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Optimization of Ship Fleet-Size*

Yoshisada MUROTSU** and Katashi T AGUCHI**

(Received November 15, 1974)

A basic concept is proposed in this paper for determining the optimum fleet-size to
meet a transport demand in an arbitrary route with one port loading and one port
unloading. The quality of a fleet is considered to be judged based on the transport costs,
which consist of link costs and node costs. Mathematical models relating the transport
costs to the fleet-size, i. e, the size and service speed of a ship, the number of ships
and their kinds, are developed for the case of crude oil carriers. The optimization
problem is set up to determine the optimum fleet-size minimizing the transport costs,
considering the technological and geometrical restrictions. For the solution of the
problem, the concept of dynamic programming and nonlinear programming techniques
are applied, and a versatile software program is developed. The effects of the transport-
ation system’s factors, such as the total transport demand, the draught limits, the tolls,
the storage costs, etc., are discussed concerning the resulting optimum fleet-size,

1. Introduction

It is important for both developing and developed maritime nations to hold an
optimum mercantile marine. Mercantile marine will contribute also to improving the
international trade and payments and to fostering the shipbuilding industry and its
allied industries, Thus, the optimum selection of the fleet-size for a specific purpose
constitutes a key decision making particularly in capital investment, considering the
effective utilization of the limited resources. For this purpose, fully taken into account
must be the technological and economic aspects of the fleet. However, a macroscopic
characterization of the fleet containing the essential factors of the fleet suffices to
estimate the amount of the capital investment. Systems engineering techniques may
provide us the powerful tools for accomplishing the above mentioned purpose. That is,
analysis and modelling of the transportation system and optimization of the fleet may
successfully be done by using the techniques developed in the field of systems
engineering.

Studies so far made are mainly concerned with the economy of an individual ship
design??®  and little has been done on the selection of the optimum fleet from the
transportation systemfs point of view®®,

A basic concept is proposed in this paper for determining an optimum fleet-size to
meet a transport demand in an arbifrary route with one port loading and one port

unloading. The qualityr of a fleet-size is considered to be judged based on the transport

*The main part of this paper will be presented as a national contribution from Japan at the
conference of International Federation of Operations Research Societies (IFORS 75), Tokyo-Kyoto
Japan, 17—23 July 1975.

**Department of Naval Architecture, College of Engineering,
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costs, which consist of link costs and node costs, Mathematical models relating the
transport costs to a fleet-size, i. e., the size and service speed of a ship, the number
of ships and their kinds, are developed for the case of crude oil carriers. The
optimization problem is set up to determine the optimum fleet-size minimizing the
transport costs, considering the technological and geometrical restrictions concerned.
The transport demand is assumed to be given for the route considered. For solving
the problem, the concept of dynamic programming and nonlinear programming
techniques are applied, and a versatile software program is developed for determining
the optimum fleet-size. The effects of various factors, such as the transport demand,

the draught limits, tolls, etc., on the optimum fleet-size are discussed.

2. Statement of Problem

2.1 Basic assumptions
Following assumptions are made of the models.
(1) Crude oil carriers are considered. Thus the transport demand is crude oil cargo.
(2) Transport between two ports are considered, and the transport flow is one sided, i.
e., one port loading and one port unloading.
(3) Ships of identical age are considered.
(4) Ship arrivals are regular and no queues are considered at both ports.
2.2 Control variables
Control variables for determining the optimum fleet-size are the types of ships and
the number of them. Types of ships are assumed to be represented by their dead
weight and full load service speed, and the fleet is defined as a set of ships.
2.3 Optimality criterion

As the criterion for the optimality of the fleet, the transport costs are considered.

~Ship cost
. Node cost =~—t-Operation cost

L Personnel expenses
Transport cost

~ Port expenses

Link cost ==t-Storage cost

— Management expenses

Fig. 1 Transport costs

The transport costs are generally categorized as shown in Fig. 1. Of these costs, the
costs depending on the control variables 1i. e., dead weight, service speed and the
number of ships are taken into consideration for the determination of the optimum

fleet-size. The detail of the models will be given in Section 4.
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2.4 Technological and geometrical restrictions

Concerning the candidate types of ships to be selected, the following assumptions
are made in consideration of the technological restrictions and the convenience of the
treatment.

(1) The maximum and minimum dead weights of the member ships constituting the
fleet are specified.
(2) The maximum and minimum service speeds of the ships are specified.

Further, considering the draught limits of the route, the maximum sizes of ships
are taken into account for both full and ballast load conditions, corresponding to the
conditions of the routes.

2.5 Problem

Given the transport demand between two ports, the following problem is considered.
PROBLEM?” Find the optimum fleet size, i. e., the payload and the service speed of a
ship, the number of ships and their kinds, to minimize the transport costs, considering

the technological and geometrical restrictions concerned.”

3. Mathematical Models of Transport Costs

3.1 Link costs

Link costs which can be expréssed in terms of the control variables and differ
from fleet to fleet are considered. These are listed below :
(1) Ship costs

i) depreciation expenses ii) equipment fund interests iii) repair expenses

iv) insurances v) sundries
(2) Operation costs

i) fuel and oil expenses ii) tolls
(3) Personnel costs

Complement and reserves expenses 4

‘Mathematical models and cost data related to the calculation of the above quantities
are given in the following sections. '

3.1.1 Maximum operating pdwer, fuel consumption and the number of crews.

The mathematical models of the maximum operatmg power (PSN ), fuel consu-
mption (FOC) and the number of crews (CRN for complement and CN with reserves)
are built by using the data of 100 Japanese oil carriers®, where the least square
method is applied for the model building. The mathematical models and their multiple
correlation coefficients are given in the following?”.

PSN=0.12553%X10"2 DW?®7 V34+4325.913 (HP), R=0.982 - (3-1)

FOC=0.447849x10"2 PSN+13.692 (ton/day), R=0.992 (turbine engine) (3-2)

=0, 362478 X 10-2 PSN+2. 32131 (lon/day), R=0.998 (diesel engine) (3-3)

CRN=1.63719 X DW"2+413. 34658 (persons) _ (3-4)

CN=0.63380 x DW®3+14. 07222 (persons) (8-5)
where DW and V are expressed in dw? and kt.
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3.1.2 Ship construction costs

The mathematical models of the ship construction costs per tonnage (CC) and
the turbine engine cost per HP (CME) are estimated by using the cost data in the
latter half period of 1971®. The results are given as follows.

CC=5.9%102 DW-*541.86 (10* yen|dwt) (3-6)

CME=0.13651[(PSN/10)%—9.0 (PSN/10*)+50.5] (10* yen/ HP)

(for PSN<45000HP)
—4.129125 ' ‘ (3-7)
(for PSN =Z45000HP)

The construction costs of the ship with arbitrary dead weight and service speed
are estimated based on the following assumptions: ’
(1) Main engines are of turbine type. .

(2) The full load service speed is 16 k¢ for the standard type ships. The construction

costs of the ships are given by Eq. (3-6).

(3) For ships with the service speed other than 16 %¢, the variation in the construction
costs is equal to that in the costs of the main engine.

Using the above assumptions, the constrution cost of the ship with dead weight
DW dwt and service speed V k¢ is calculated by the formula:

CCN=CCS+(CEN—CES) (10%en/dwt) (3-8)
where CCN=the construction cost of the ship with DW dwt¢ and V k¢

CCS=the construction cost of the standard type ship with DW dw¢ and V=16
kt, calculated from Eq. (3-6)

CEN=the main engine cost of the ship with DW dwt and V k¢, calculated
from Eqgs. (3-1) and (3-7)

CES =the main engine cost of the standard type ship with DW dwt and V=16
kt, calculated from Egs. (3-1) and (3-7).

For the illustration, the construction costs are calculated and shown in Fig. 2 for
the cases of V=14, 16, 18 kts.

10
| top . 18kts
middle :16kts
8 bottom :1dkis
=
2
S 6
58
R
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3 4
5
)
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1 1 1 1 ] ] 1 H
1 2 3 5 7 10 20 30 50

DWT (X10% ton)

Fig. 2 Ship construction costs
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3.1.3 Other cost data
The tolls passing the short cut route (see Section 4.2) are assumed to be
CCNL=C,xDW (yen/passage)

where C,; is a given constant.
Uniform annual returns are adopted as the method of depreciation. Cost data for

131

(3-9)

the calculation of the link costs are given in Table 1. The interest rate of the

Table 1 Cost data

ballast condition

Ttems } Specific Remark
at port of shipment : 1.3 days each includes 0.5
Lay days at port of discharge : 2.0 days spare day
Rate of operation ‘ 94%
Sea speed at 1. 07 x (sea speed at full load condition) a=1,07

Depreciation
expenses

uniform annual returns
life of service : 10 years
residual value : 1095 of original value

Crew expenses

annual expenses per person: 3,000,000yern/man/year
rising rate : 129 per year

Repair expenses

10 years total sum/tonnage price=0.1+0, 004 DW x 10~

Hull insurance

insurable value : tonnage price
insurance rate : 1%

Interest rate of
equipment fund

See Table 2

based on the 30th
Keikaku-zosen

Sundries

200 yen/dwt

Fuel expenses

cost of heavy oil : 6,000 &en/ton
fuel consumption at port: 60% of “at voyage”
fueling base : port of shipment

Weights of fuel
oil etc.
(at departure)

fuel oil : (days at voyage+0, 6days at port). FOC
fresh water : 10kg/person/day

crew & their effects : 120kg/person

provisions : 2, 5kg/person/day

un-statutory spares : PSNx 0. 005 ton

Table 2 Interest rate of equipment fund

Percentage ﬁ;?;‘ég% Repayment
Treasury investment fgr%lagi price 6.5% Egrr?x gf f:ézgg)i?;rl: 2 8}’;21;5
Loan capital fgﬁ agi price 6.5% term of redemption : 10 years
Fund on hand tz(())l'%l agi price 7.0% | term of redemption : 19 years
}(?v%r(fkl(;lng l::zr;x)?tal) tgr/fiagi price 7.0% term of redemption : 10 years
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equipment funds is based on the 30th Keikakuzosen (Japanese Government Ship
Building Program) rate, and listed in Table 2.
3.2 Mathematical models of node costs

Only the port expenses and the storage costs are considered among the node
costs, because it is very difficult to relate the management expenses to the control
variables and these are presumed not to depend directly on the control variables.
3.2.1 Port expenses

The port expenses are generally composed of port dues, quarantine fee, customs
charges, pilotage, light dues, towage, line handling charges, agency fees and sundries.
The costs other than port dues, pilotage and light dues are almost constant regardless
of the ship size in many ports. In this paper, a simple mathematical model:

PE=25.0xDW (ven) (3-10)

is used. The formula (3-10)is compared with the actual data inFig. 3.

20l e Kharg Island( Iran)
o —==w~== Khol al Amaga(Irag)
2 —eedeewe Mena al Ahamdi( Kuwait)
X 15+ = Authors’ formula /
»
2
& 10f
LY
=
<O
& 5
- P
A -—‘___/
1 1 1 J
] ) 10 15 20

DWT (X104 ton)

Fig. 3 Port expenses

3.2.2 Storage costs

Storage costs are dependent on the construction costs of the storage systems and their
maintenance and administration expenses. Here, a simple mathematical model for the
storage costs is presented. Assume that the annual total transport demand is 7DT ton,
and it is carried by the fleet of the identical ships. Denoting the transport capacity
per trip in tonnage and the average time between the ship arrivals in days by ST
and 7, the variation of the inventory in the mean becomes as shown in Fig. 4.

Denoting the storage cost per day per tonnage by S., the average storage cost Cs,
is given by

Cs:=8S:XSTX(T[2)+8Se XSTyXT
=182.5XS: X ST X (ST+2.0x ST, |TDT (3-11)

where the relation ST=T X (TDT[365) is used in the mathematical manipulation,
and ST, is the emergency storage.

The storage cost per day per tonnage, S., itself depends on the construction costs

of tanks, etc. and the maintenance expenses. Thus S. is a function of the ship size
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Inventory

e ST——->1

P R

Time

Fig. 4 Variation in inventory

and the emergency storage. Here, a simple model to S. is adopted :

Se=Ce; X (ST+STy)+Csq (yen/day|ton) (3-12)
where C;; and C,, are the given constants.
When the fleet consists of different types of thips, ST in Eq. (3-11) should be
replaced by the maximum transport capacity of the fleet. However, for the simplicity
of the analysis, the formula (3-11) is used in the following even for the fleet
consisting of different types of ships. Hence, the storage costs result in the lower

estimation for the ships other than the ship having the maximum transport capacity.

4. Mathematical Models of Restrictions

4.1 Types of ships and transport capacity
The restrictions on the dead weight and the service speed of the ships are assumed
to be given as follows:
DWoinSDW=D Wi 4-1)
ViinSV=EViae (4-2)
where DWainy, DWnaz, Vmin and Vwme. are the given constants. ‘
Taking account of the deviation of the transport demand, some allowances are
assumed to be given to the transport capacity of the fleet. The annual transport

capacity of the fleet, SS7T', is given by
SST=3. ST+ x NR: X NS: (4-3)
i=

where ST:, NR; and NS are the transport capacity per trip, the number of trips per
year and the number of the ship type 7, and m is the number of the types of the
ships. Thus the allowances in the annual transport capacity are given in the form:
(l-a)SSST |TDTZ(1+a,) (4-4)

where a; and @, are the given constants.
4.2 - Draught limits

Consider the case where there are two routes between two ports and the route
selection is made based on the dead weight and the loading conditions. Denoting the

short cut and detour lengths of voyage by LV, and LV, the lengths of voyage at
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the full and ballast load conditions, FLV and BLYV, are categorized as follows:

FLV=LV,, BLV=LV,; for DWu;» <DW<DW,; ' (4-5)
FLV=LV, BLV=LV, for DW,=DWIDW, (4-6)
FLV=LV, BLV=LV, for DW,<DW=<DWno- 4-7)

where DW; and DW, are the limit dead weights for both full and ballast load

conditions.

5. Solution to Problem

5.1 Algorithmic procedure

First, restate the problem mentioned in Section 2:

ORIGINAL PROBLEM “Given the annual transport demand, 7°'DT, find the types
of ships (DW:, V.:) and number of them (&;) to minimize the average annual
total transport costs, H., considering the restrictions given in Section 4.”

The problem is a nonlinear programming problem. However, the difficulty of the
problem lies in the fact that the number of ships are not known and it is a control
variable to be optimized. Here, an algorithmic procedure is proposed using the concept
of dynamic programming.

For the application of dynamic programming, the annual total transport demand,
TDT, is divided into N, parts, where N, is an appropriately selected number. From
the upper part of TDT, those are denoted as the 1-st part, the 2-nd part, ---, the
Ng-th part, respectively, as illustrated in Fig. 5. The minimum transport demand is
given by

DDT=TDT|N, (5-1)

l Ny Ioool kk Iocul k Io-ol 7 l
I('DDT-)' eee I(—DDTﬂ ese F—DDT')' eoe F—DD.Tﬁ

< .
= ToT >]

Fig. 5 Division of total annual transport demand

From this, it is seen that the number of the parts, N,, must be selected, considering
the compromise between the requirements on the optimization accuracy and the
computer processing time. The original problem is reduced to the problem to determine
the optimum type of ship (DW, V) to carry the parts of TDT, which is given in
the form to carry from one part to another part.

For the solution of the problem, the principle of optimality in dynamic program-
ming® is applied: “For any 2 (1=k=Ny), let the parts of TDT, i.e., from the first part
to the (k-1)-th part, have been carried by some fleet. Whatever the number of parts
carried by any type of ship starting from the k2-th part may be, the subsequent parts
of TDT must be transported by the optimum types of ships.”

The solution to the original problem can be obtained by solving the following
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two subproblems:

SUBPROBLEM 1 “Find the optimum type of ship, i. e, DW®° (kkk) and V° (kkkR),
to carry the k-th to Ek-th parts by a single ship, considering the restrictions given in
Section 4.” ‘

SUBPROBLEM 2 “Find the optimum fleet to carry the k-th to Na-th parts, conside-
ring the restrictions given in Section 4.” ’

Subproblem 1 is to determine the optimum type of ship to carry the transport
demand DT = (kk-k+1)XDDT by 4 single ship, and thus can be solved by using a
nonlinear programming technique.

Subproblem 2 is solved as follows. The minimum transport cost carrying the
kk-th to No-th parts by the optimum fleet and the minimum transport cost carrying
the k-th to kk-th parts by the optimum type of ship. are denoted by H° (kk) and
H. (kEE), respectively. It should be noted here that H.(kkk) can be obtained by
solving subproblem 1. Thus, from the principle of optimality, the minimum transport

costs carrying the k-th to N,~th parts are given by
H°,(B)=min [H.(kkE)+H° (kk+1)] (5-2)
k<RkE<Ng

where H°,(N;+1)=0. The optimum value of %% is denoted by kk(k).

Using the recurrence formula (5-2), the solution to the original problem can be
obtained by sequentially solving subproblem 2 from k=N, to E=1. This fact is easily
proved by mathematical induction.

5.2 Computational considerations
For the economy of computation, the following remarks should be taken into

account.

(1) The minimum and maximum amounts of cargo which a single ship can carry
per year is calculated, and thus optimization in subproblem 1 has only to be made
on the range

DT i o< (kk-k+1) X DDTZDT mo» (5-3)
where DTmin and DTma: are the minimum and maximum amounts of cargo which

a single ship in the candidate fleet can transport per year.

(2) Since the optimum type ship which carries a specified amount of cargo is needed
for the optimization of the fleet, the single sweep solution to subproblem 1 in the
range given by Eq. (5-3) and storing the results in the memory are sufficient for
the optimization followed. e
Considering the above mentioned remarks, an algorithmic procedure is illustrated

in Fig. 6 for a hypothetical example, where Ny=6, DTw:.=DDT, DT na-=4XDDT.

The arrows in the figure designate the optimum solutions for the case of carrying the

corresponding part to the last part, i. e., the solutions to subproblem 2. On the heavy

lines, the optimality principle is applied. Only for the cases designated by the number
in the righthand side, the solution to subproblem 1 is needed because in any other

cases the foregoing solutions are available. Thus, no new solutions to subproblem 1

are required for the cases where £2<2 in this example.
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Fig. 6 Illustration of algorithmic procedure

Fig. 7 illustrates the optimization procedure for subproblem 1. For a given transport
demand, DT, the candidate types of ships are searched in the three ranges, i. e.,
DWoinSDWDW,, DW,<DW<<DW, and DW,=<DW=DW.g,., and comparing the

He/DW

(14+a,) XDT
DT
. (1—a)) XDT

<

Dwmin DWE D\Nb DVVmX
DW

Fig. 7 Optimization procedure for subproblem 1
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Fig. 8 Flow chart illustrating total optimization procedure

transport costs, the optimum type of ship is finally selected which gives the lowest

transport costs.
Fig. 8 is a flow chart illustrating the total optimization procedure,

6. Numerical Examples

Consider the case where the following values are specified:
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D Wi n=10000d20t, D Waa:=500000 drot
Vain=13kt, Vimar=19k¢, ay=0,=0.1
LV,=6600n. m., LV,=13200 n. m., ¢s0=0, DDT =100000 ton
The sequential unconstrained minimization technique (SUMT') combined with the

conjugate gradient method is applied for solving\the nonlinear programming problem
at each stage.

6.1 Link costs and transport capacity
In order to see the effect of the draught limits, the link costs and the transport
capacity are calculated for the standard type ships with various DW dwt and V=16

5
V=16kts dog
4
=
<° 3l 120
8 3
~ g
o 2.
2 2f 5
~
Z 15 §§,
i o
n \’ e
S 4t -~f10/2q/r; g
(]
& TE
= 10/20 10 &8
0 1 <
/15
45
(L4
6/15
1 1 1 1 1 1 1 O
1 2 3 5 7 10 20 30 50

DWT (X104 dwt)

Fig. 9 Link costs and transport capacity of standard type ship

kt. Fig. 9 illustrates the results for two cases of DW,=60000 dwt/DW,=150000 dwt
and DW,=100000 dwt/DW, =200000 dwt. It must be mentioned here that any tolls
are not considered for both cases. From the figure, it is seen that the link costs per
tonnage become lower as the types of ships become large. However, due to the detour,
the dead weights corresponding to the full load limit give the minimum costs per
tonnage for both cases. It should be noted here that the difference of the link costs
between those of the full load limit, the ballast load limit and the maximum dead
weight is very small for the former case.

6.2 Effect of total transport demand

- The optimum fleets for various annual transport demands are listed in Table 2.
The figures in the top rows correspond to the case of DW;=60000 dwt|DW , =150000
dwt and those in the bottom to that of DW,=100000 dwt/DW,=200000 dwt. The

tolls and the storage costs are set to zero in the above calculations. In the former
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Table 3 Effect of total transport demand on optimum fleet (S.=C;=0)

TDT Dw 14 H., No DW 14 H, No

5 1.36 15. 89 3.42 1 5.78 13.39 5.93 1
6.77 14. 33 6.71 1

10 4.25 13. 89 5.16 1 13.81 14. 1 10. 39 1

2.88 13. 95 4.31 1 9.99 15.54 8. 88 1
20 46. 48 16. 00 27.26 1

9.€3 14. 47 8.13° 2 8.14 14. 24 7.42 1

30 14.99 17. 00 12. 60 1 49.06 15. 89 28.38 1

9.33 14. 47 8.13 2 9.99 15.54 8. 88 2

40 45. 01 15. 67 26.12 1 49. 06 15. 89 28. 38 1
9,99 15.54 8. 88 5

50 5.78 13. 39 5.93 1 49. 99 16. 98 30.85 2

2.88 13.95 4.31 1 9.99 15.54 8. 88 6

TDT : xX10° ton/year, DW : x 10¢dwt, V :kt, H, :%x 108 yen/year, No : number of ships
Top : DW,;=60000 dwt/DW; =150000 dwt, Bottom : DWW =100000dwt/ DW , =200000 dwt

case, the various types of ships can be the constituents of the optimum fleet depending
on the transport demand. This can be explained by the fact that the differnce of the
link costs is very small between those of the full load limit, the ballast load limit
and the maximum dead weight as pointed out in Section 6.1. On the contrary, only
the types of ships below the full load limit are optimum for the latter case. This
illustrates the fact that the small types of ships which can pass the short cut route
is more economical than VLCC (Very Large Crude Carriers) in this case due to the
detour. However, it should be noted that no tolls are assumed to be imposed on the
ships passing the short cut route.
6.3 Effect of tolls

Using the model given in Section 3.1.3, the effect of tolls is discussed. As seen

from Table 4, there arise the cases where the types of ships which can pass the short

Table 4 Effect of tolls on optimum fleet (TDT =5x108 ton/year, S,=0)

C.

0 ' 1 100 f 300 600

DW V H,; No

DW V H, No

Dw V. H. No

DW V. H. No

6/15

5.78 13.39 5.93 1
49.99 16.98 30.85 2

5.83 13.26 6.73 1
49.99 16.98 30.85 2

5.69 13.63 8.34 1
49.99 16.98 30.85 2

17.59 14.98 12.42 1
49. 06 15.89 28.38
49.94 16.40 29.55 1

10/20

2.88 13.95 4.31 1
9.99 15.54 8.88 6

9.99 15.54 10.48 5
18.89 15.13 14.19 1

8.14 14.24 11.02 1
49.99 16.38 29.55 2

22.23 15.17 14.78 1
47.02 15.79 27.25
48.67 16.03 28.39

6/15
DW

: DW;=60000 dwz/DW,=150000 dwt, 10/20 : DW;=100000 dwt/DW,=200000 dwt

: k104 dwt, V@ ke, H, :

X108 yen/year, No : number of ships, C, : yen/dwt/passage
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cut route only in the ballast concition and/or which must pass the detour route in
either way become the constituent of the optimum fleet, depending on the tolls
imposed on the ships passing the short cut route.
6.4 Effect of storage costs

In order to illustrate the effect of the storage costs on the optimum fleet, the
storage cost coefficient, C,y, is varied with C;,=0 fixed, and the results are given in

Table 5. As Cs; becomes large, the storage costs of the cargo carried by individual

Tableo 5 Effect of storage cost coefficient on optimum fleet (T'DT=5x108 ton/year,
DW,=60000 dwt, DW,=1500000 dwt, emergency storage=tolls=0)

Cs,

0 ‘ 106 10-4 i 10-2

DW VvV HcNo]DW V H,No| DW V H,No| DW V  H, No

5.78 13.39 5.93 1 5.3514.64 5.97 1 5.73 13.54 5.98 8 3.53 17.42 6.59 2
49.99 16.98 30.85 2 | 49.99 16.96 31.04 2 14.99 17.30 13.26 2 3.78 18.42 8.74 11

DW : x10% dwt, V : kt, H, : X108 yen/year, No : number of ships, C,, : yen/day/ton?

ships of the fleet weigh relative to the other costs, and thus the small types of ships
which give the low storage costs become optimum,
6.5 Effect of emergency storage

For the constant value of the storage cost coefficient, C,,, the storage costs of the
cargo transported by an individual ship become small relative to that of the emergency
storage, ST, as ST, becomes large. Thus, the optimum fleet becomes of the slightly
larger type ship, as shown in Table 6. The emergency storage in the table is expressed
as the days during which the neccessary demand can be met without any supply.
6.6 Effect of the number of divisions on optimization results

Table 7 illustrates the effect of the number of divisions, N4, on the optimization

results. Nqo=57 corresponds to the case where DDT is carried by the smallest standard

Table 6 Effect of emergency storage on optimum fleet (TDT'=5x10% ton/year,
DW ; =60000dwt, DW, =150000dwt, Cs,=10"% yen/day/ton?, C,=0)

0 days 30 days i 90 days 180 days

DwW V H. No| DW V. H. No | DW 14 H. No | DW V. H: No

5.35 14.64 5.97 1 5.61 13.86 6.00 1 14.99 16.96 13.78 3 14.99 17.02 16.95 3
49.99 16.96 31.04 2 | 49.99 17.03 31.82 2 49.99 17.05 35.08 1 49.99 17.07 44.23 1

DW : x104dwt

V okt

H. : x10% yen/year
No : number of ships
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Table 7 Effect of number of divisions on optimization results.
(TDT =5x%10¢ ton/year, S.=0, C, =300yen/dwt/passage)

Nqa

57 50 25

DW V. H, NoCost Time| DW V H, No Cost Time | DW V H, No Cost Time

3,78 13.56 6.381 1.0 1.0 5.69 13.63 8.34 1 1.01 0.94 | 11.96 14.41 11.22 1 1.02 0.46

49.99 16.93 31.42 2 49.99 16.98 30.85 2 49.99 16.38 29.55 2

DW : x10¢ dwe

V ik

H,. : %109 yen/year

No  : number of ships

Cost : ratio of total annual transport costs
Time : ratio of computer processing time

type ship, i. e, DW=10000 dwt and V=16 k¢, to be considered. In the columns “cost”
and “time” of the table are listed the ratios of the total -annual transport costs and
the computer processing time of each case to the case’ N;=57. As N4 becomes large,
the computation time becomes large, while the optimization results are improved.
Thus, the value of N, should be selected, considering the compromise between the

optimization accuracy and the computer processing time.

7. Conclusions

The problem is considered for determining the optimum fleet-size to minimize the
transport costs for a given transport demand, using the systems engineering techniques.
The mathematical models relating the transport costs to a fleet-size have been
developed. The algorithmic procedure applying the principle of optimality in dynamic
programming and nonlinear programming techniques is given for the solution of the
problem. Using the software program, the effects of the transportation system’s factors,
such as the transport demand, the tolls, the storage costs, etc., have been discussed
both quantitatively and qualitatively. Many works are still left to be done relating
the present work, e. g., improvement of the software program and the mathematical
models, sensitivety analysis of the optimum fleet, selection of the optimality criterion,

forecasting the transport demand and its treatment, etc..
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