This chapter describes the definitions of logical functions and methods of
expressing both logical functions and their compositions. Furthermore, some
propositions derived from the definitions will also be shown.

Let M be a finite set and M " be the n-th order Cartesian product of M. 4(M)
denotes the number of elements in M.
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[Definition 1] An n-variable logical function f on a set M is a mapping from
Mmto M. '

In this paper, two-variable functions are considered mainly, therefore the term
“function” means a two-variable function. The function f:M:*—>M or f(x, y) will
be used to represent the function described above.

Let us write the pair of the set of functions F and the truth-set M on which the
elements of F are defined, in parentheses as (F, M) and call it a function system.

To define the composition in a convenient form, we consider a type of acyclic
directed graphs which satisfy the following three conditions:

(1) The graph C has k+2 (k=1, 2, 3,...) nodes, where two of them have the
incoming degree 0 and the others have the incoming degree 2.

(2 Among the nodes of incoming degree 2, there exists only one node of
outgoing degree 0.

(3) The two arcs incoming to each node are distinguished as x-arc and y-arc
corresponding to the representation f(x, y).

Such a graph mentioned above is shown in Fig. 1.

Fig. 1. An example of a directed graph.

In Fig. 1, Z(C) denotes the number of nodes of C minus 2. Hereafter, the
term “‘graph” will mean the acyclic directed graph mentioned above. If a function
is assigned to each of the nodes of incoming degree 2, a feed-forward logical circuit
is obtained. This circuit will realize a new function. Let us denote this function
as Cf(x, y) or Cfin short.

[Definition 2] A composition of a function f(x, y) is Cf(x, y) and the form of
composition is C.

Let P” be the set of graphs which satisfy 1=z(C)<n, and let S be a set such
that S= {f’|f'=Cf, CeP"}, then each of the two variable functions is considered as
a mapping from P" onto S.

[Definition 3] Let “f™ denote a equivalence relation induced on the set P* by
J:P"—S, then the two grz;phs Ciand C: in the relation Cy f C; are called f~equivalent.
In other words, C1 f Czis C1f=Csf.
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[Definition 4] N(f") denotes the number of the two variable functions which are
composed of k fs, where 1=k=n.

[Proposition 1] Let P*/f denote the quotient set of P* by the equivalence relation
6 _f”, then

N(f=¥P"[f) 6]
holds, where #(P"/f) denotes the number of elements in the set P"/f.

It is said that f:M2—M and g:M’?>—>M’" are isomorphic, if $(M)=4#(M’) holds
and there exists a mapping 7 from M onto M’ such that

T(f(x, y))=g(T(x), T(»))

holds for any x and y in M. It is clear that if fand g are isomorphic to each other,
then N(f")=N(g") holds. To generalize the discussion, we newly introduce the
idea of homomorphism of functions.

[Definition 5] Let £, g and T be f/:M*—M, g:M'*~>M' and T:M — M’ respectively,
where T is an onto mapping. The function f is homomorphic to g if T(f(x, y))=
g(T(x), T(»)) holds for any x and y in M.

The relation T(f(x, »))=g(T(x), T(y)) may be written as Tf(x, y)=g(Tx, Ty)
or Tf=gT for simplicity.

[Definition 6] If a function f:M2— M is homomorphic to a function g: M"*—>M’
by a mapping 7, then the system ({f}, M) is said to be homomorphic to the system
({g}, M’) by T and relation is written as ({f}, M) T ({g}, M’). Furthermore, if T
is a one-to-one mapping, then ({f}, M) and ({g}, M’) are said to be isomorphic
to each other and the relation is written as ({f}, M) T ({g}, M")

Let F be the set of all of the 2-variable m-valued functions.

[Definition 7] A two-variable m-valued function f is said to be complete if and
only if its feed-forward compositions generate all of the elements of FZ.

[Proposition 2] A function feF7 is complete if and only if there exists a natural
number » such that §(P"/f)=m™* holds.

[Definition 8] A function f:M2— M is said to be closed if there exists a nonempty
subset D of M such that for any x and y in D, f(x, y)eD holds.

[Definition 9] A function f:M?*—M is said to be decomposable, if there exists

at least a decomposition M(1), M(2), ..., M(n) such that LnJ M@H)=M, M@{EN
i=1

M(j)=¢ and for a number i at least, $(M(i))>1 holds, and furthermore if for every
(i, /) (1<i, j<n) there exists k(1<k<n) such that for any elements (x, ¥)e(M(i),
M())), f(x, y)eM(k) holds. '

3. Completeness and Homomorphism

Let us investigate some relations between completeness and homomorphism or
isomorphism.
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[Theorem 1] If ({f}, M)I ({g}, M') holds, then TCf==CgT holds for every C
in P~

(Proof) Suppose

T(f(x, y)=g(T(x), T(»))- @
Furthermore, suppose there exist two function F(x, y) and G(x’, y") such that

T(F(x, y))=G(T(x), T(y)) 3)
holds for every (x, y) in M?2, then

T(F(x, y), y)=G(T(f(x, y)), TO)=G(&(T(x), T(»), T(y)), @

T(F(x, f{x, y))=G(T(x), T(f(x, y)=G(T(x), g(T(x), T(»))) )
and T(F(f(x, ), flx, yN)=G(T(f(x, y)))

’ =G(g(T(x), T(y)), &(T(x), TO)) (6
hold. From Egs. (2), (3), (4), (5) and (6), the theorem is evident by the mathematical
inductions.

This theorem shows that the composition preserves the homomorphism. The
next theorem shows a relation between the completeness and the homomorphism.

[Theorem 2] Suppose f:M:*—M is homomorphic to g:M?—M' and $(M)>
#(M’) holds, then f is not complete.

(Proof) Since f becomes a decomposable function, it is not complete?.

Since an isomorphism is a renaming of truth values, the next theorem is obtained
directly.

[Theorem 3] If ({f}, M)T({g}, M’) holds, then both f and g are cither com-
plete or incomplete.

The next theorem gives a sufficient condition of the incompleteness of a function.

[Theorem 4] If an additional condition ({f}, M)U ({g}, M') holds in Theorem
3, then both f and g are incomplete.
(Proof) From the above assumption,

Tf(x, y)=g(Tx, Ty) @)
and Uftx, y)=g(Ux, Uy) (®)
hold. Eq. (8) leads to

J(x, y)=U""g(Ux, Uy).

Substitution of this equation for f(x, y) in Eq. (7) yields

TUg(Ux, Uy)=g(Tx, Ty).

Respective replacements of Ux, Uy and TU ! by x’, y’ and W result in

We(x', y)=g(Wx', Wy').

That is, g is isomorphic to itself, therefore g is incomplete. Then from the theorem 3,
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fis also incomplete.

[Theorem 5] If ({f}, M)T ({g}, M’) and ({f}, MU ({g}, M’) hold for both
T and U, and if T is not equal to U, then f and g are isomorphic themselves by a
pair of mapping which are conjugate to each other.
(Proof) In the proof of Theorem 4, deleting g from Egs. (7) and (8) and replacmg
U-1 T with V, we have

VAx, p=f(Vx, Vy).
Furthermore, the equality relation
=TU '=UU'TU'=UVU '\=TU\TT'=TVT*

holds, that is, W and ¥V are conjugate to each other.
The above result shows that a complete function on M has §(M)!-1 isomorphic
functions except for itself.

4. Some Fundamental Relations Between Compositions and Homomorphisms

It is known from Proposition 1 that the function N(f") is decided by the charac-
ter of the relation “f”. This chapter clarifies some fundamental relations among
“f”’, compositions and homomorphisms.

[Theorem 6] If ({f}, M)T ({g}, M’) holds, C, fC: implies CigC: for any C;
and C;in P~
(Proof) From the assumption and Theorem 1,

TC\f(x, y)=Cog(Tx, Ty)
and TC:f(x, y)=Cag(Tx, Ty)
hold. The above relations yield
Cig(Tx, Ty)=C:g(Tx, Ty).
Since T is an onto mapping, the respective replacements Tx and Ty by x’ and y’ yield

Cig(x', ¥y )=Cog(x', y').
That is, CigC: holds.

Theorem 6 shows that P?/f is a refinement of P7/g, that is, N(f")=$(P*[f)=
#(P"/g)=N(g").

The converse of Theorem 6 does not hold generally.

[Theorem 7]  If ({f }‘, M)T ({g}, M’) holds, then P"/[f=P"/g holds.

The converse of theorem 7 does not also hold, but if $(M)=4§(M") and f is com-
plete, then there exists a one-to-one onto-mapping 7:M—M' such that ({f}, M)T
({g}, M’) holds, as will be shown in Theorem 8.

The next lemma is evident from proposition 2.

[Lemma 1] Suppose P"[f=P*/g holds for any n and §(M)=4$(M") holds, then
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if fis complete, g is also complete.

From the above lemma, we have the next lemma.

[Lemma 2] Suppose $(M)=4#(M") holds and f:M2— M is complete and further-

more suppose P*[f=P"/g holds for g:M'*—M" and a sufficiently large n, then Cf
is a constant if and only if Cg is a constant for any C in P*. -
(Proof) Let [C] denote the graphs which are f~equivalent to C. Let M be a set
{l, 2,..., k,..., m}. Suppose Cef=k for Cie[Ci] and Cig=h = costant. From
Lemma 1. the completeness of g implies that a graph C; in P exists such that Cig
+= constant holds. Therefore, Cig(Cig, Cig)=h(C\g, Cig) = constant holds. That
is, denoting the above composition as Cx’, we have

Ci'e [Ck]- (9)
Whereas, since Cif=k, it follows that Cif(C.f, C.f)=k holds. Therefore
Ci'd[Ci] (10)

holds. Eq. (9) contradicts Eq. (10).

[Theorem 8] Suppose that f:M2—M and g:M'?—M’ are two functions on M
and M, respectively, and that §(M)=8(M") holds. If fis complete and P"/f=P"/g
holds for a sufficiently large », then there exists exactly a one-to-one and onto mapping
T:M—M' such that ({f}, M) T({g}, M’) holds.

(Proof) Since the graphs which compose constant functions by the aid of f also
compose constant functions by the aid of g from Lemma 2, the elements x;, x; and
xsin M, wy, uz and w3 in M’ and C,, C; and C; in P” exist such that '

x1=C1f; X2=C2f; xs=Csf (11)
and w=Cg, u=Cag, us=Csg. 12)

Furthermore, suppose

Xs=f(X1 ,X2) v : (13)
and uy # g(uy, Us). (14)
Then Eqgs. (11), (12) and (13) yield

x=f(C1f, Cof). s
That is

Cy'dCy), (16)

where C;’ is the composition of Eq. (15).
On the other hand, Eqs. (11), (12) and (14) yield

us = g(C1g, Csg).
That is,
Cy'e[Cs). a7
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Eq. (16) contradicts Eq. (17). Therefore, the equality x;=£(x1, xs) corresponds to
the equality us=g(u., us). Since fis complete, f composes all of the constant func-
tions, therefore, a one-to-one correspondence

X1 X2 X3 vevnnn Xm
T—
U Uz Ug ...... ’um
exists such that S, »)=T"Yg(T(x), T(¥)).
Therefore, T(f(x, y)=g(T(x), T(»))

holds. Furthermore, because of the completeness of f, T is unique according to
Theorem 4.

[Theorem 9] Let f:M2—M and g:M'?— M’ be functions which compose at least
one constant function and suppose $(M)=4#(M') holds. Furthermore, suppose that
both of the functions are not closed. Then P”/f=P"/g for a sufficiently large n
implies that fis isomorphic to g.

(Proof) Since f and g are not closed and compose at least one constant function,
they compose all the constant functions. The latter part of proof is quite the same
as that of theorem 8 except for the uniqueness of 7.

In the theorem 9, let C.f be a constant function, then using that f is not closed,
AC.if, Cif) is not the same constant function as C.if. Furthermore, f(C.f, A(C:if,
CLN), fICLf, Cif), Cif) or AAACLS, Cif), AC.f, Cif)) contain at least one constatn
function which is not equal to both f{C.f, C.f) and C.f. Thus, by writing n, for
z(Cy), all the constant functions are composed of the graphs with at most 2(2(...(2
m+D+D. D+ +142=2""1p,+ 27141 nodes. Therefore, the isomorphism
is decided in finite steps.

From Theorem 9, the following corollary is evident:

[Corollary 1] Let f and g be two functions on M and M’ respectively and
let $#(M)=4#(M’) holds. Furthermore let each of them be not closed and compose
at least one constant function, then the following two conditions are equivalent.

(i) Pr[f=P"/g holds for a sufficiently large n.

(ii) f'is isomorphic to g.

A theorem which is analogous to Theorem 9 holds in the case of homomorphism.
Before proving it, the following lemma is necessary:

[Lemma 3] Let M={1,2,...,m} and M'={1,2, ..., m’} betwo sets on which
S and g are defined, respectively. Furthermore, suppose m=m’'. Then if C\fC;
implies C,gC; for any C; and C; in P" and if f and g compose all the constant func-
tions, then

McC UICAf=U) Fy (18)
=1 =1

holds, where [C/], denotes a set of graphs such that Crg=i’ and i'eM’ hold and
Fyis the set {f'|f'=Cf, Ce¢[C: ]s}.
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(Proof) Since [Cy],g=i’is a.constant function, for two arbitrary elements g’'=[C'],g
and g"=[C"],g,

[Crlegl(g’, 8")=ICrleg
holds. Therefore

[Ci1:8(C]s8, [C")sg)=ICr]sg-
From the assumption that f'is homomorphic to g, if C,fC: holds for any C; and C;
in P~, then CigC; holds. Hence )

[CilefUC 1/, [C")sf)e[Crle f=F 19)
is derived. Since f composes all the constant functions, for any constant functions

frand fi in S={f'|f'=Cf, CeP"} Eq. (19) has to holds. Therefore, for any elements
ﬁ in F,’,

fil(fs f)eFy ' (20)

holds. Since f; and f; are constant functions, f(f5, f¢) is also a constant function.
Therefore, F, contains at least one constant function. Thus, for each i’ in M,
F, contains one constant function. Now, suppose that there exists a non-empty
set L of constant functions in .S such that

LNU Fr=4. @1

1/=1

Then there exists an element / in L such that I(f’, f")=I for two arbitrary elements
f'and " in S. Therefore, there exists a graph C; in P such that C, f(f", f)=C.f.
That is, for two arbitrary elements C’ and C” in P",

CACYL, C'F)=IClf.
Representing the above composition as C*, we have
C*e[Ci).
From the assumption that /'is homomorphic to g, the above condition implies
C*g=[C]sg. (22)
Eq. (22) shows that [C)),g is the compositions of a constant function. Therefore,
we have leF, , which contradicts Eq. (21).
Consequently, all the constant functions in § are contained in the set
G F il
=1
That is,
MC CJ F.
i’=1
[Theorem 10] Let M={l, 2,..., m} and M’'={l, 2, ..., m} be two sets such
that m=>m’" holds and on which f and g are defined respectively, and suppose both
of the functions compose all the constant functions. Then if for any C; and C:
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in P, C,fC; implies CigCs, then f'is homomorphic to g.
(Proof) From lemma 3, each Fi(i'=1, 2, ..., m) satisfies

FI’ n Fj/=¢

for i’#j in M’'. Therefore by denoting each set of constant functions in the sets
Fy, Fy, ..., F as Iy, Iy, ..., Iv, the set M is decomposed as follows:

M=IUIrU...... U L. - (23)
Furthermore, if g(i’, j )=k’ holds, then

g(Crlsg, [Crleg)=[Cr]sg ' @9
holds. Therefore, we have -

S(Fv, Fr)eFr,
which is rewritten as

Fi, 1) el | | 25)

Eq. (25) shows that fis a decomposable function. Therefore let T be an mapping
from M onto M’ such that

holds, then we have T(f(x, y)=g(T(x), T(»)).

From the above theorem, the following corollary is evident:

[Corollary 2] Let M=1{1,2,...,m} and M'={1,2, ..., m'} (m=m") be two sets
on which two-variable functions f and g are defined respectively, then the following
two conditions are equivalent. "

(i) For any C; and C;in P", C.fC; implies CigCs.

(ii) fis homomorphic to g. )

The above corollary shows a close relation between the internal structure of a
function and the equivalence relation on the set of its compositions. The fact that
“f is a refinement of g” does not always implies “’f is homomorphic to g” is evident
from considerations about simple examples.

5. Homomorphism and Minimal Expressions

In this chapter, a relation between the homomorphism and the minimal ex-
pressions is investigated. A theorem concerning the minimal expressions is given
and an example of its application is shown.

[Definition 10] Let f be a two-variable function defined on a set M and C be
an element of P”, then Cfis said to be a minimal expression if and only if for any
C’ in [C]y, 2(C")=2(C) holds.
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From Corollary 2, the following theorem is obtained:

[Theorem 11] Let f and g be two-variable functions on the sets M and M’,
respectively. Suppose f is homomorphic to g, then for an arbitrary graph CeP?,
if Cg is a minimal expression, then Cf is also a minimal expression.

(Proof) Let Cg be a minimal expression, then for an arbitrary graph C’e¢ P which
is g-equivalent to C, z(C)<z(C’) holds. Suppose there exists a graph C” which is
Jf-equivalent to C and Z(C")<<Z(C), then

Cf(xs y)::C’tf(x’ y) (26)

holds. From the assumption, f is homomorphic to g, that is, T:H—M" exists such
that

T(f(x, y)=g(T(x), T(y)). @7
According to Corollary 2, we have the following equations from Eq. (27).

T(Cf(x, y)=Ce(T(x), T(»)) (28)

T(C'f(x, y))=C"e(T(x), T(»))- (29)

Eqgs. (26), (28) and (29) lead the following equation,
Ce(T(x), T(»)=C"g(T(x), T(»)).

Since T is an onto mapping, 7(x) and T(y) are replaced by the two variables x’ and
y'in M, respectively. Therefore

Cg(x', y)=C"g(x’, y')
holds. This shows that C"g is g-equivalent to C and that Z(C")<<Z(C), which

contradict the assumption that Cf'is a minimal expression.
[Example 2] Let fand g be such functions as given in Table 1.

Table 1. A function f which is homomorphic to g.

M={1,2, 3,4} B={0, 1}

f 123 4 4 ]01
114421 of10
214311 1100
312222
412121

Since Tf=gT holds, the functions composed of f are the members of [Cl.f
according to Corollary 2. The minimal expressions by f are also in [C]sf. The
following two graphs C; and C: give the minimal expression of A, where 4 is given
in Table 2.
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Fig. 2. Two graphs corresponding to minimal expressions.

Table 2. A function & which is obtained by g, C; and Cs.

h ‘ 1

(=2
- o | o

1
0

f—

Table 3. Twelve minimal expressions by fin the table 1.

x 1 11 1 2 2 2 2 3 3 3 3 4 4 4 4

y 1 2 3 4 1 2 3 4 1 3 4 1 2 3 4
C 1 1 4 4 1 1 4 4 4 4 2 1 4 4 1 2
a3 |1 1 4 4 1 1 4 4 4 3 2 1 3 4 1 2
C5) |2 1 4 4 1 2 4 4 4 4 1 1 4 4 1 1
3,52 1 3 4 1 2 4 4 4 3 1 1 3 4 1 1
C: 1 1 3 3 1 1t 4 3 4 4 1 1 4 4 1 1
Gy [1 1 3 3 1 1 3 3 4 4 1 1 4 4 1 1
G2 |2 1 3 3 1 2 4 3 4 3 1 1 4 4 1 1
1,212 1 3 3 1 2 3 3 4 4 1 1 4 4 1 1
2,3 |1 1 4 4 1 1 4 4 4 3 1 1 4 4 1 1
1,231 1 4 3 1 1 3 4 4 4 1 1 4 4 1 1
GG3) |1 1 4 4 1 1 4 4 4 4 2 1 4 4 1 2
CGA,» |1 1 4 3 1 1 3 4 4 4 2 1 4 4 1 2

Exchanging x-arc and y-arc of each node, we obtain 12 minimal expressions by f,
as shown in Table 3.

In Table 3, C(i, j, k, ...) denotes a graph which is obtained from a graph C by
the exchanges of x-arc and y-arc on its nodes i, j, k, .... These functions correspond-
ing to the above graphs are different from each other and they are realized minimally.
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6. Concluding Remarks

We have considered some algebraic properties of compositions of multiple-
valued logical functions to obtain some basic relations between a function and
compositions by the function. Theorem 10 or Corollary 2 is a homomorphism
theorem of the multi-valued logical functions. In Chapter 5, an application of
Theorem 11 which is derived from Corollary 2 is shown. It shows one of the ap-
proaches to the minimization problem of multi-valued logical circuits. By the
aid of Theorem 11, complex minimization problems are reduced to simple ones if
a condition is satisfied. Since theorem 11 is not sufficient to the general cases, the
extension of it is a problem of future investigations. One of the approach is to
extend the theorem to the case in which some don’t-cares exist.
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