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An Algebraic Approach to the Composition of
                                       tt tt         Multi-valued Logical Functions

Yoneharu FuJiTA" and Fujio NisHiDA"

(Received June 4, '1977)

   This paper ,describes some algebraic prQPerties of multi-yalued IQgical functions

and then shows an application of the properties to the minimal expression problem

of logical functions. The relation of homomorphism of logical function is intro-

duced. It is shown that the homofnorphic relation is preserved by compositions of

functions. Both a set of directed' graphs which represent fbed-forward logical

circuits and an equivalence relation on the set are introduced. It js also shown

that using the equivalerice relation and the homomorphism, minimal expressions

of multiple-valued logical functions are derivable from the, minimal expressions of

the simpler functions. Finaliy, an example is shown in which two minimal ex-

pressions of a two-valued logical function yield 12 minimal expressions of four-

valued logical functions by the aid of the derived theorern.

1. Introduction

   From an algebraic viewpoint, a logical function is considered as a mapping from

a Cartesian product of a truth set M to M. From this point of view, the problems

related to the composition oflogical functions are important. The,problems of the

completeness of functions are studied by many icesearchers"･2)･3'. On the other

hand, the problems of compositions have not yet been studied so much4)･5). With

regard to the relation between internal structures of functions and those of their

compositions, few authors have investigated such a problem described in this paper.

The authors introduce here the concept of homomorphism of Iogical functions and

further, both a set of directed graphs which represent feed-forward logical circuits

and an equivalence relation on the set. Using the equivalence relation and the

homomorphism, the authors show that the minimal expressions of mukiple-valued

logical functions are derivable from the minimal expressions of the simpler functions.

2. DefinitionsofFundamental Concepts

   This chapter describes the definitions of logical functions and methods of

expressing both logical functions and their compositions. Furthermore, some

propositions derived from the definitions will also be shown.

    Let M be a finite set and M" be the n-th order Cartesian product of M. #(M)

denotes the number of elements in M.
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   [Definition 1] An n-variable logical function f on a set M is a mapping from

Mn to M.

   In this paper, two-variable functions are considered mainly, therefbre the term

"function" means a two-variable function. The function f:M2.M or l(x, y) will

be used to represent the function described above.

   Let us write the pair of the set of functions F and the truth-set M on which the

elements of F are defined, in parentheses as (E M) and call it a function system.

   To define the composition in a convenient form, we consider a type of acyclic

directed graphs which satisfy the following three conditions:

   (1) The graph C has ktF2 (k==1, 2, 3,...) nodes, where two of them have the

incoming degree O and the others have the incoming degree 2.

   (2) Among the nodes of incoming degree 2, there exists only one node of

outgoing degree O.

   (3) The two arcs incoming to each node are distinguished as x-arc and y-arc

corresponding to the representationf(x, y).

   Such a graph mentioned above is shown in Fig. 1.
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                    Fig. 1. An example ofa dirocted graph.

    In Fig. 1, Z(C) denotes the number of nodes of, C minus 2. Hereafter, the

term " graph" will mean the acyclic directed graph mentioned above. If a function

is assigned to each of the nodes of incoming degree 2, a feed-fbrward logical circuit

is obtained. This circuit will realize a new function. Let us denote this function

as C]f(x, y) or (]fin short.

    [Definition 2] A composition of a function f(x, y) is (If(x, y) and the form of

composition is C.

    Let P" be the set of graphs which satisfy lf.{z(C):illn, and let S be a set such

that S== {f'lf'=C]t; CEP"}, then each of the two variable functions is considered as

a mapping from P" onto S.

    [Definition 3] Let "f" denote a equivalence relation induced on the set P" by

f:P".S, then the two graphs Ci and C2 in the relation Ci f C3 are calledAequivalent.

In other words, Ci f C2 is Cif== C2f
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    [Definition 4] N(f") denotes the number of the two variable functions which are

composed ofk.fs, where ISkS{n.

    [Proposition 1] Let PnLfdenote the quotient set of P" by the equivalence relation

･"f", then

          NU'n)-#(Pnff) (1)
holds, where #(P"iif) denotes the number of elements in the set P"U:

    It is said that f:M2.M and g:M'2-->M' are isomorphic, if #(M)==#(M') holds

and there exists a mapping T from M onto M' such that

          T(1(x, y))==g(T(x), T(y))

holds for any x and y in M. It is clear that iffand g are isomorphic to each other,

then ?V(f")=IV(g") holds. To generalize the discussion, we newly introduce the

idea of homomorphism of functions.

    [Definition 5] LetA g and Tbef:M2->M, g:M'2->M' and T:M->M' respectively,

where Tis an onto mapping. The functionfis homomorphic to g if T(7<x, y))==

g(7Kx), T(y)) holds for any x and y in M.

    The relation T(1(x, y)) =g( r<x), T(y)) may be written as 7Y(x, y) =g( Tbe, 7y)

or 7]f==gT for simplicity.

    [Definition 6] If a function f:M2.M is homomorphic to a function g:M'2->M'

by a mapping Z then the system ({f}, M) is said to be homomorphic to the system

({g}, M') by T and relation is written as ({f}, M) T({g}, M'). Furthermore, if T

is a one-to-one mapping, then ({f}, M) and ({g}, M') are said to be isomorphic

to each other and the relation is written as ({f}, M) T. ({g}, M')

    Let F,M be the set of all of the 2-variable m-valued functions.

    [Definition 7] A two-variable m-valued functionfis said to be complete if and

only if its feed-forward compositions generate all of the elements of F,M.

    [Proposition 2] A function.ftF,M is complete if and only if there exists a natural

number n such that #(P"Lf)=mm2 holds.

    [Definition 8] A functionf:M2-->M is said to be closed if there exists a nonempty

subset D of M such that fbr any x and y in D, f(x, y)ED holds.

    [Definition 9] A function f:M2.M is said to be decomposable, if there exists

                                                  nat least a decomposition M(1), M(2), ..., M(n) such that U M(i)== M, M(i)n
                                                  i=1
M<j)=¢ and fbr a number i at least, #(M(i))>1 holds, and furthermore if for every

(i, J') (15{i, .i-E{;n) there exists k(1$kg.n) such that for any elements (x, y)f(M(i),

M(j)), flx, y) fM(k) holds.

                  3. CompletenessandHomomorphism

   Let us investigate some relations between completeness and homomorphism or

isomorphism.
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   [Theorem ll If ({f}, M)Z({g}, M') holds, then T(lf==Ck;T holds for every C

in Pn.

(Proof) Suppose

         T<flx, y)) ==g(T<x), 7℃p)). (2)
Furthermore, suppose there exist two function F(x, y) and G(x', y') such that

         7KF(x, y))-=G(T<x), T(>,)) (3)
holds for every (x, y) in M2, then

         7KIKx, y), y)-G(T(1(x, y)), 7Ky))-G(g(7Kx), 7Ky)), 7Iy)), (4)

         T(H(x, f(x, y)))-G(T(x), T(f<x, y)))=-G(T(x), g(T(x), T(y))) (5)

and 7(F(f(x, y),f(x, y)))-G(7<f(x, y)))

                 ' -G(g(7<x), IKy)), g(T(x), T(y))) (6)

hold. From Eqs. (2), (3), (4), (5) and (6), the theorem is evident by the mathematical

inductions.

   This theorem shows that the composition preserves the homomorphism. The

next theorem shows a relation between the completeness and the homomorphism.

   [Theorem 2] Suppose f:M2-M is homomorphic to g:M'2.M' and #(M)>

#(M') holds, thenfis not complete.

   (Proof) Sincefbecomes a decomposable function, it is not complete2'.

   Since an isomorphism is a renaming oftruth values, the next theorem is obtained

directly.

   [Theorem 3] If({f}, M)=T({g}, M') holds, then bothfand g are either com-

plete or incomplete.

   The next theorem gives a suMcient condition of the incompleteness of a function.

   [Theorem 4] If an additional condition ({f}, M)Y({g}, M') holds in Theorem

3) then bothfand g are incomplete.

(Proof) Fromtheaboveassumption,

          7Y<x, y)--g(7be, 7y)

and tij(x, y)-=g(U)c, Cly)

hold. Eq. (8) leads to

         ,flx, y)=U-ig(U)c, by).

Substitution of this equation forf<x, y) in Eq. (7) yields

          TU-'g(Ult, tly)= g(7be, 7 y).

Respective replacements of Ube, U)7 and TU-' by x', y' and

          PVZI(x', y')- g( wbe', va,,).

That is, g is isomorphic ,to itselg therefore g is incomplete.

W result in

(7)

(8)

Then from the･theorem 3,
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fis also incomplete.

    [Theorem 5] If({f}, M).T({g}, M') and ({f}, M)g({g}, M') hold for both

T and U, and if Tis not equal to U, thenfand g are isomorphic themselves by a

pair of mapping which are coajugate to each other.

(Proof) In the proof of Theorem 4, deleting g from Eqs, (7) and (8) and replacing

U-i Twith V; we have

           ry(x, y)==rtVX, J)IY).

Furthermore, the equality relation

           W== TU-i=UU-iTU-i=UVU-i==TU-iTT-i--TVT-i '

holds, that is, or and V are coajugate to each other.

    The above result shows that a complete function on M has #(M) !-1 isomorphic

functions except for itself.

  4. Some Fundamental Relations Between Compositions and Homomorphisms

   It is known from Proposition 1 that the function Ai(fn) is decided by the charac-

ter of the relation "f". This chapter clarifies some fundamental relations among

               ="f", compositions and homomorphisms.

   [Theorem 6] If({f}, M)Z({g}, M') holds, CifC2 implies CigC2 for any Ci

and C2 in Pn.

(Proof) From the assumption and Theorem 1,

          TCif('x, y)== C2g(71x, 7 v)

and nc2flx, y) == C2g(7Zx, 7y)

hold. The above relations yield

          Cig(71rc, 7y)-=C2g(7bc, 7 v).

Since Tis an onto mapping, the respective replacements TZx and I), by x' and y' yield

          Cig(x', y') == C2g(x', y').

That is, CigC2 holds.

   Theorem 6 shows that P"ff is a refinement of P"lg, that is, N(f") = #(P"i!f))

#(Pn/g)= :N(gn).

   The converse of Theo,rem 6 does not hold generally.

   [Theorem 7] If ({f}, M).T. ({g}, M') holds, then P"ff=P"lg holds.

   The converse of theorem 7 does not also hold, but if #(M)=#(M') andfis com-

plete, then there exists a one-to-one onto-mapping T:M->M' such that ({f}, M)T

({g}, M') holds, as will be shown in Theorem 8.

   The next lemma is evident from proposition 2.

   [Lemma 1] Suppose P"lf!==P"ig holds for any n and #(M) ==#(M') holds, then
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iffis complete, g is also complete.

   From the above lemma, we have the next lemma.

   [Lemma 2] Suppose #(M) =#(M') holds andf:M2.Mis complete and further'-

more suppose P"ff==P"lg holds for g:M'2->M' and a suMciently large n, then (]f

is a constant if and only if ag is a constant for any C in P".

(ProoD Let [C] denote the graphs which are jf:equivalent to C. Let M be a set

{1, 2,..., k,..., m}. Suppose Ckf=k fbr CkE[Ck] and Ckg=h#costant. From

Lemma 1. the completeness ofg implies that a graph Ci in P" exists such that Cig

tconstant holds. Therefbre, Ckg(Cig, Cig) ==h(Cig, Cig)=constant holds. That

is, denoting the above composition as Ck', we have

Whereas, since Ckf=k, it fo11ows that Ckf(Cif; Cif)=:k holds. Therefore

holds. Eq. (9) contradicts Eq. (10).

   [Theorem 8] Suppose that f:M2-M and g:M'2->M' are two functions on M

and M', respectively, and that #(M)= #(M') holds. Iffis complete and P"ff=P"/g

holds fbr a suMciently large n, then there exists exactly a one-to-one and onto mapping

T:M.M' such that ({f} , M) T( {g} , M') holds.

(Proof) Since the graphs which compose constant functions by the aid offalso

compose constant functions by the aid of g from Lemma 2, the elements xi, x2 and

x3 in M, ui, u2 and u3 in M' and Ci, C2 and C3 in P" exist such that

          x,==CiL

and ui=Cig,
Furthermore, suppose

         X3 =f(Xl ,X2)

and ui#g(ui, u2).

x,==C,A

U2=C2g, '

X3=C3f

U3 = C3g.

Then Eqs. (11), (12) and (13) yield

          X3=-flCi.L C2f).

That is

          C3'E[C3],

where C3' is the composition of Eq. (15).

On the other hand, Eqs. (11), (12) and (14) yield

         uslg(Cig, C2g).

That is,

          Cs'¢[Cs]･

(1 1)

(12)

(13)

(14)

(15)

(16)

(17)



        An Aigebraic Approach to the Composition ofMbelti-valued Logical fibenctions 7

Eq. (16) contradicts Eq. (17). Therefore, the equality x3===Lf(xi, x2) corresponds' to

the equality u3=g(ui, u2). Sincefis complete,fcomposes all of the constant func-

tions, therefbre, a one-to-one correspondence

                  T=(:i X.: :3, ::)

exists such that f(x, y)=T-i(g(7Kx), 7(y)).

Therefbre, 7" (lf(x, y))-=g(7(x), T(y))
holds. Furthermore, because of the completeness offl T is unique according to

Theorem 4.

    [Theorem 9] Letf:M2->M and g:M'2->M' be functions which compose at least

one constant function and suppose #(M)=#(M') holds. Furthermore, suppose that

both of the functions are not closed. Then P"iCf==P"/g fbr a suMciently large n

implies thatfis isomorphic to g.

(Proof) Sincefand g are not closed and compose at least one constant function,

they compose all the constant functions. The latter part of proof is quite the same

as that of theorem 8 except fbr the uniqueness of Z

    In the theorem 9, let Cifbe a constant function, then using thatfis not closed,

,t(CiA Ci.D is not the same constant function as Cif Furthermore, .f(CiAf(CiA

Cif)),.f(f(CiA Cif), Cif) or.f(f(CiA Cif), f(CiA Cif)) contain at least one constatn

function which is not equal to both .f(Ci.fl Cif) and Cif] Thus, by writing ni fbr

z(Ci), all the constant functions are composed of the graphs with at most 2(2(...(2

(n+1)+1)...+1)+1)+1+2=2m-ini+2m-i+1 nodes. Therefbre, the isomorphism

is decided in finite steps.

    From Theorem 9, the following corollary is evident:

    [Corollary 1] Letfand g be two functions on M and M' respectively and

let #(M)=#(M') holds. Furthermore let each of them be not closed and compose

at least one constant function, then the fbllowing two conditions are equivalent.

    (i) P"AfL P"lg holds fbr a suMciently large n.

    (ii) fis isomorphic to g.

    A theorem which is analogous to Theorem 9 holds in the case of homomorphism.

Before proving it, the fbllowing lemma is necessary:

    [Lemma 3] Let M=={1, 2, ..., m} and M'=={1,2, ..., m'} be two sets on which

f and g are defined, respectively. Furthermore, suppose ni;.lm'. Then if CifC2

implies CigC2 fbr any Ci and C2 in P" and iff and g compose all the constant func-

tions, then

                1t               mm          MCU [Ci '] gf ==U E'' (1 8)
              it=1 i'=1
holds, where [Ci,]g denotes a set of graphs such that Citg=i' and i'EM' hold and

I}, is the set {f'1f'== C]t; CE[Ci ]g}.
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(Proof) Since [Ci,]gg=i' is aconstant function, for two arbitrary elements g'=[C'],g

and g"== [C"]gg,

          [Ci,]gg(g', g") ==[Ci･]gg

holds. Therefore

          [Ci t]gg([C'] gg, [C"]gg) == [Ci ･] gg.

From the assumption thatfis homomorphic to g, if CifC2 holds fbr any Ci and C2

in P", then CigC2 holds. Hence

          [Ci '] gf([C'J gi [C"] gf)([Ci 'l gfo Fi' (19)

is derived. Sincefcomposes all the constant functions, for any constant functions

.t} and.ft in S= {f'if' == C]f; CEP"} Eq. (19) has to holds. Therefore, fbr any elements

,f} in Fi,, ･
         f}(f]f, .fit)EEr' ' (20)
holds. Since" and .f]t are constant functions, riU}, fi) is also a constant function.

Therefore, Fi, contains at least one constant function. Thus, for each i' in M',

E･t contains one constant function. Now, suppose that there exists a non-empty

set L of constant functions in S such that

              ml

          LAU F,,= ¢. (2 1)             t'=1
Then there exists an element l in L such that l(f',f")=l fbr two arbitrary elements

f' andf" in S. Therefore, there exists a graph Ci in P" such that Cif(ff,f") =Cif:

That is, for two arbitrary elements C' and C" in P",

          C,.t(CX Ctf')-[Cil.cf:

    Representing the above composition as C*, we have

          C*E[Ci]f.

    From the assumption thatfis homomorphic to g, the above condition implies

          C"g==[Ci]fg. (22)
    Eq, (22) shows that [Ci]fg is the compositions ofa constant function. Therefbre,

we have IEE , which contradicts Eq. (21).

    Consequently, all the constant functions in S are contained in the set

          mt
          U Et.
         t'==1
That is,

              mt
          MC U F,t.
              i'=1
    [Theorem 10] Let M=={1, 2,..., m} and M'=={1, 2, ..., m} be two sets such

that m21m' holds and on whichfand g are defined respectively, and suppose both

of the functions compose all the constant functions. Then if for any Ci and C2
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in P", CifC2 implies CigG, thenfis homomorphic to g.

       ==(Proof) From lemma 3, each Et(i'==1, 2, ..., m') satisfies

         F,t n ,Fli･,==¢

for i'4J" in M'. Therefbre by denoting each set of constant functions in the sets

E,, Lt, ..., iFlt, as L,, bt, ..., lt,, the set M is decomposed as fo11ows:

         M=LtUnytU.........UI,,. ･ (23)
Furthermore, if g(i',1")=k' holds, then

         g([Cit]gg, [Cj,]gg)==[Ck,]gg (24)
holds. Therefbre,wehave

         .f(F,t, Eit) EjE,,,

which is rewritten as

         f<J,･, I>･)EIk･. (25)
   Eq. (25) shows thatfis a decomposable function. Therefore let T be an mapping

from M onto M' such that

          T= (Ii h '''''' Ii' ･･････ Ln,1

             Kl 2"..H i' ...... m'1

holds, then we have T(7<x, y))= g(IKx), T(y)).

   From the above theorem, the following corollary is evident:

   [Corollary 2] Let M=={1, 2, ..., m} and M'=={1, 2, ..., m'} (m)m') be two sets

on which two-variable functionsfand g are defined respectively, then the fo11owing

two conditions are equivalent.

    (i) For any Ci and Ci in P", CifC2 implies CigC2.

   (ii) fis homomorphic to g.

   The above corollary shows a close relation between the internal structure of a

function and the equivalence relation on the set of its compositions. The fact that

"f is a refinement of g" does not always implies `7is homomorphic to g" is evident

from considerations about sjmple examples.

               5. HQmomorphism and Minimal Expressions

   In this chapter, a relation between the homomorphism and the minimal ex-

pressions is investigated. A theorem concerning the minimal expressions is given

and an example of its application is shown.

   [Definition 10] Letfbe a two-variable function defined on a set M and C be

an element of P", then (Zfis said to be a minimal expression if and only if for any

C' in [C]f, z(C')lllz(C) holds.
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   From Corollary 2, the fbllQwing theorem is obtained :

   [Theorem 11] Letfand g be two-variable functions on the sets M and M',

respectively. Suppose f is homomorphic to g, then fbr an arbitrary graph CcPn,

if Cig is a minimal expression, then cris also a minimal expression.

(Proof) Let Cig be a minimal expression, then for an arbitrary graph C'EP" which

is g-equivalent to C, z(C)$z(C') holds. Suppose there exists a graph C" which is

Aequivalent to C and Z(C")<Z(C), then

          q(x, y) ==Clf<x, y) (26)
holds. From the assumption,fis homomorphic to g, that is, T:H-M' exists such

that

          7Kf(x, y)) ==g(T(x), T(y)). (27)
    Aocording to Corollary 2, we have the fbllowing equations from Eq. (27).

          7<(Zt(x, y))-Cig(71(x), T(y)) (28)
          7ICIf(x, y))-=C"g(71(x), T(y)). (29)
    Eqs. (26), (28) and (29) lead the fbllowing equation,

          Cig(T<x), TO,))-C"g(7'<x), 7"(y)).

Since Tis an onto mapping, T<x) and T(y) are replaced by the two variables x' and

y' in M', respectively. Therefore

          Cig(x', y') -= C"g(x', 7')

holds. This shows that C"g is g-equivalent to C and that Z(C")<Z(C), which

contradict the assumption that cris a minimal expression.

[Example 2] Letfand g be such functions as given in Table 1.

Table 1. A function fwhich is horaomorphic to g.

M= {1, 2, 3, 4}

f 1234
   1 4421
  2 4311
  3 2 2,22
  4 2121

B=== {O, 1}

       g ol
          O 10
          1 OO

           '  'T- (6 gi l)

   Since ry=gT holds, the functions composed off are the members of [C]&f

according to Corollary 2. The minimal expressions byfare also in [C]of: The

following two graphs Ci and C2 give the minimal expression of h, where h is given
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         /
       //
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            3
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Twd graphs corresponding to minimal expressions.
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Table 2. A function h which is obtained by g; Ci and (I2･

        h ol
o

1

Ol
10

x 1 1

Table 3.

y

Cl

Ci(3)

Ci(5)

Ci(3, 5)

C2

C,(1)

C,(2)

C2(1, 2)

C,(2, 3)

Q(1, 2, 3)

C,(3)

C,(1, 3)

1

Twelve minimal expressions by fin the table 1.

4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 4 4 1 1 4 4 4 4 2 1 4 4 1 2

1 1 4 4 1 1 4 4 4 3 2 1 3 4 1 2

2 1 4 4 1 2 4 4 4 4 1 1 4 4 1 1

2 1 3 4 1 2 4 4 4 3 1 1 3 4 1 1

1 1 3 3 1 1 4 3 4 4 1 1 4 4 1 1

1 1 3 3 1 1 3 3 4 4 1 1 4 4 1 1

2 1 3 3 1 2 4 3 4 3 1 1 4 4 1 1

2 1 3 3 1 2 3 3 4 4 1 1 4 4 1 1

1 1 4 4 1 1 4 4 4 3 1 1 4 4 1 1

1 1 4 3 1 1 3 4 4 4 1 1 4 4 1 1

1 1 4 4 1 1 4 4 4 4. 2 1 4 4 1 2

1 1 4 3 1 1 3 4 4 4 2 1 4 4 1 2

Exchanging x-arc and y-arc of each node, we obtain 12 minimal expressions by .f;

as shown in Table 3.

    In Table 3, C(i, J', k, ...) denotes a･ graph which is obtained from a graph C by

the exchanges ofx-arc and y-arc on its nodes i, 1', k, .... These functions correspond-

ing to the above graphs are different from each other and they are realized minimally.
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                       6. ConcludingRemarks

   We have considered some algebraic propenies of compositions bf multiple-

valued logical functions to obtain some basic relations between a function and

compositions by the function. Theorem 10 or Corollary 2 is a homomorphism

theorem of the multi-valued logical functions. In Chapter 5, an application of

Theorem 11 which is derived from Corollary 2 is shown. It shows one of the ap-

proaches to the minimization problem of multi-valued logical circuits. By the

aid of Theorem 11, complex minimization problems are reduced to simple ones if

a condition is satisfied. Since theorem 11 is not suMcient to the general cases, the

extension of it is a problem of future investigations. One of the approach is to

extend the theorem to the case in which some don't-cares exist.

1
)
2
)3
)
4
)
5
)
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