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Abstract

A rotational and an irrotational flow past a slender body of revolution located on
the axis of an infinitely long tube of constant diameter are analyzed using a slender body
in slender tube theory. That is, three different types of flow are considered as the
condition of flow; (1) irrotational flow, (2) rotational flow with a paraboloidal velocity
distribution far upstream, (3) swirling flow with constant axial and angular velocities
far upstream.

From these results, surface pressure coefficients and stream lines past a slender
body of revolution are calculated. Next, in the case of (1) and (2), a comparison is
made between these analytic results and other numerical results calculated from the
distribution of the finite number of doublets for a slender ellipsoid of revolution. Then,
the range of the validity of a slenderness ratio is examined in the case of (1).

1. Introduction

A case of a steady, incompressible flow past an axisymmetric body of revolution
located on the axis of an infinitely long tube of constant diameter is considered. A
rotational flow past a sphere in a tube has already been analyzed by Wei Lai®. His
analysis was based on a vortex sheet over one segment of a diameter of the sphere.
It is not easy to find the function which represents this vortex sheet. However, if
a body and a tube are slender, an approximate solution of closed form may be
obtained. The corresponding theory is known as the slender body in slender tube
theory for the flow past a body of revolution.

In this paper, three different types of flow are considered; (1) irrotational flow,
(2) rotational flow with a paraboloidal velocity distribution far upstream and (3)
swirling flow with constant axial and angular velocities far upstream.

Surface pressure coefficients and flow patterns can be obtained for these types
of flow. Besides, the difference between the irrotational flow and the rotational
flow are examined from surface pressure coefficients, and the range of the validity
of a slenderness ratio is examined.

2. Basic Equation and Boundary Conditions

Cylindrical co-ordinates (x, r, 0) will be used as shown in Fig. 1.
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Fig. 1. Co-ordinate system for a body of revolution in a tube

Let lengths be normalized against the half length of the body.

The differential equation for the Stokes’ stream function ¥(x, r) of an axisym-
metric incompressible flow may be written as follows according to Wei Lai? or
Batchelor.?

v oW 10¥ . dH 1 df

axt " ort _r or 4w 2 dv’ (1)
where H(¥) and f(¥) are to be determined from the conditions far upstream.
The velocity components are
The shape of a slender body of revolution is
r=0F(x), —l<x<l, F(—1)=F(1)=0, Fu.x=1, 3)

where, ¢ is a small parameter measuring the relative slenderness of a family of bodies
whose shape function is F(x) (see Fig. 1).
The inner radius of an infinitely long tube is

r=R:, '(R;=const.). ©)
The boundary condition on the slender body of revolution is
w]r=5f(x)=0° ) e
The boundary condition on the tube wall is

¥|,_g,=const. . ©

3. Basic Equations and Boundary Conditions for Each Flow Field

Case 1. The upstream conditions in this case are characterized by

w=U,_, (const.), u=v=0.
Thus

Ufw=—;—r2U,,, H@)=f(7)=0. 0
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Fig. 2. Irrotational flow past a slender body of revolution in a tube
The governing equation is
R o 1 8%
—t+——— —=0.
ox* or® r or ®)
Boundary conditions are obtained from Egs. (5) and (6), that is,
1 2
wl r==06F(x) — 0, W! r=R; = wwl r=R; = ERL Um . (9)
Case 2. The upstream conditions are characterized by
r2
w:W<1-R?>, u=v=>0.
Thus
1 ré 1 2WT
w,,:w(— ) HO=o W=, f)=0. 10
s ) HO=3 & O (10)
e IV —od r r=R:
r=0F(x) t ¥ !
w
/ \
— ]\ 0 - /l x
Fig. 3. Rotational flow with a paraboloidal velocity distribution
far upstream past a slender body of revolution in a tube
The governing equation is
P w1 o r?
—_— —_— = 2W —. 11
ox* + or:  r or R an
Boundary conditions are obtained from Egs. (5) and (6), that is
1
Vmsrcy =0, ¥lr=r, =¥ u|r=r, =7R? w. (12)

Case 3. The upstream conditions are characterized by

3
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Fig. 4. Swirling flow far upstream past a slender body of revolution in a tube

w=U, (const.), u=0, v/r=w (const.).
Thus
Ufm=%r2U,,, J@)=r¥v*=¢%y*
where ¢, the reciprocal of a Rossby number, is 20/U.,, (13)
HE@) = (UL 4145,
2 2
and
dH d , 1,
av = ag’ =20 V-

The governing equation is

o oW 1w L, 1,
—_——— —— = . 14
0x® or? r or T 20-rU°° (14)

Boundary conditions are also obtained from Egs. (5) and (6), that is,

1
W\ r=8F(x)— 0, m r=R; = wm|r=R, = ‘Q—RfUu . (15)

Next, let U, be unity and the mass flux far upstream for each flow field be
constant, then, W in case (2) becomes 2 (see Figs. 2, 3 and 4).

4. Analysis

Case 1. We now rewrite the problem in terms of a perturbation field due to
the body. Let us denote by ¢(x, r) the perturbation stream function. We then have

(x, )= u(x, r)+¢(x, 7). (16)
The differential equation (8) then takes the form

o o 1o _
ox2 ' art r or =0. (17

Next, the transformation given by Cole?® is used for r, that is,
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,
* .
r 3 (18)

and the perturbation stream function ¢(x,r) is expanded in the following form:
@(x, )= pto(3)po(x, r*)+ p1(O)pa(X, r*)+ 22(O)paX, r*)4-reereeeeees . (19

Approximate equations for each order term result from equating the coefficients of
like powers of (8%)" in Egs. (17), (18) and (19), considering #o(0)=0%, u(d)=0",
ﬂ2(6)= 66, ............... .

1

0(62) : ¢Or“r“ - r % (IJO?' = 0’ (20)
1

0@ 1 Yrpan— r* Pt Goae=0, (2
1

0(66) : } ¢27‘1“—_ r¥ ¢27*+¢’1.t.z=0' (22)

Besides, boundary conditions for each order term are given from Egs. (4), (16),
(18) and (19) as follows:

0(62) : (wm+¢0)!r*=F(x) = 0, ‘/Jo| r¥=Rp* — 0! (23)
0(64) : ‘/’1|r*=F(x) = 0, ¢’1‘r*=R,* = 03 (24)
0(%%) : dy|p=riry =0, Ga| pmrs =0. (25)

Let us obtain the approximate solutions for each order term from the above ap-
proximate equations and the boundary conditions. The solution of Eq. (20) is

do(x, r¥)=Ci(x)+ Cao(x)r*2, (26)

The unknown functions Ci(x) and C(x) are determined from the boundary con-

ditions as follows:

___ R*a(x) \ _ ax)
CO= "2 aey TRy
where
2
a(x) =f-(& (local blockage ratio).
R*2 .
Thus, the solution for ¢o(x, r*) is
Ri*%a(x) r*2 p¥2
* p— . == — —
9o, %) 2{1—a(x)} U [Rt*z 1] Aox) [R,*z 1} , @7
where
Ao(x)=R:*?a(x)U_[[2{l —a(x)}].
Next, substituting Eq. (27) into Eq. (21),
62¢v1 1 6¢1 " r*z
R (x)[—Rt*2 ~ 1] . 28)

Substituting ¢:(x, r*¥)=r*¢:*(x, r*) into the left side hand of Eq. (28) and rearranging
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this equation, the following operator is obtained:

1 (9 )
‘F{ar* .<'*2 ar ”r*>}. o . 29)

Using this operator, Eq. (28) is rewritten as follows:

* *2
0 (r*za_‘p‘__r*¢l*> =,.*Ao”(x) l:l _#} ,

or* or*
o> r*2 r*¢
prE_I- Py —r*¢,1*-—A (x) [ W] +D1(X) .
o* 1 r*? Dy(x)
=AW [ | (30)

Then, from the linear differential equation (30), the solution for ¢,*(x, r*) is given by

= [ [0 (3 ) 2 e

" " *3
b2, =20 og pr - A9E) P DD ey,

Ay"(x) r¥
g . OD

15, 74 =r*u(5, %) = Di0)+ Dl #1220 o hog

The unknown functions Di(x) and Dy(x) are determined from the boundary con-
ditions, that is,

Ao”(x) - Ay"(x%) F(x)*
Di(x)=— F(x)% - y) (I—a(d} log a(x),
Dy(x)= 0( Aox) {1+ea(x)} — A’ (x) {I—L(x)} {log R*—a(x) log F(x)}.

Similary, from Eq. (22), the solution for ¢s(x, r¥) is given by
DY) ., Dy()
8 2

Po(x, r*) = Ex(x) + Ey(x)r** r* log r*

AP /o, g 3 ), AP(x) r*e

16 <’ log r* =g r*) + o) R
where
_ D) e " D,"(x) F(x)? log a(x)
Ey(x)=— RAF(x) + o

A‘*)(x) 2 p 32 108 Re*—a(x) log F(x)  A{"(x) 2 %2
TR T—a(x). tT g PR

AP(x)

+ oy FOF {1—a()},
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Ei)= 220 Rt (1 4oy 20 Jog REoeln) lop o)
1—a(x)
AP() o oye 1=aGF I8 FG) 3 0oy
1 R I—atx) 64 DR {1+a(x}
{4
- A19(ZX) R* {1+a(x)+a(x)*} .
Thus, ¥(x, r) is summarized as follows:

T(x, r)=0° {_;_ r*2U -+ ¢o(x, r*)} - 0%a(x, PE) - 00a(x, F*) i . 32)

Case 2. Substituting Eq. (16) into Eq. (11), the same differential equation
(17) as in case 1 is obtained, that is,
8% ) 1 99

oxt Tt T ar O 33)

Next, to obtain approximate solutions, using the transformation for r given by
Eq. (18) and substituting Eq. (19) into Eq. (33), the same approximate equations
for each order term as Egs. (20) and (21) in case 1 are obtained. The boundary
conditions are also the same as Eq. (23) and (24). Therefore, approximate solutions
¢i(x, r*) for each order term are as follows:

06Y: dulx, =) [-£—1] (34

where
_ Rt*ga(X)W _L

A= {1 : a(x)}.

093 15, P)=Du(a) + D a4 AL o og pr AL L 35
where

Doly=— Als(x) Fx'= A14(x) ﬁ(ifzx) fog &),

D)= (1 oty — A2 - flog R*—a(x) log Fo)}
¥(x, r) is summarized as follows:

Vn, )= 0% [W{ P = g ) o5 ) [ 0805, %) .36

Case 3. Substituting Eq. (16) into Eq. (14), the differential equation for ¢(x, r)

is given as follows:
oy oy 1 oy
ox®  ort r or

+0%=0. @37
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Using the transformation for » in Eq. (18) and substituting Eq. (19) into Eq. (37),
approximate equations for each order term are as follows: '

: 1
0(6%): ‘/’om*“";;’ $on=0, (38)

) ,
0(%%): ‘pwr*_r—* Pt ooz T02P0=0 . (39

The boundary conditions are of the same form as in case 1 and in case 2.

Let us obtain the approximate solutions for each order term from the above
approximate equations and the boundary conditions. As the governing equation
and the boundary conditions for O(6%) are of the same form as those in case 1, the
approximate solution for O(8%) is of the same form as that in case 1, that is,

%*2

where
Ao(x)=R*%a(x)U_[[2{l —a(x)}] .

Next, the solution for ¢:(x, r*) is given from Eq. (39) as follows:

% *2 2 ” 1 %2 * 1 r*4
01, r¥)=Ds(x) + Da(X)r* — {0 Ao(x)— Ao"(x)} <?r log r*—— R,*z).

The unknown functions Ds(x) and De(x) are determined from the boundary con-
ditions, that is,

D= A~ o'} [ TD B RG]
Du(x)= {0 Ao — Av" (o) [FE XTI ST 10y ]

Thus, ¥(x, r) is summarized as follows:

W(x, ,.)=62 {_;_, r¥2y_ 4 %(x’ r*)}_|_54¢,1(x, r*) e .

5. Surface Pressure Coefficient

Using the above approximate solutions, each velocity component is expanded
in a power series of & shown below:

U= 6u1—|—63u2 + ............... R
v==0r*w ~ where, 0=0(1),
W=Wo—t02Wi - 0*Wg 4 sreveeneanennnn .

Then, the surface pressure coefficient C, is expanded as
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Com=Crop-02Cp11 -+ 04Cpga b +reeereeereenne ,
where

Coroo==1—w,?,

Crui=—(ut+v2-+2wowy) ,

Croa=— (Wit 2wows-2ustt) .
Then, the first order approximation C,: and the second order approximation C,:
to the surface pressure coefficient C, are written as follows.

Cr1=Cr00+0*Cpu1 ‘

Cre=Cp1+04Cps2

6. Numerical Calculations

In this paper, we consider a slender ellipsoid and a slender parabolic spindle
given by F(x)=+1—x* and F(x)=1—x?, respectively.
6.1. Flow patterns past a slender body

Flow patterns for the irrotational flow, the rotational flow with a paraboloidal
velocity distribution and the swirling flow past a slender body are shown in Figs. 5,
6 and 7, respectively. Stream lines in the neighborhood of the front end of the
body are shown interrupted for the parabolic spindle in Figs. 5 and 6, and for the

Ellipsoid of revolution

'S

cocooo
Hotonén

Parabolic spindle

ocoooo
Hiotonin'S

Amax==0 .4
0=0.1

Fig. 5. Flow pattern for irrotational flow past a slender body of revolution in a tube
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Ellipsoid of revolution

L

0n'S

cooo o
Fototom tn
1
1
1]
N :

Onmax=0 .4
0=0.1
T Parabolic spindle
0.5 i
0.4
0.3
0.2
0.1

Amex=0 4
0=0.1

Fig. 6. Flow pattern for rotational flow past a slender body of

L . r
revolution in a tube, upstream condition w=W (I_F)
|2

)/ Ellipsoid of revolution |
02 p——
0.1 / '
. - R . . . . . |
_ |
Amax=0.4
0=0.1
v Parabolic spindle
8:4
03
012
0.1

Amar=0 .4
0=0.1

Fig. 7. Flow pattern for swirling flow past a slender body of
revolution in a tube, Rossby number=1/3
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ellipsoid and the parabolic spindle in Fig. 7, because this analysis is not valid in this
region. However, stream lines in the neighborhood of the front end of the body are
not shown interrupted for the ellipsoid in Figs. 5 and 6. For both the numerically
calculated results® based on the distribution of the finite number of doublets and the
present analytic results are shown for the ellipsoid in Figs. 5 and 6, and these results
are graphically indistinguishable from each other.

From these flow patterns, it is revealed that stream lines become dense near
the body and coarse near the tube wall for the irrotational flow. Stream lines in the
swirling flow far upstream are denser near the tube wall than those in the irrotational
flow. ‘

6.2. Surface pressure distribution
Surface pressure distributions for the irrotational flow, the rotational flow and
the swirling flow far upstream are shown in Figs. 8, 9 and 10. Broken lines are

Ellipsoid of revolution

1.0
15 .
Amor=0.1 :
s o Jol2 04 o6¥og 3
! ____—;{.’5’1 0
—05 202 — 1
o, y //
ma=0. Y. o
—1.0b— ‘ / 1.0 Ellipsoid of revolution
& a=0 y A par=0.1
—1.5 7 05 (X maz=0.2
|1 & Gnei=0.3
A mar—=0.4
~2.0 . 0 L e
0.1
//
o5 8=0.
1.0 Parabolic spindle ) 0.2 04 0.6 0.8 1.0
. 12
0.5
Ame=0.1 R
1 PR
5w [0.2 o4 o 1.0 Parabolic* spindle
Q
amaF%// 05 A =0 .2
B = a7 : o mar=0.3
amjy © P—
1.0 i 0
& maz=0 .
8=0.
15 ~0.5 0.1
. 0 02 04 06 08 1.0
1
—2.0 Fig. 9. Surface pressure distribution for
= 5=0. .
Cpi=Cpo+5Cpn, =01 rotational flow past a slener body
Fig. 8. Surface pressure distribution for of revolution in a tube,zupstream
irrotational flow past a slender - condition w= W (1 _1%2)

body of revolution in a tube
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Ellipsoid of revolution

02 0.4 06 Wog
om0 | 1.0
maxr—V . L]

-

0.5 Fmar=0.2 7’

]
K
N

—2.0 pr Fig. 10. Surface pressure distribution for swirling flow
04 past a slender body of revolution in a tube,

Rossby number=1/3

Parsbolic spindle
1.0

§ ol_o02 o 6% 0.8

Cma=0.1

—0.5 o ma=0.2 1

NS

Kmaz=0 .
—-1.0 :/I
A mas=0.4
—1.5 4

’d

&=0.1

drawn outside the validity range of the present analysis in these figures. It can be
seen that the surface pressure coefficients decrease as the blockage ratio am.» increases.

Since these surface pressure coefficients are normalized by the dynamic pressure
on the axis of the tube, surface pressure coefficients for the rotational flow far up-
stream take larger values than those for the irrotational flow and the swirling flow
far upstream. However, if surface pressure coefficients for the rotational flow are
normalized by the dynamic pressure with the mean velocity, these values become
four times as much as the values obtained in this analysis.

6.3. Effect for the reciprocal g of a Rossby number

Surface pressure coefficients on the center cross section of the body in case 3
are shown against the reciprocal ¢ of a Rossby number in Fig. 11.

From this figure, the surface pressure coefficient in ¢=3 decreases about 4
percent than that in 6=0 in both the blockage ratio am.» of 0.2 and 0.4.

6.4. Comparison of calculated results by this analysis with those by numerical method
The calculated results by the present analysis for case 1 and case 2 are compared
in Fig. 12 with the numerically calculated result using a doublet distribution.
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" Ellipsoid of revolution

o
0 1 2 3

—0.5

5‘ A mor=0.2
-1.0

=01

—-1.5

A par=0.4

center cross section

of body (x=0)

’ Parabolic spindle

4 c
0 1 2 3
—0.5
§ Oma=0.2 |
—1.0
0=0.1
—1.5
Xmar=0.4
Py I -

center cross sectkion
of body (¥=0)

Fig. 11. Relation between surface pressure coefficient and re-
ciprocal of a Rossby number for swirling flow

Ellipsoid of revolution

|
paraboloidal velocity™ ",
- distribution I 1
Y T 1
o 02 /04 06%Wog 4

W.L_'?.o—““ /1.0

—0.5 /

uniform flow /
e

LA
'Z/,/ Amo==0.4

0=0.1

——— analytic result

. numerical result
Fig. 12. Comparison of analytic results

with numerical results for ir-
rotational and rotational flow

Fig. 13.

Ellipsoid of revolution.
&
0.1 02 03 04 05

Amo=0.4
center cross section of body
(x=0
analytic result

wwe— numerical result

Comparison of analytic results
and numerical results for vari-
ous values of slenderness ratio
in the case of irrotational flow

13

These calculated results are graphically indistinguishable from each other in
this figure. Therefore, the present analytic method can be used in practice.

6.5. Validity range of slenderness ratio 8

The calculated results using this analysis are varying the value of & with the
numerically calculated results for the ellipsoid of revolution in case 1 in Fig. 13.
It is shown from this figure that the present analytic method is valid up
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to 6=0.35. The surface pressure coefficient dereases as the slenderness ratio ¢
increases.

6.6. Validity of expansion in slenderness ratio 3

The first order approximation Cr, and the second order approximation Cprs
" to the surface pressure coefficient for the ellipsoid are shown in Table 1 for both
the blockage ratio am.x of 0.2 and 0.4 in case 1.

From Table 1, a difference between the approximate surface pressure coefficients
Cry and C»; in the case of §=0.1 can not almost recongnized. However, in the
case of §=0.3, the second order approximation C»; is smaller by 1 to 3 percent than
the first order approximation C»y.

Thus, the surface pressure coefficient C» can be approximated by the first order
approximation Cp; with good accuracy.

Table 1. Comparison between the first order approximation and the second order
approximation of the surface pressure coefficients for slenderness ratio &
of 0.1 and 0.3 in the case of irrotational flow

Ellipsoid of revolution

amas| 8 | x| | 0.0 0.1 0.2 j 0.3 0.4 0.6 0.8
o | oq | i | —0-574] —0.5667 ~0.5440 | —0.5072] —0.4581| —0.3318 | —0.1895
Cry | —0.5747| —0.5670 | —0.5442| —0.5074 | —0.4583 | —0.3320 | —0.1898
03 | o3 | .Cri | —0-6700] —0.6620| —0.6421 | —0.6088 | —0.5656 | —0.4655] ~0.4162
Crs | —0.6910| —0.6836] —0.6621 | —0.6278 | —0.5833 | —0.4808 | —0.4348
Cry | —1.7883 | —1.7516| —1.6459 | —1.4828 | —1.2789 | —0.8192| —0.3864
o Crs | —1.7886| ~1.7519| —1.6461| —1.4830| —1.2791 | —0.8192| —0.3861
Cri | —1.8724| —1.8357| —1.7300 | —1.5676 | —1.3657] —0.9207| —0.5596
04193 Crs | —1.8946| —1.8570 | —1.7486 | —1.5822| —1.3755 | —0.9200 | —0.5382

Cpy=Cpo+02Cry, Cpe=Cp1+64Cpye

7. Conclusions

A rotational and an irrotational flow past a slender body of revolution located
on the axis of an infinitely long tube of constant diameter is analyzed using the
slender body in slender tube theory and a comparison is made between these analytic
results and other numerical results calculated from the distribution of the finite
number of doublets.

Following conclusions are obtained;

(1) The solution is more easily obtained using the method of the present analysis
than using the numerical method.

(2) The validity range of the slenderness ratio ¢ is up to 0.35 in the present analysis.
(3) It will be sufficient for the surface pressure coefficient to be obtained using the
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first order approximation Cpi.

C)

The surface pressure coefficient decreases as the blockage ratio, the slenderness

ratio or the reciprocal of a Rossby number increases.

(5) Values of the surface pressure coefficient for various far upstream conditions
become small in order of the rotational flow with a paraboloidal velocity distribution,
the irrotational flow and the swirling flow, respectively. ‘

D
2)

3)
4)
5)
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