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A Study on Linear Programming under
Uncertainty

Yoshisada MuroTsu* and Fuminori OBa**

(Received June 15, 1974)

This paper presents a method to find the optimal solution to linear programming
under uncertainty. A total cost is defined by adding penalty costs to activity costs when
the constraints are violated, and a stochastic programming problem is set up to minimize
the expected total cost. It is shown that 1) when the random coefficients have discrete
distribution, the problem is reduced to the ordinary deterministic linear programming and
thus the optimal solution is obtained by using the simplex method and 2) when the random
coefficients have continuous distribution, the problem is proved to be a convex program
and an algorithm using the gradients is presented for the case of Gaussian random vari-
ables. Further, some comment is added on the relation between the problem and the
two-stage problem by Dantzig and Madansky.

1. Introduction

Many decision problems formulated as linear programming contain some parameters
with uncertainty because of the measurement errors, the estimation errors, etc.”™® An
approach to such a problem is to treat the uncertain parameters as random variables.
The study so far made is classified into three types”: 1) replacing the random variables
by their particular values such as means, 2) transforming the uncertain constraints into
their probability constraints and 3) recasting the problem into a two-stage problem where,
in the second stage, one compensates for inaccuracies in the first stage activities. Ex-
tensive studies have been made on the problem,®~*" and a general survey”® and a mon-
ograph' have been published recently.

On the other hand, somewhat different approach to the problem is proposed by
Hadley,” in which a total cost is defined by adding penalty costs to activity costs when
the constraints are violated and a problem is set up to minimize the expected total cost.
As pointed in reference 4, the problem, however, becomes nonlinear and there have not
been any general techniques for finding the optimal solution. In this paper, the property
of the expected total cost is investigated and the computational method is presented for
the cases when the random variables have discrete or continuous distribution. It is
shown that 1) when the random variables are discrete, the problem is reduced to the
ordinary deterministric linear programming and thus the simplex method is applicable
and 2) when the random variables are continuous, the problem is proved to be a convex

program and an algorithm using the gradients is presented for the case of Gaussian random
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62 Y. MuroTsu and F. Osa

variables. Further, the relation between the present problem and the two-stage problem®

is discussed.

2. Statement of the problem

First consider the standard linear programming problem.

PROBLEM 1: Under the constraints
Ax > b (1)

x>0, (2)

Y

find the control vector x to minimize the objective function

5= Cend = e, (3)
where { > represents the inner product of the vectors and

x = col (x;) = n dimensional control vector,
b = col (b;) = m dimensional coefficient vector,
¢ = col (¢;) = n dimensional cost coefficient vector,

A = (a;;) = mXn coefficient matrix.

Let us now imagine that the control variables x;(=1,2, -++, 1) have been determined
by some means or other. However, when the coefficients are not deterministic, i.e.,
random variables with some distribution, the constraints may not always be satisfied for
all realizations of the coeflicients. Even if this can be done, the decision under these
severe conditions may be too conservative to be practical. In practice, we may select
the decision that will possibly result in a low expected-cost even if there may be some
possibility of risk to violate the constraints. Thus we have a stochastic programming
problem to determine the decision based on the trade-off between the expected cost and
the expected risk. An approach to the problem is, as originally formulated by Hadley®,
to add penalty costs to the activity costs when the constraints are violated. This for-
mulation may be justified since there may be some additional costs associated with emer-
gency actions due to violation of the constraints. Thus we formulate the stochastic
programming problem as mentioned above.

First, define m dimensional vector

& = col (51, € 0ty Em)
by
e=b—Ax. (4)

Thus ¢,>0 means that the i-th constraint of (1) is not satisfied. Assume that the penalty
function of the i-th constraint is given as ¥ (¢;). Then the total cost is defined by

gy = <cex) +2 eI, (5)
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where
1 ¢,>0 ‘
1(e)) = 6
(e) { 0 e,<0, (6)
v .(¢;) = monotonously increasing convex function with sufficient
smoothness, (7)
¥0)=0. (8)
In particular, when the penalty function is linear, we have
Yle) = g€, (9)

where g >O) is the penalty coeflicient.

Since the elements of A and & are random variables, those of & are also random
variables. Denoting the probability density function of &; by f(e;), we obtain the
expected value of the total cost

Bz = et 33 | wiearedde, (10)

In the foregoing discussion, we presume that all the constraints are random variables.
In general, there are some constraints which are deterministic. Thus we divide the
constraints into two sets depending on whether they are deterministic or random, i.e.,
I, = {i|¢; is deterministic} } (1)
I, = {i| e, is random} ,
where {(-){(-+)} denotes the set of (-) that satisfies the condition (+-). For the case,

the expected total cost becomes
Bz = <ot 3 | wearende, (12

where D) means that the summation is carried out over the set /,.
ie1,

Finally, the stochastic programming is formulated as follows.
PROBLEM 2: When some elements of 4 and b are random variables with known pro-
bability distribution, find the control variables x,(i=1, 2, -+, n) to minimize the expected

total cost E(z,) given by Eq. (12) under the deterministic constraints

b —SVa,x.<0 (el
&; i jglaz]xj (l d) (13)

;20 (j=1,2,,m).

1t should be noted here that the constraints under uncertainty in PROBLEM 1 are

imbedded in the expected total cost and thus they are omitted from the constraints.

3. The case of discrete random variables

A. Optimality Condition

Consider the case where the random variables have discrete probability distribution
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and the penalty functions are given by (9). First we assume for brevity that only the
coefficient a,, is a random variable with probability distribution:

Plan®) =pp (k=1,2 1), Spe=1, 4
k=1

where P(a,,'®) is the probability that a,,=a,,'®.

Now we define the vectors:

A; = col(a,j, ayj, s am;) (1=2,3, 1, m) } (15)

Ay =b=col(b,b, +,b,,)
and the vector corresponding to each realization of a,,:

AP = col (a, P, ay, +++, Q) (R=1,2,--,1). (16)
For each realization of a,,, (4) is written as follows:

e® = Ao_{Al(k)x1+A2x2+ "'+Anxn} ’ (17)
where

e®=col(e®, ¢,y -+r,e,) (R=1,2, .- ]). (18)

The expected total cost yields
!
E(z,) = {crx>t4, 23, Wpal(e, ) . (19)

It must be remembered here that the constraints: ¢,<0, ¢,<0, «-+, ¢,,<0 are deter-
ministic.

Substituting (17) and (18) into (19) yields
!
E(c) = {c-x>+q, Z.‘i {b1_a11(k)x1+a12x2+"' +amxn)}Pk1(51(k))
= {61_91 é au(k)PkI(el(k))}xl
k=1

7 l 1 »
+§ {Cj_%alj kzlpkl(el(k))}xj“‘F%h ; Plal(el(k)) . (20

Since the function I(e,*’) is 0 or 1 depending on the sign of &,’, we find that the ex-
pected total cost becomes linear with respect to x; if we divide the problem into the sub-
problems by the sign of ¢,". For example, when >0 and ¢,#<0 (k=2,3, -+, D),
the constraints and the expected total cost become as follows:

1 1
6P = bl_{all( %+ a5+ "'+a1nxn} >0
51(2) == bl—{a11(2>x1+a12x2+ "'+a1nxn}£0

...........................

&P = b—{a,Px+a,x,+ - ta,x,3 <0/,

E(zo) =L{c1_91a11(])P1}x1+§{5j—Q1a1jp1}xj‘|' %blpl . (2'2)

(21)
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Thus the subproblems are reduced to the original problem.
PROBLEM 3: Find the control variables x,(i=1, 2, ---, #) to minimize the objective
function E(z,) given by (22) under the constraints (21) and
&= b= ax,<0 (=23, -,m)
=1
x;220 (=12 -,m).

(23)

The optimal solution to the problem lies on the extreme point of the region given
by the constraints (21) and (23). Similarly the optimal solution to each subproblem is
on the extreme point of the corresponding region determined by division of the problem
depending on the sign of ¢, Thus if we can prove the continuity of the expected
total cost (19), we see that the optimal solution to PROBLEM 2 is the one that gives the
minimum value to the expected total cost among the optimal solutions to the subproblems.

The continuity of E(z,) is proved in the following. Since ¢, and E(z,) are the
functions of x, we denote them by &,®(x) and E(z,) (x). In order to prove the con-
tinuity of E(z,) at any point x° we should only prove the fact: for an arbitrary positive

number e, there exists a positive number 0 such that
| E(20)(x)— E(2,)(x) | <e
in the vicinity of x°: [[x—x°}| <&, where [|(-)|| is Euclidean norm.
,"®(x) can be written in the form
&, ®(x) = b,—<(B,®.x>, (24
where B,%®’=col (a,,'®, a,, ***, a;,).

Thus we have

| E(2)(x)— E(o)(x") |

= [ ey 3] PPl () — o3 3 e P )pul(5 P ()|
< [Cer(r—%)> +4, 3] pul 6.0 (0)— £, 04|

= [ e (v | +0, 21w [<B* - (2= |

< leli-+au 2 pull B2 Hlv— 25)

Hence (25) holds if we take 0 such that

0<0< < ) (26)
{llell-+-g. X5 pallB.#11}

This completes the proof of the continuity of E(z,).
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B. Computational Method
Division of the problem into the subproblems can be made automatically, if we

introduce the slack variables:
51(k) = yl(k)+_y1(k)_) y1(k)+20 ’ J’fk)—ZO ) (k =12, -, l) (27)

Then the constraints and the objective function are rewritten in the form

&® ) = b—(B®+x) =y, BT —y,®" - (k=12 1), (28)
I
E(z,) = {c+x)+q; kgpkyl("” : (29)

Thus the problem is reduced to the ordinary deterministic linear program.

PROBLEM 4: Find x,(i=1, 2, ---, n) and y,%¥*, y,®~ (k=1, 2, .-+, n) to minimize the
objective function (29) under the constraints (23), (27) and (28).

The foregoing discussion has been limited to the case of a single random variable.
The procedure, however, can be extended to the case where more coeflicients are random
as shown in the following.

Let us now define the set
Jia = {jla;; is deterministic, i 1,}
Jir = {jla;; is random, i€ I,} (30)
= {jl)jm "')jni} )
and introduce the slack variables:
J’i(k"h’k"jz""'k"j"")"L20 , yi(k‘i]'kiiz""’k‘f""" >0 (31)
such that the constraints are written as
R R e et e

(iEI,; k1= 1,2,---,1 Ria= 1,2, o, 17 ooy BM = 1,2, o0, 14)

z

Then the objective function becomes

E(Z’o) - <C x>+ Z Qz 2 Z E y &; !1 k ] kijni)+P(kij1) kijz) ) kij"i) y

I, kii1=1 Rid2=1 kiini
: (33)

where p(k;71, k72, -+, k,/") is the joint probability to taken on the values:

&ID L a g, BInD

i1 ’ 2 Pige; T i

a = aq;

ij1

Thus PROBLEM 2 is reduced to the ordinary deterministic linear programming
problem.

PROBLEM 5: Find #,(:=1, 2, - n) y e vkIe kit and g Gdvkidpeakinp- G e

k=12, .-, 1} -5 k7"=1,2, -, 1,") to minimize the objective function (33) under
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the constraints (13), (31) and (32).
Thus the stochastic programming problem can be solved by using the well-known

technique such as the simplex method.

C. Numerical Example
The objective function and the constraints are given as follows:
¥ =2+, ' (34)
a,x,—x,>0, x+4%>0, x>0, x>0, (35)
where 4, is a random variable which takes the values 1 and 2 with probability: P(a,,=1)
=p,, P(a;=2)=p, (p,+p,=1). The penalty cost is given as g,é,.
The stochastic programming problem is reduced to the following form: Find x,

and x, to minimize the objective function
E(z) = {2— .09 —24, 0,y 1, + {1402,V 0,029 1, (36)
subject to the deterministic constraints:

e, =1—x,—x,<0,

£ = 5Oy = i, @)
6@ =y @ty O~ — 9y tx »

=20, x>0, y»97=0, »97>0, »®7>0, y*°=0,

Thus thé problem is solved by using the simplex method. The extreme points and
the feasible regions are illustrated in Fig. 1. _ The optimal solution is dependent on the

1D o 1
o7
x“i//Q
23 —=-YcC S b
&
12 ==/ X8 &
1 /1
A
IR
A
0 . L 0
0 13 12 1 0
1 1
Fig. 1. Feasible region and extreme Fig. 2. 'Transition of optimal solution.
points,

value of ¢, and p,. Fig. 2 illustrates the transition of the solution. For example, when

g,=5 and p,=1/2, the optimal solution is given as
X, = 1/2, Xy = 1/2 s y1(1)+ =J’1m_ :y1(2)+ =0 ) y1(2)— = 1/2 ’ (39)
and the minimum value of the expected total cost is

E(z,)(1/2, 1/2) = 3/2. (39)
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4. The case of continuous random variables

For the case when the coefficients are continuous random variables, we will show
that PROBLEM 2 is a convex program. Further an algorithm for solving it will be

given for the case of Gaussian random variables.

A. Convexity of Expected Total Cost

In order to show that PROBLEM 2 is a convex program, it is only necessary to show
that the objective function E(z,) is convex in x because the deterministic constraints are
linear. The first term in E(2,) is linear, and thus we will consider the second term, i.e.,
the cost due to violation of the constraints. We assume that the first m, constraints are

random and the remaining are deterministic, i.e.,
I={1,2 - m}, I,={m--+1, m-+2, - m}. (40)

Corresponding to the random elements of ¢ i.e., the first m, elements of ¢ which is denot-
ed by "¢, we define the matrix "4 and the vector “b by

Te = "h—"Ax,
and 2m, dimensional vector & by
E=col(e™, &, o 6, 67,87, ey 67) (41)
where
e; &;>0 0 >0 .
o= 0‘ E:ZO ) T —&; 5,20. 42

The penalty cost corresponding to a realization of "4 and "b is denoted by z,(x, "4, "b),

i.e.,
oo, 74, D) LSy e )H(e) = S ver). )

Particularly, when the penalty cost is given by (9), it becomes

my

2y, 7A,78) = {q-&> = ;}1 gic;", (44)
where
. ml
q= col (qv o> ***s Qunys 0’ 0’ A 0) . (45)

To prove the convexity of 2,(x,”A4,"b) for an arbitrary realization of the random

elements of "4 and 75, we will consider the following problem.

PROBLEM 6: Given a realization of "4 and ”b, find y to minimize the objective func-

tion
(9 = 2 Vi) (46)

under the constraints
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By ="b—"Ax, y=0, 47)
where Yy =col (¥, Yo ***s Yormy) » (48)
m, m,
e
B=M o7t o

.o . m, . (49)

0 1 0 '__1

Since

{t|t = By, y=>0} = R™, (50)

PROBLEM 6 has a solution for all realization of "4 and "b. The optimal solution is
given by
y=¢ (51)
as will be shown in the following.
From (4) and (42), the elements of & are expressed in the following form for any
y which satisfies (47):

e, 7 =max {0, ¥;— Y4} =12 m,) (52)
| =1,2 -, m),
ei_ - maXx {Oy ym1+i-yi} k

where max {(-), (- )} means the maximum value of (+) and (-+).. By assumption (7),

Y {¢;) is a monotonously increasing function of ¢; and thus the following inequality holds
W(E) = Shvde)
= 51 max {0, 3 Yoma)
<33 = V). | (5)

Equality holds only when y=¢. Hence the optimal solution to PROBLEM 6 is given
by (51).
The objective function for the case y=¢ is given as

W(E) = D wle), (54)
which, from (47), is also equél to ‘
V(&) = w4x, "4, 7B) . (55)

Finally we conclude that the penalty cost term in the total cost (12) is equal to the optimal
value of the objective function of PROBLEM 6. ) ‘
Next we will show that z,(x, "4, "b) is a convex function of x. Let 9 and y* be
the optimal solutions to PROBLEM 6 when x=x" and x=x’, respectively. Although
y* given by
Yy = 2y +(1-2)p" (0<a<LY) (56)
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is a feasible solution, it is not always the optimal solution to the problem when
= A" (1—2)x% . (57)
To prove this, we consider the sets

't ={i]e}*>0, y' =&, i<m}

= {ilef >0, ' = £, i<m} 9
In general, we have
't &= P, (59)
Hence for ¢ which satisfies
ie{Iryrt—r+nry, (60)
e;'*, &7 (i<m,) are positive while ¢**, ¢;'~ are zero and vice versa. Hence we have

yit = 2e/ T+ (1= >0

< .
ym}=1#=HP4M“>0}O_%) D

On the other hand, the optimal solution to PROBLEM 6 when x=x" is given in the form:

Y= 8 = col (6, &M, v, €M, 6, 6N, ven, £ M) (62)
where
A
bty | ETE
Then the inequalities:
eAM>0, >0 (=12, .m). (64)

do not hold simultaneously and thus the elements of ¥* and &* do not coincide with the
elements corresponding to 7 given by (60). Therefore, y* is not always the optimal solu-
tion to PROBLEM 6 when x=x".

From the foregoing discussion, we have the following inequality:

22, "4, 7B) = YY)

< v
< 29()+(1=2%(57)
— Qz (&', " A, "B -+(1— )z ,(x%, "4, 7b) , (65)

where the last inequality follows from the convexity of y(¢). (65) proves that 2 »(x, "4, 7b)
is a convex function of x. Since the inequality (65) holds for any realizations of "4
and 75, the following inequality holds from the property of integral

E(zp(x*, "4, "B) < 2E(z (x", "A, "5)+(1—N)E(25(+%, "4, b)), (66)

where E(-) means the expectation with respect to "4 and "b. Thus we conclude that

E(2,) is a convex function of x.
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It is easily seen that PROBLEM 6 is equivalent to the second stage problem of the
two-stage problem proposed by Dantzig and Madansky®:

PROBLEM 7: Under the consti‘aints
By ="b—"Ax, x>0, y>0, (67)
and (14), minimize the objective function
E(<e-xp+min y(y)), (68)

where y(y) and B are given by (46) and (49), respectively.

Thus we can conclude that PROBLEM 2 is equivalent to the two-stage problem
formulated as PROBLEM 7. Therefore, given the penalty function y(y) by Eq. ),
problem 2 with continuous random variables is reduced to the special case of simple

recourse'®.

B. Computational Method for Case of Gaussian Random Variables

In the previous section, it is shown that PROBLEM 2 is a convex program and
thus the optimal solution can be obtained by the well-established extremum seeking
methods. In the following an algorithm using the gradients is shown to be applicable
to the case where @,; and b,(i<1,, j< J;,) are Gaussian random variables.

First calculate the mean and the standard deviation of «,:

&=>5b—>>lax; (eI, (69)
o Pa;ia:4%a;,%0;,% i %k

23 04 5100, 08 8 0 Gel,), (70)

=1
where (+)=mean of (), o..,=standard deviation of ()

P ¢ »=correlation coefficient between (+)and (- +).

When q;; and b; (1€ 1, j€ J;,) are Gaussian random variables, ¢; is also a Gaussian
tandom variable and the probability density function is given as

1 { (e~—§-)2}
pl . = e ___________‘Z £ 71
Fed = e e (=5 @)
By standardizing ¢; by the transformation:
u; = (e;— Ei)/asi > (72)
we express the objective function of PROBLEM 2 as
L™
B = e+ 2 |7 viloqut 2o, (73)
where B(t) = —— exp (—£72). (74)

V2z
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Thus the first derivative of E(z,)(x) is calculated as

OBe) _ ¢\ Sy 0o~ o) (7 Do L 05

2
Ox; Oe; ax i O, Ox;

m

LE ’ - 0'3‘
+§ S__E,_ %.‘:”i (oe,u; +¢)) (ui axj + 0% axj ) B(u;)du;
= c,—l—}};1 S_E,/% Vi (001 -l—e,)( ox, >¢(u Ndu; (75)
where
yri(ep = ) (76)
de; ’

and the last equality follows from (8). Further, we have the following relations from
(68) and (69):

&, -

i— —a,., 77
o= )
da,, 2
axg‘ = {Z’,___:lp“ii“ika”ija“ikxk—‘oat’ibia“iiabi} ’ (78)

i
When v, is differentiable, the Hessian of the objective function is calculated and

the second derivatives can be obtained. Thus the various extremum seeking techniques

using the gradients can be applied to the problem.

C. Numerical Example
The constraints and the objective function are given as follows:

ayX, %, 20, anx,+ayx, > b } (79)
x>0, x,>0 ,
7 = ¢ X, %, = 200,+-x, , (80)
where a;; and b, (i, j=1, 2) are independent Gaussian random variables given by
a, =1, 0oy =01, a,=1, 6,,=01, a,=1 0, =01 o1
= —1, 04, =01, 5 =1, 0, =01, b, =0, a,=0.1. @
The mean and the standard deviation of ¢; are calculated as
§; = by—a;x,—a;x, (r=1,2), (82)
09;2 = Ga,'12x12+0a,-22x22+6b;2 (i=12). (83)
When the penalty function is given by
Ve = qe b, we") = e, (84)

the expected total cost becomes
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E(z,) = ]g; cj”ﬂ'Z; q; Sw_/ (oo, +8,)p(u;)du;

g;/0q

:chx,-i-Zq,{\/z exp( zzi_é>_|_giq)< g;

g Og,;

where
o) — Stm ()i . (86)

The first derivative of E(z,)(x) is

aE(zo) { auz . <_ Eiz )_- 1)) < Ei )}
ax] ]—I—g q‘ \/27508 x] eXp 205,'2 aij . . (87)

Table 1 Optimal solution

Penaity Optimal solution Probability Expected
No. e ——
q1 qs X1 X5 Prob [¢;<0] Prob [¢,<0]} total cost
1 5 5 0.608 0.450 0.678 0.896 1.828
2 10 10 0.667 0.459 0.835 0.947 1.933
3 100 100 0.818 0.471 0.982 0.994 2221
4 1000 1000 0.945 0.476 0.998 0.999 2.472
5 5 10 0.631 0.427 0.676 0.948 1.849
6 5 100 0.690 0.367 0.672 0.995 1.905
7 5 1000 0.737 0.319 0.669 0.999 1.952
8 10 5 0.643 0.482 0.835 0.896 1.912
9 100 5 0.728 0.559 0.983 0.893 2.134
10 1000 5 0.794 0.618 0.998 0.892 2.318
1.0 A}
\
\
\
0.8 |- & L%
% , N
\\/\ " *‘1’//
% \ o
AN J 10
0.6 |- SoN N Ad 9 °
\ .
a 8
: Loy 03 .4
NG s
04 1= \\ .6
o7
\
\
0.2 \
\
\
\
1 I 1 A\ |
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
X1 )

Fig. 3. Optimal solution;
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The optimal solutions for various values of ¢, and g, are calculated by using SUMT

20>

(Sequentially Unconstrained Minimization Technique) The results are shown in

Table 1 and Fig. 3. The numbers in the figure corresponds to those in the column
No. in Table 1. We see that the optimal solution tends toward the safety side and thus
the probability to satisfy the constraints becomes higher as the penalty becomes large.

5. Conclusion

An approach to stochastic programming is presented: A total cost is defined by
adding penalty costs when the constraints are violated and a problem is set up to mini-
mize the expected total cost. It is shown that 1) when the coefficients under uncertainty
are discrete random variables, the problem is reduced to the ordinary deterministic linear
program and 2) when random coefficients have continuous probability distribution, the
problem is proved to be a convex program. Further, computational methods are pre-

sented for both cases.
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