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                            Abstract

   A rotational and an irrotational fiow past a slender body of revolution located on

the axis of an infinitely long tube of constant diameter are analyzed using a slender body

in slender tube theory. That is, three diffe;ent types of fiow are considered as the

conditiori of flow; (1) irrotational fiow, (2) rotational flow with a paraboloidal velocity

distribution far upstream, (3) swirling flow with constant axial and angular velocities

far upstream.

   From these results, surface pressure coeMcients and stream lines past a slender

body of revolution are calculated. Next, in the case of (1) and (2), a comparison is

made between these analytic results and other numerical results calculated from the

distribution of the finite number of doublets fbr a slender ellipsoid of revolution. Then,

the range of the validity of a slenderness ratio is examined in the case of (1).

                             1. Introduction

    A case of a steady, incompressible flow past an axisymmetric body of revolution

located on the axis of an infinitely long tube of constant diameter is considered. A

rotational fiow past a sphere in a tube has already been analyzed by Wei Lai". His

analysis was based on a vortex sheet over one segment of a diameter of the sphere.

It is not easy to find the function which represents this vortex sheet. However, if

a body and a tube are slender, an approximate solution of closed fbrm may be

obtained. The corresponding theory is known as the slender body in slender tube

theory fbr the flow past a body of revolution.

    In this paper, three different types of flow are considered; (1) irrotational flow,

(2) rotational fiow with a paraboloidal velocity distribution far upstream and (3)

swirling flow with constant axial and angular velocities far upstream.

    Surface pressure coeMcients and fiow patterns can be obtained fbr these types

of fiow. Besides, the difference between the irrotational flow and the rotational

fiow are examined from surface pressure coeMcients, and the range of the validity

of a slenderness ratio is examined.

             2. Basic Equation and Boundary Conditions

Cylindrica! co-ordinates (x, r, e) will be used as shown in Fig. 1.
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            Fig. 1. Co-ordinate system for a body of revolution in a tube

   Let lengths be normalized against the half length of the body.

   The difierential equation for the Stokes' stream function T(x, r) of an axisym-

metric incompressible flow may be written as fbllows according to Wei Laii' or

Batchelor.2)

                 Z2.er, + g2,¥ -;- IT, -r2Sliill--li }:.1 , (i)

where H(T) andf(V) are to be determined from the conditions far upstream.

The velocity components are

                         1 0!if 1 01V'                   "=='-7 ox' W=7 ar' (2)
   The shape of a slender body of revolution is

            r=0jF(X), dl<X<1, jF(-1)=F(1)==O, Enax=1, (3)

where, 6 is a small parameter measuring the relative slenderness of a family of bodies

whose shape function is "F(x) (see Fig. 1).

   The inner radius of an infinitely long tube is

                         r=Rt, (Rt=const.). (4)
   The boundary condition on the slender body of revolution is

                           Tlr-ap(x)=O･ (5)
   The boundary condition on the tube wall is

                           Tl,=R,=const.. (6)

       3. Basic Equations and Boundary Conditions for Each Flow Field

   Case 1. The upstream conditions in this case are characterized by

                   w= UL. (const.), u==v==O.

Thus
                                                            '                        1
                   lif..=:zi'r2UL., H(IV')==Lf(lr)=O. (7)
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          Fig. 2. Irrotational flow past a slender body of revolution in a tube

The governing equation is

                      a2gff o2Lp l oger
                               -- ==o.                          +                            Or2 r Or                      Ox2

Boundary conditions are obtained from Eqs. (5) and (6), that is,

               ZV'1r==fiF(x) = O, TI r-Rt = LP'eolrt= Rt = : e, R7 ULp ･

   Ctxse 2. The upstream conditions are characterized by

                  '         w== W(1 - ii, ), u== v=O..

Thus
        Zif oe == rv (-ll-r2 - ii 7' ), H(v)- -ll- rv2 - 2 1illfT , flge')=o.

(8)

(9)

(1O)

r 'r==Rt
W'

tr=aF(x) 'Il:->w

o J

-1 1 x
/

}

          Fig. 3. Rotational flow with a paraboloidal velocity distribution

                far upstream past a slender body of revolution in a tube

The governing equation is

                   o2v o2w' loLv' r2
                   ox2 + or2 --F or =-2MZ R2,'

Boundary conditions are obtained from Eqs. (5) and (6), that is

                IY'1r=6F(x) == O, IY'ir=Rt==:ZV'eoir=:Rt ":-S-RIM

    CZise 3. The upstream conditions are characterized by

(1 1)

(12)

3
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                                                         v

                                                    Q

 '       Fig. 4. Swirling fiow far upstream past a slender body of revolution in a tube

                w=UL. (const.), u=O, vlr==to (const.).

Thus

                    1
                Zifee=-i-r2UL., f(T)=r2v2=o2T2

where o, the reciprocal of a Rossby number, is 2toIU..,
                                                             (13)
                      11                H(er) == -i- ( U 2ee + V2) + -i2- V2 ,

and

                dH d                            1
                   == v2 =-o2U .
                            2oo                dIY                     d!lf

The governing equation is

                o2er o2ur 1 0T                                        1
                ox2 + or2 "-F -5F+02er ==+s-02r2U2..･ (14)

Boundary conditions are also obtained firom Eqs. (5) and (6), that is,

                                           1
               IV' r- fiF(x)= O, V[ r-Rt = Ll" .c l  r-R, = -zlFRr ULo ･ (1 5)

   Next, let UL. be unity and the mass flux far upstream fbr each flow field be

constant, then, Win case (2) becomes 2 (see Figs. 2, 3 and 4).

                            4. Analysis

   Case 1. We now rewrite the problem in terms of a perturbation field due to

the body. Let us denote by e(x, r) the perturbation stream function. We then have

                      Zif(x, r)-Ur..(x, r)+¢(x, r). , (16)
The differential equation (8) then takes the fbrm

                       a2¢                            o2¢ 1 aip                       ox2+ar2 -7 or =O' (17)

Next, the transfbrmation given by Cole3) is used fbr r, that is,

ku. r
R
t

t
.
:
.
w
r
=
=
a
l
r
(
x
)
'
'

--

x
i
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                                r                            r"== :}-, (18)
and the perturbation stream function ip(x, r) is expanded in the fbllowing fbrrn:

       ¢(x, r)=pto(6)9o(x, r")+pti(6)ipi(x, r")+pt2(6)¢2(x, r")+ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ . (19)

Approximate equations for each order term resuk from equating the coeMcients of

like powers of (62)" in Eqs. (17), (18) and (19), considering pto(6)=62, pti(6)==64,

pt2(6) =66, ............... :

                            1
               O(62): Qor,Tn,-,* ¢e,.=O, (20)
                            1
               O(6`): Qir*r*- r* ipi7"F+¢oxx =O, (21)

                            1
               O(66) :, ip2f""?'"- r* ¢2r*+ipixx=O' (22)

                           '
Besides, boundary conditions fbr each order term are given from Eqs. (4), (16),

(18) and (19) as fo11ows:

               O(62): (uree+ipe)Ir*-F(x) "= O, gC'elr* -Rt* =O, (23)

               O(6`): sbilr'-F(x)==O, Qilr'=:Rt*=O, (24)
                                                  '
                                         sP21,*-R,*=O･ (25)               O(66) : sb2Ir*==F(x)=O,

Let us obtain the approximate solutions fbr each order term from the above ap-

proximate equations and the boundary conditions. The solution of Eq. (20) is

                     Qo(x, r*)=Ci(x)+C2(Jc)r'2. (26)

The unknown functions Ci(x) and C2(x) are determined from the boundary con-

ditions as fbllows:

                                            a(x)                   Rt*2a(x)
                            Uee, C2(X) ==                                                   Uoo'          C,(x) = -                                         2{1-a(x)}                  2{1-cr(x)}

where
           F(x)2
                (local blockage ratio).     a(x) =
           Rt*2 .
Thus, the solution for ipo(x, r") is

        ipo(x, r")"= 2iill`l:2a.((X.))} U.. []iil.2, -1]=Ao(x) []i( .2, -1] , ' (27)

where
     Ao(x) == Rt"2a(x) U../[2 {1 -cr(X)}]･

Next, substituting Eq. (27) into Eq. (21),

        oa,2:;-,i. g,¢i=-Ao"(x)[llil.2,-i]. (2s)

                                                         '
Substituting Qi(x, r")=r"Qi"(x, r") into the left side hand of Eq. (28) and rearranging
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this equation, the following operator is obtained:

           .,l*Io9* (""2,o9,*-"")l. .. .. , (2g)

Using this operator, Eq. (28) is rewritten as follows:

       ' o9* (r*2 Oo¢r'** -r*cbi*)==r*Ae"(x) [i-]iir*2,],

                                '
            r*2 Ooipri." -r*g,*==Ao"(x) [rg2 - 41iil;, ]+Di(x) ,

            Ooip,'*" m ,1* ip'"=Ao"(x) [-li-4iil2*2]+ D,i51) . (30)

Then, from the linear differential equation (30), the solution for Qi"(x, r") is given by

 ipi'(x,r")=ef"rd" I J [Ao"(x) (-S- - ii,2,, ) + D,i:l) ] e--f"' dr' ctr"+D2(x)},

          Ao"(x)                       A"o(x) r"3 Di(x)
           2 r* log r*- s R,*2 H r* ip1*(x, r*)=                                      +r"D2(x) ,

 ipi(x, r")=r"Qi(x, r") ==Di(x)+D2(x)r*2+ AOS(X) r*2 log r*- AOg(X) Iii;i, . (31)

The unknown functions Di(x) and D2(x) are determined from the boundary con-

ditions, that is,

           Ao"(x)                      Ao"(x) ,F(x)2
    D,(x) = -                F(x)2 -                                    log a(x) ,
                        4 {1-a(x)}             8

          A "o(X)                        Ao"(x) 1
    D,(x)=               {1+a(x)} -                                      {log Rt"-cr(x) log ,F<x)} .
                          2 {1-a(x)}           8

Similary, from Eq. (22), the solution for ¢2(x, r") is given by

                        D2"(x)                                 D, "(x)
    Q2(x,r") :Ei(x)+E2(x)r*2-                             r*4-                                       r*2 log r*
                          82
           - A6`igX) (r*4 iog r*--2- r"`) + Ai`6(2X) il;.62 ,

where

           D,"(x)                         Di"(x) F(x)2loga(x)
                Rt"2F(x)2 +   E,(x) = -
             8 4 1-a(x)
         - A8i'iX) F(x)2Rt*2 iOg R"i11ill(.X)10, g F(X) + A6i'2(X) F(x)2Rt"2

           A8`'(x)
                F(x)2 {1-a(x)},         +            192

                    '
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          D,"(x)                            Di"(x) log Rt"-a(x) log cr(x)
               Rt"2 {1 + a(x)}' +    &(x) --

            8 2 1-a(x)
         - A8`'(x) R,., 1-a(x)2 log F(pu) - 3
                                        AE`'(x)Rt"2 {1 +a(x)}
             16                         1-a(x)                                     64

         "Ai`3(2X) Rt"2{i+a(x)+a(x)2}. '

Thus, T(x, r) is summarized as fbllows:

    ur(x, r) == 62 (-ll- r"2 UL. -I- Qo(x, r")l +6`¢i(x, r")+66e2(x, r") A- ･････････ . (32)

   Case2. Substituting Eq. (16) into Eq. (11), the same differential equation

(17) as in case 1 is obtained, that is,

    g.2s.glg -l "zl/-ko. (33)
      '
Next, to obtain approximate solutions, usi.ng the transformation for r given by

Eq. (18) and substituting Eq. (19) into Eq. (33), the same approximate equations

fbr each order term as Eqs. (20) and (21) in case 1 are obtained. The boundary

conditions are also the same as Eq. (23) and (24). Therefbre, approximate solutions

Qi(x, r*) for each order term are as fbllows:

    O(62): ipo(x, r")==Ai(x) [fi,".2,-1], (34)

where

    Ai(x)= 2Rii2-'(.X().W)} Il-Jll"(x)l.

                               A,"(x)                                              Ai"(x) r*4
    O(6`); Qi(x, r")=D3(x)+D4(x)r"2+                                    r*2 log r*-                                                           (35)
                                 2 8 R,*2,
where

    D,(.)=-Aig(x) F(.)2-Ai2(x) 1{ll:()k) 1.g.(.),

          A,"(x)                         Ai"(x) 1
    D,(x) =                {1+a(x)}-                                      {log Rt"-a(x) log F(x)} .
            8 2 1-a(x)
Zgn(x, r) is surmmarized as fo11ows :

    T(x, r)=62 [w(-g- r*2 - 4ili, )+ ¢, (x, r*)]+64q,(x, r*) +･････････ . (36)

   Case 3. Substituting Eq. (16) into Eq. (14), the difierential equation for ¢(x, r)

is given as fo11ows:

    02¢          o2ip 1 OQ
    ox2+or2 -LF or +02Q=O' (37)
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Using the transfbrmation fbr r in Eq. (18) and substituting Eq. (19) into Eq. (37),

approximate equations for each order term are as fbllows:

              O(62): ¢o7`t7.- rl* ipor"k=O, . ' (38)

                                  '
                   '                                                          '                          1'              O(6`): Qir"er",-r* ¢i,",+Qexx+if2ipo=O･ (39)

The boundary conditions are of the same form as in case 1 and in case 2.

   Let us obtain the approximate solutions fbr each order term from the above

approximate equations and the boundary conditions. As the governing equation

and the boundary conditions fbr O(62) are of the same form as those in case 1, the

approximate solution for O(62) is of the same form as that in case 1, that is,

              ¢o(x, r*) == Ao(x) [ iill*2, - i] ,

where

              Ao(x) = Rt"2a(x) U..1[2 {1 -a(x)} ] .

Next, the solution for Qi(x, r") is given from Eq. (39) as fo11ows:

    ipi(x, r*)=Ds(x) +D6(x)r*2- {a2Ao(x)-Ao"(x)} (-li r"2 log r"--gt ]iili2 ) .

The unknown functions Ds(x) and D6(x) are determined from the boundary con-

ditions, that is,

     Ds(x)== {a24o(x)-Ao"(x)} [ "F<4X{)12-1.0.g(.a)(}X) +-gt F(x)2] ,

     D,(x)= {o2A,(.)-A,"(.)} [ iog Rs"{i{!(i).i)o}g iKx) -.g{i+.(.)}] .

Thus, V(x, r) is summarized as follows:

     IP'(x, r)=62 I-S- r"2 UL.+ ipo(x, r*)l +6`ipi(x, r") + ･･･････････････ .

                    5. Surface Pressure CoeMcient

   Using the above approximate solutions, each velocity component is expanded

in a power series of 6 shown below:

                 u=6ul+63u, + ････････....... ,

                 v=6r"tu where, to=O(1),
                              /
                 w== wo+62wi+6`w2 + ･･･････････････ ･

Then, the surface pressure coeMcient Cp is expanded as
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                 Cp==Cpoo+62Cpn+64Cp22+''''''''''''''',

where

                 Cpoe=" 1-wo2,

                 Cpii=== -(ui2+v2+2wowi) ,

                 C.,,=-(w,2+2vv,w,+2u,u,) .

Then, the first order .approximation Cpi arid the second order approximation Cp2

to the surface pressure coeMcient Cp are written as fo11ows.

                 Cpi=Cpeo+62Cpii

                 Cp2=Cp1+64Cp22

                      6. Numerical Calculations

   In this paper, we consider a slender ellipsoid and a siender parabolic spindle

given by I1(x)=Vl-x2 and ]F<x)== 1-x2, respectively.

6.1. Mow patterns past a slender body

   Flow patterns for the irrotational fiow, the rotational flow with a paraboloidal

velocity distribution and the swirling fiow past a slender body are shown in Figs. 5,

6 and 7, respectively. Stream lines in the neighborhood of the front end of the

body are shown interrupted for the parabolic spindle in Figs. 5 and 6, and fbr the

a-o .1

Fig. 5.

                                     O==O.1

Flow pattern for irrotational fiow past a slender body of revolution in a tube
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y Ellipsoid of revolution

O.5
O.4
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T Parabolic spindle

-- O.5
O.4
O.3
O.2
O.1 l

. - - - . . .

' t

amax=O.4

Fig. 6. Flow pattern

revolution in

fbr rotational fiow

a tube, upstream

            S==O.1

past a slender body of
condition w = rv (1- ]{l2 )

vEllipsoidofrevolution
O.5
O.4'O.3

O.2
O.1 ,

t

amax==O.4
S= O.1

T
O.5
O.4
O.3
O.2
O.1

Fig. 7.

Parabolic spindle

Flow pattern fbr swirling flow past a

revolution in a tube, Rossby number=:1/3

---

    evmax="O.4
        a==o .1

slender body of
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ellipsoid and the parabolic spindle in Fig. 7, because this analysis is not valid in this

region. However, stream lines in the neighborhood of the front end of the body are

not shown interrupted for the ellipsoid in Figs. 5 and 6. For both the numerically

calculated results`' based on the distribution of the finite number of doublets and the

                                                           'present analytic results are shown for the ellipsoid in Figs. 5 and 6, and these results

are graphically indistinguishable from each other.

    From these flow patterns, it is revealed that stream lines become dense near

the body and coarse near the tube wall for the irrotational fiow. Stream Iines in the

swirling ftow far upstream are denser near the tube wall than those in the irrotational

fiow.

6.2. Surface pressure distribution

    Surface pressure distributions for the irrotational flow, the rotational flow and

the swirling fiow far upstream are shown in Figs. 8, 9 and 10. Broken lines are

Ellipsoid of revolution

1.0

1.5

8- o

-e.5

-1 .0

-1.5

-2.0

I

crma:FO.1

o12o.4O.6
･lxlo

,
,
.
8
l

amafiO.2

t:.1

cvma"O.

antdiO.4

.

Parabolic spindle

beO,1

cvmasi=:O.1 '
t

oi.2o.4O.6･
lxlO .8

amaf= O.2

1 .o

1.0

O.5

oN(o

-O.5

-1.0

-1.5

-2.0

crntasi==O･3

amax=O.

Fig. 8.

   cps=cpoo+orqpii, beo.1

Surface pressUre distribution for

irrotational flow past a slender

body of revolution in a tube
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  O.5
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dcvmax==02

armaxi=O.3
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:
t
J
x
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O O.2 O.4 O.6 O.8 1.0
            Ix[
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   -O.5
      O O.2 O.4 O.6 O.8 1,O
                   1an
Fig. 9. Surface pressure distribution for

      rotational flow past a slener body

      of revolution in a tube, upstream

                     r2
      condition w= va (1 -Rr,2)

tvma:f=O.1

amaf'O.2

aVmax=O.3

tvmat=O.4

a=on
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Ellipsoid of revoluti6n

l

1.0

e.s

.s"

qo

-O.5

---
1 .0

-1.5

-2.0

1.0

O.5

K
oo

--O.5

-1 .0

-1 .5

-2.0

e･2.0.4O .6vaO
'
t
8
1crmahi='O･1
1

amar--02

andO.3

crndO.4

Parabolic spindle

oa'e .q

1.0

O.2O .4O.6 IXI O.8

antafiO.1

crmai=O･2

1
.

amdiO.

crnfO.4

.o

Fig. 10. Surface pressure distribution for swirling fiow

past a slender body of revolution in a tube,

Rossby number == 113

t}=O.1

drawn outside the validity range of the present analysis in these figures. It can be

seen that the surface pressure coeMcients decrease as the blockage ratio a... increases.

    Since these surface pressure coeMcients are normalized by the dynamic pressure

on the axis of the tube, surface pressure coeMcients for the rotational flow far up-

stream take larger values than those for the irrotational flow and the swirling flow

far upstream. However, if surface pressure coeMcients fbr the rotational flow are

normalized by the dynamic pressure with the mean velocity, these values become

four times as much as the values obtained in this analysis.

6.3. Effect for the reciprocal a of a Rossby number

    Surface pressure coeMcients on the center cross section of the body in case 3

are shown against the reciprocal o of a Rossby number in Fig. 1 1.

    From this figure, the surface pressure coeMcient in a=3 decreases about 4

percent than that in o=O in both the blockage ratio a... of O.2 and O.4.

6.4. Comparison of calculated results by this analysis with those by numerical method

    The calculated results by the present analysis fbr case 1 and case 2 are compared

in Fig. 12 with the numerically calculated result using a doublet distribution.
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                                                         '
     ' Ellipsora ofcrrevolution ,., Paral)dlic6spindle

                                         o 123

.

crmati=O.2

S=O.1

ama""O.4

.o

.

cvmaaf=O.2

beO.1

cvmaaf==O.4

13

        --o.s ---o.s

        -1 .0 --1 .0

        --1.5 -1,5
           '

                                                                .             center cross section center cr･oss sectlon
              of body (x==O) of body (x=O)
           Fig.Il. Relation between surface pressure coeMcient and re-
                   ciprocal of a Rossby number for swirling fiow

                                                    Enipseid ef revti1titien.

       i.o Empseid of revoiution o.i o.2 o93 o.4 'o.s
                                                o

      O,.5
                                              -O.5

     .C"X･ .za",       o
                             .O -1.0
     --e.s

     -1 .0
                                               -2.0

      -･-1.5
                                               -2.5
                                                            amax--O.4
      -2 .o center cr?;s--soe)ctien of body
                    analytic resvlt analytic result
                 - nutnerical result ---- numerical result
  Fig. 12. Comparison of analytic results Fig. 13. Comparison of analytic results

          with numerical results for ir- and numerical results for vari-
          rotational and rotational fiow ous values of slenderness ratio
                                                 in the case of irrotational flow

                                                                       '
                                                                   '    These calculated results are graphically indistinguishable from each other in

this figure. Therefbre, the present analytic method can be used in practice. ,

                                                        '
6.5. Validity range of slenderness ratio O

    The calculated results using this analysis are varying the value of 6 with the

numerically calculated results for the ellipsoid of revolution in ease 1 in Fig. 13.

    It is shown from this figure that the present analytic method is valid up

o.

para.boloidalvelocity

distributienll
2or4oi6gxtols.."

.

.1 .

uniformflew

anfO.4
cao.z

-
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to 6=O.35. The surface pressure coeMcient dereases as the slenderness ratio 6
.

Increases.

6.6. Validity of expansion in slenderness ratio b

   The first order approximation Cpi and the second order approximation Cp2

to the surface pressure coeMcient fbr the ellipsoid are shown in Table 1 for both

the blockage ratio a... of O.2 and O.4 in ease 1.

   From Table 1, a difference between the approximate surface pressure coeMcients

Cpt and Cp2 in the case of6=O.1 can not almost recongnized. However, in the

case of6==O.3, the second order approximation Cp2 is smaller by 1 to 3 percent than

the first order approximation Cpi.

   Thus, the surface pressure coeMcient Cp can be approximated by the first order

approximation Cpi with good accuracy.

    Table 1. Comparison between the first order approximation and the second order

           approximation of the surface pressure coeMcients for slenderness ratio fi

           of O.1 and O.3 in the case of irrotational flow

                         Ellipsoid of revolution

amax

O.2

O.2

O.4

O.4

o

O.1

O.3

O.1

O.3

[x･I

Cp1

CP2

CP1

Cp2

Cp1

Cp2

CPi

Cp2

o.o

-O.57op

-O.5747

-O.67oo

-O.6910

O.1

-O.5667

-O.5670

-O.6629

-O.6836

      l-1.7883l -1.7516

-1.7886

-1.8724

-1.8946

-1.7519

-1.8357

-1.8570

O.2

-O.5"O

-O.5"2

-O.6421

-O.6621

-1.M59

-1.6461

-1.73oo

-1.7486

O.3

-O.5072

-O.5074

-O.oo88

-O.6278

-1.4828

-1.4830

-1.5676

-1.5822

O.4

-O.4581

-O.4583

-O.5656

-O.5833

-1.2789

-1.2791

-1.3657

-1.3755

O.6

-O.3318

-O.3320

-O.4655

-O.4808

-O.8192

-O.8192

-O.9207

-O.92oo

O.8

-O.1895

-O.1898

-O.4162

-O.4348

-O.3864

-O.3861

-O.5596

-O.5382

Cpi=Cpoe+02Cpn, Cp2==Cpl+64Cp22

                           7. Conclusions

   A rotational and an irrotational flow past a slender body of revolution located

on the axis of an infinitely long tube of constant diameter is analyzed using the

slender body in slender tube theory and a comparison is made between these analytic

results and other numerical results calculated from the distribution of the finite

number of doublets.

   Following conclusions are obtained;

(1) The solution is more easily obtained using the method of the present analysis

than using the numerical method.

(2) The validity range of the slenderness ratio 6 is up to O.35 in the present analysis.

(3) It will be suMcient fbr the surface pressure coeMcient to be obtained using the
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first order approximation Cpi.

(4) The surface pressure coeMcient decreases as the blockage ratio, the slenderness

ratio or the reciprocal of a Rossby number increases.

(S Values of the surface pressure coeMcient fbr various far upstream conditions

become small in order ofthe rotational fiow with a paraboloidal velocity distribution,

the irrotational fiow and the swirling flow, respectively.

1
)
2
)

3
)4
)5
)

                         References

Wei Lai, J. Fluid Mech., 18, 587 (1964).

G.K. Batchelor, An Introduction to Muid Dynamics, Cambridge at the University Press,

(1967).
J.D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell Publishing, (1968).

C. Tojo and H. Nakatani, Bull. Univ. Osaka Prefecture, Ser. A, 21, 1, 1 (1972).

P. Levine, J. AerolSci., 25, 33 (1958).

'


