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Abstract

This paper presents a new decoding method of redundant residue polynomial
codes. The decoding method has an advantage of correcting errors easily by checking
the degree of the product of a polynomial corresponding to a received code and the
moduli corresponding to error positions. The number of operations needed for this
decoding method is about 1/10—1/100 times as large as that needed for the previous
methods. Then the number of decoding operations is examined in relation to the
construction of the codes in the case of burst-error correction.

1. Introduction

In recent years, many effective codes for multiple-burst-error correction have
been proposed. The one is the Reed-Solomon codes (abbreviated to R-S codes)
over a finite field, which are also capable of correcting independent errors®®. The
others belong to a class of codes that includes R-S codes as a special case and is
constructed using Chinese Remainder Theorem in the residue number system®+*.
The efficiency of these codes does not so much get worse even when their code length
is long and error-correcting capability is great. Especially, for the correction of
both independent errors and burst errors, it is exceedingly good®. Unfortunately,
however, their decoding methods are so complicated that the practical use of them
seems to be difficult.

This paper proposes a new simple decoding method of multiple-burst-error-
correcting codes using the residue number system. These codes can correct phased
burst errors or block errors. Each block is expressed as a polynomial over GF(2)
or an element over GF(2”). They can correct ¢ erroneous blocks by the aid of 2¢
redundant blocks. It is shown that they are so efficient that they always meet
Varshamov-Gilbert bound® and furthermore approach Gallager bound? asymp-
totically for burst errors.

2. Residue Number System

Let GF(q) be a finite field with q=p™ elements, GF(q)[x] be a ring of polynomials
over GF(q) and any polynomial be the elements of GF(q)[x], where p is a prime
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number.

(Definition 1) Two polynomials mu(x) and my(x) are said to be relatively prime
if and only if g(x)|mi(x)*, g(x)|m:(x), and g(x) is a constant polynomial.

(Definition 2) Two polynomials a(x) and b(x) are said to be congruent for the
modulus m(x) or simply congruent modulo m(x), denoted a(x)=5(x) mod m(x), if
and only if m(x)|(a(x)—b(x)).

(Chinese Remainder Theorem) Let mu(x), ms(x), ..., and m.(x) be relatively

prime in pairs and M(x) denote their product ITYm,(x). If ai(x), ax«(x), ..., and
i=1

a-(x) are any given polynomials, then there exists one and only one member f(x) of
GF(q)[x] such that

deg[f(x)] < deg[M(x)]** | )
and
JX)=a(x) mod m(x) (i=1,2,...,r). 2
Let ¢,(x) be a polynomial satisfying
f}‘ﬁg t()=1 mod m(x) (i=1,2,...,r) 3)

The existence of such polynomials is assured by the assumed relative primeness
property of the m,(x). Then f(x) is given by the following equation:

J)= jnlllgg tL(x)a(x)+ :Zgg t(xX)az(x)+...
+ ﬁf E’g t.(x)a(x) mod M(%). @)

The algorithm of constructing 7,(x) is stated in Ref. (3) in detail.

3. Code Construction and Decoding Method

The decoding method mentioned here is similar to the error correcting method
in the residue number system using integers®”. The following discussions in this
paper are confined to q=2.

Let mi(x), me(x), ..., and m.(x) be n moduli which are relatively prime and M(x)
denote ﬁm,(x). Furthermore, assume that the degree of each m,(x) is d and kd
g=1
information symbols u=(uo, ui, ..., uxa_1) are represented by a polynomial:

F(x)=uwo+wx+...Ftga-1 x5, S

Then in place of the original block u, the coefficients of a;(x) are sent in order as
follows:

* 2(x)| mi(x) denotes g(x) divides m(x).
** deg[f(x)] denotes the degree of f(x).
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v=(a1(x), ax(x), ..., an(x)), : i (6)
where a(x)=Fx) modm(x) (I=12,..,n) )
and deg [a{x)]<<d. The vector v is called the residue representation of F(x), and
the vector corresponding to the polynomial a,(x) is named the i-th block.

Next we show a decoding method. Assume that the /;-th, the L-th, ..., and the
Ji-th blocks are erroneous and the received code v’ is

v=(a' (x), @’ (x), ..., a»’(x)). ®)

Let an error vector be

e=(0, ..., en(x), ..., 0, ..., e;(x), ..., 0). C))
Then the following relations hold:
aX)=a,(x)t+e(x) modm(x) (i=1,2,..,1), } (10)
a/(xX)=afx) (=)

Let F'(x) and E(x) (deg [F'(x)l<nd, deg [E(x)]<nd) be polynomials whose
residue representations by modulo m(x) are Egs. (8) and (9) respectively. Then,
from Eq. (4), F'(x) and E(x) are represented as follows:

F'(x)Eg 1148 t(X)a’'(x)  mod M(x), _ (11)

E(x)E;1 %((’;)) t(Xen(x)  mod M(x) (12)
and

F(X)=F(x)+E(x)  mod M(x). (13)
Let us define

B(x) = g n[q), (2) t(Xen(x)  mod D), (14)

where D(x)=1t7 my(x), then from Eq. (12), E(x) becomes
i=1

EQI="D 31 sy e ()= P B, 1s)
where deg [B(x)] < deg [D(x)]. (16)
Thus, both Egs. (15) and (16) lead to

(n—1)d < deg [E(x)] < nd. a7
Eq. (13) yields

F'(x)=F(x)+E(x) (18)

and
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(n—1)d < deg [F'(x)] < nd. - 19
On the other hand, Eq. (5) assures

0=deg [F(x)] < kd. . . (20) -
Consequently, if kd < (n—t)d; that is

n—k>t, - | @1)

the next theorem is obtained from Egs. (19) and (20).
(Theorem 1) If n—k=t¢, a code vector obtained from Eq. (6) can detect errors
less than or equal to ¢ blocks as follows:
(i) If 0=deg[F'(x)] < kd, no error occurs,
(ii) If kd<deg [F'(x)] < nd, errors less than or equal to ¢ blocks occur.
Besides, the following several propositions hold:
(Proposition 1)

d < deg [D(x)F'(x) mod M(x)] < (k+t)d. 22)
(Proof) The equality ]
F=FG)+ 50 B
yields
D(x)F'(x)=D(x)F(x)+M(x)B(x)=D(x)F(x) mod M(x). (23)

Then, since 0=deg [F(x)] <kd and d< deg [D(x)]=td, Eq. (22) is derived. QED
(Proposition 2)

d < deg [D*(x)F'(x) mod M(x)] < (k-1)d, 24)

where D*(x)=D(x)P(x) and deg [D*(x)]=1td.
(Proof) Since 0=<deg [F(x)] < kd, deg [D*(x)]=1d and

D*(x)F'(x)=D*(x)F(x)+ P(x)M(x)B(x)=D*(x)F(x) mod M(x),

Eq. (24) is derived. QED
(Proposition 3)
(n—t)d<deg [D'(x)F'(x) mod M(x)]<nd ' (25)

where D’(x) denotes the product of moduli such that D(x) + D'(x)t.
(Proof) The equality

D/(X)F () =D'(x)Fx)+D'(x) % B()

yields

t D(x) + D’(x) denotes D(x) does not divide D’(x).
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D'(x)F'(x) mod M(x)
= DR +D'() o B~ MO

M(x)
D(x)

where Q(x) is a quotient of D'(x)M(x)B(x)/D(x) when divided by M(x). Eq. (26)
and the following three relations:

=D'(x)F(x) +-5 7~ {D'(x)B(x)— D(x)Q(x)} , - (29

D'(x)B(x)—D(x)Q(x) 0,
0= deg [D'(x)B(x)— D(x)Q(x)] = deg [D(x)]—1
and
d<deg[D'(x)F(x)] < (k--t)d
derive Eq. (25). QED
Thus, if (k+1)d=(n—1)d, that is
n—k=2t, @7

the next theorem is obtained from Eqs. (24) and (25).
(Theorem 2) If n—k=2t¢, a code vector constructed from Eq. (6) can correct
errors less than or equal to ¢ blocks as follows:
(i) If 0=deg [F'(x)] < kd, no error occurs.
(ii) If kd <(n—t)d=deg[F'(x)] <nd, construct the product of ¢ moduli, D*(x)=

ﬁ mu(x), such that it satisfies the inequality
i=1
d<deg [D*(x)F'(x) mod M(x)] < (k-+t)d. (28)

Then, using the received polynomial F'(x), the information part of the code is cor-
rectly decoded as

D¥(x)F'(x) mod M(x)
D*(x)

F(x)= (29)

(iii) If D*(x) that satisfies Eq. (28) does not exist, there must be uncorrectable errors.

4. Extension to Galois Feild GF(2™)

In the preceding sections, encoding and decoding are described in the ring of
polynomials over GF(2). In this section it is discussed that the same methods can
be applied to the ring of polynomials over GF(2").

First encoding is mentioned. Let « be a primitive element in an extension field
GF(2™) and let 2™ polynomials which are relatively prime be
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mi(x)=x,
ma(x)=x—1,
mg(x)ﬁx—w,
mn(x)=x—'-a2m'2 ’
(n=2m).

Denote k information symbols (o, us, ..., ux-1), us ¢ GF(2™), by a polynomial re-
presentation as follows:

F(x)=uo+wx—+...+ure-1x*1
Then, the equations

FO)=F(x) mod my(x),

F)=F(x) mod ms(x),

Fo)=F(x) mod ms(x),

..............................

F@")=F(x) mod m.(x)
lead to a representation of a code vector v:
v=(F(0), F(1), F(@), ..., F(@®" ).
These are Reed-Solomon codes.
Decoding can be performed by letting the degree of m,(x) be one for all i in the

decoding mentioned in Section 3. Now, the residue of M(x)/m(x) modulo m(x)
becomes :

( M(x)

mod my(x)) = a®satea? ... a?" 2
mi(x) ( )>

m=2)(2m-1)
= 2

= @™ t-DHE"-1)

(i=1,2, ...,n), (30)

where M(x)=ﬁ mi(x). Then, the equation
i=1

Zgz; ti(x)El mod Mi(X) (l=1, 2, vy n) (31)
states
t(x)=1 (@(=1,2,..,n) ' ‘ 2

and, since deg [M(x)/mi(x)] < deg [M(x)],
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F(X)= éai TJZE;'C; ,

(33)

where a,=F(x) mod mi(x) (i=1,2,...,n).
Therefore the operation modulo M(x) can be omitted when F(x) is recaptured.

5. Discussion

5.1. A Class of Codes

The number of moduli m,{(x) which decide each component a;(x) of a code vector
cannot be arbitrarily chosen. The maximum number of moduli m;(x) which can
be chosen is restricted by the degree d of m,(x) since each modulus is relatively prime
in pairs. Table 1 illustrates the maximum number » of moduli, which assigns the
maximum code length, versus the block length d in the polynomial ring over GF(2).

The maximum code length n is equal to 2 when the codes are constructed over
GF(2™). Table 2 shows the maximum code length n versus the block length m in
the polynomial ring over GF(2™).

Table 1. Maximum code length versus block
length (over GF(2))

block length maximum code length
d (bit) n (block)
3 4
4 6
5 9
6 12
7 23
8 37

Table 2. Maximum code length versus block
length (over GF(2™))

block length | maximum code length
m (bit) n (block)
3 8
4 16
5 32
6 64
7 128

5.2. Burst-Error-Correcting Capability and Number of Operations Needed for
Decoding
As mentioned previously, the codes which correct block errors are also effective
for burst-error correction, especially multiple-burst. This section discusses the
error-correcting capability and the number of operations needed for decoding of
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several codes which are constructed for burst-error correction.
5.2.1. Operations required for the decoding process
The operations needed for decoding consist of the following three steps.
(i) The operations to recapture F'(x) from the received code vector (a':(x), a's(x),
.» @'n(x)) using the predetermined value of M(x)t,(x)/mi(x) mod M(x) as follows:

M(x)
mi(x)

(ii) The operation of D*(x)F'(x) mod M(x).
D*(x)F'(x) mod M(x)
D*(x)

5.2.2. The case of using multiple-burst-error-correcting codes

F'(x)= 2 L(x)a’(x)  mod M(x).

(iii) The operation of F(x)=

The codes which correct errors less than or equal to ¢ blocks can also correct

s-fold multiple burst errors with a total length & such that

b=d(t—s)+s 34
where d is a block length. Especially, for a single burst error, the correctable burst
length is

b=d(t—1)+1. 35)
In the case of correcting multiple burst errors, the number of operations needed
for decoding is equal to that required to correct errors less than or equal to ¢ blocks.

The number of operations needed for decoding is as follows. In step (i), # times
of multiplication of M(x)#,(x)a,’(x)/m:(x) and one time of calculation of the residue

modulo M(x) are necessary. In step (ii), the number of selecting D*(x) is <;l> and
for each D*(x), ¢ times of multiplication and one time of calculation of the residue
modulo M(x) are required. So at most (7) +(¢41) times of operations are necessary.

In step (iii), one time of division by D*(x) is required. Therefore, the total number
of operations is at most

nt2-4 (’t’) Lt 1). (36)

In the case of correcting a single burst error, (- 1) times of operations are needed
for step (i). In step (ii), as the number of selecting D*(x) is n regardless of ¢, the
number of operations is at most n(t+1). And in step (iii) that is one. Therefore,
the total number of operations is at most

n(t+2)+2. (37)

5.2.3. The case of interleaving single-error-correcting codes

Now we briefly explain an interleaving method. The method mentioned here
is one of constructing burst-error-correcting codes with large code length by con-
catenating some single-error-correcting codes with small code length.
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Let s single-error-correcting codes be

(du, a1z, ...y al,,)
(a2, @, ..., azn)

(@s1, Aszy ..., Gsn).
By concatenating these codes, a transmitting code
(@11, @21y <.ey sty Quz, oz, ooy szy ooey Biny Qany --ny Asn)
is constructed. This code can correct a single burst error whose length is
b=d(s—1)-+1, (38)
where d is a block length. The number of operations needed for decoding is
5(3n+2) (39)

because it is s times of the number of operations for a single-error-correcting code.
5.2.4. Comparison between two cases for single-burst-error correction

In this section, some comparisons are made between two kinds of single-burst-
error-correcting codes described in the preceding section, where one code, denoted
[a], uses a multiple-error-correcting code, while the other, denoted [b], interleaves
single-error-correcting codes. In the comparison, the block length, the code length
and the error-correcting capability of the two codes are constrained to be the same.
Table 3 illustrates the comparison between the number of operations required to
decode the code [a] and that to decode the code [b].

Table 3. Comparison of the numbers of operations needed for decoding
(each block has 8 bits)

co dne( é ?3 gth inf % 1; Itl; a,g ion lc):gggcite%t;l& the number of operations
b (bit) [a] [bl
96 48 17 62 42
128 64 25 98 56
160 80 33 142 70
192 96 41 194 84
256 128 57 322 112

As shown in Table 3, single-burst-error correction using the method interleaving
single-error-correcting codes needs smaller number of operations than that using
a multiple-error-correcting code. Moreover, as shown in Table 1, the use of a
multiple-error-correcting code cannot provide the construction of a long code, while
the use of the interleaving methods are capable of providing the construction of an
arbitrarily long code by increasing the interleaving number s. Therefore the method
of interleaving single-error-correcting codes is much preferable for a single-burst-
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error-correction.

5.3. Two Kinds of Constructions of Codes with the Same Length

When the codes with the constant code length n and the constant error-correcting
capability ¢ are constructed, the next two cases of selecting the moduli are considered.
[1] The case of using a few moduli with large degree.
[2] The case of using many moduli with small degree.
The number of operations needed for encoding and decoding in the case [1] is smaller
than that in the case [2] because the number of moduli is small. On the other hand,
the redundancy in the case [2] is less than that in the case [1}. For the burst-error
correction, the correctable burst-error length in the case [1] is longer than that in the
case [2], but the ratio of the correctable burst-length to the redundancy in the case
[1] is lower than that in the case [2]. For example, consider the next two codes:
[1] a code which consists of 9 blocks (each block has 8 bits) and corrects two block’s
errors and [2] a code which consists of 12 blocks (each block has 6 bits) and corrects
two block’s errors. The comparison of some characteristics of these codes is shown
in Table 4.

Table 4. Comparison between code [1] and code [2]

\—7.
T code [1] code 2]

code length n (block) 9 12
block length d (bit) 8 6
error-correcting capability

t (block) 2 2

rate k/n 0.56 0.67
correctable burst-length

b (bit) : 9 7

bl(n—k) 0.28 0.29

maximum number of operations 38 50
needed for decoding

5.4. Comparison of the Numbers of Operations Needed for Decoding

This section describes the outline of the decoding method in Ref. (3) and shows
the comparison between the numbers of operations needed for decoding by the
method in Ref. (3) and that in this paper.

Let the received code vector be (a/'(x), a'(x), ..., a.'(x)) and the number of
blocks of information be k. The decoding procedure is as follows:
(i) Select arbitrary k residue digits a(x) (i=1,2,..., k) from the received code
vector and recapture the polynomial f(x) corresponding to the residue representation
with k residue digits.
(ii) Perform similar calculations for all combinations of k residue digits.
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(iii) For (Z) recaptured polynomials, if all recaptured polynomials agree with

each other, decide that no error occurs.
(iv) If not all recaptured polynomials agree with each other, let the polynomial
which has a majority be the information polymomial.

In the decoding method in Ref. (3), the total number of operations needed for
decoding is

+D-(3) (“0)

since the number of operations of recapturing each f(x) is (k+1). The number of
operations is the same for both the multiple-burst-error correction and the single-
burst-error correction because the method in Ref. (3) is based on the majority
decoding.

Table 5 shows the comparison between the number of operations in the decoding
method [a] proposed in this paper and that in the method [b] in Ref. (3).

Table 5. Comparison of the numbers of operations needed for decoding

code length  information correcting the number of operations [a] the number
length capability of
n k t multiple single operations
(block) (block) (block) burst error burst error [b]
10 8 1 32 32 405
6 2 147 42 1470
15 11 2 332 62 16380
9 3 1837 77 50050
7 4 6842 2] 51480
20 14 3 4582 102 581400
12 4 24247 122 1637610
10 5 93046 142 2032316

As seen from Table 5, the number of operations needed for decoding by the
method presented in this paper is about 1/10~1/100 times for multiple-burst-error
correction and about 1/1000~1/10000 times for single-burst-error correction as
large as one needed for the method in Ref. (3).

6. Conclusion

A new decoding method of the redundant residue polynomial codes has been
proposed. This decoding method has the advantage of correcting errors easily by
checking the degree of the product of the polynomial corresponding to a received
code and the moduli corresponding to the error positions. The number of operations
required for decoding by this method is about 1/10~1/100 times as large as that
needed for the previous methods. For single-burst-error correction in this method,
the use of interleaving single-error-correcting codes is much preferable to that of a
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multiple-error-correcting code from a point of view of the number of operations
needed for decoding as well as the number of classes of codes.

A code in the ring of polynomials over GF(2) cannot have so long code-length.
But this disadvantage is removed by constructing a code over GF(2"). A code
over GF(2™) can be decoded in a similar way to a code over GF(2). When codes are
constructed over GF(2™), the matter of facility of implementation is an open question.
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