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A Study on Linear Programming under
                     Uncertainty

          Yoshisada MuRoTsu* and Fumino'ri OBA**

                   (Received June 15, 1974)

    This paper presents a method to find the optimal solution to linear programming

under uncertainty. A total cost is defined by adding penalty costs to activity costs when

the constraints are violated, and a stochastic prograrnming problem is set up to minimize

the expected total cost. It is shown that 1) when the random coeMcients have discrete

distribution, the problem is reduced to the ordinary deterministic linear programming and

thus the optimal solution is obtained by using the simplex method and 2) when the random

coeMcients have continuous distribution, the problem is proved to be a convex program
and an algorithm using the gradients is presented for the case of Gaussian random vari-

ab]es. Further, some comment is added on the relation between the problem and the

two-$tage problem by Dantzig and Madansky.

                                1. Introduetion

    Many decision problems formulated as linear programming contain some parameters

with uncertainty because of the measurernent errors, the estimation errors, etc.')'-4) An

approach to such a problem is to treat the uncertain parameters as random variables･

The study so far made is classified into three types5): 1) replacing the random variables

                                                                         --by their particular values such as means, 2) transforming the uncertain constraints into

                                                                            'their probability constraints and 3) recasting the problem into a two-stage problem where,

in the second stage, one compensates fbr inaccuracies in the first stage activities･ Exd

tensive studies have been made on the problem,3)n"" and a general survey)i8) and a mon-

                                     'ograph'9) have been published recently.

    On the other hand, somewhat different approach to the problem is proposed by

Hadley,`) in which a total cost is defined by adding penalty costs to activity costs when

the constraints are violated and a problem is set up to minimize the expected total cost･

              'As pointed in reference 4, the problem, however, becomes nonlinear and there have not

been any general techniques for finding the optimal solution. In this paper, the property

of the expected total cost is investigated and the computational method is presented for

the cases when the random variables have discrete or continuous distribution･ It is

shown that 1) when the random variables are discrete, the problem is reduced to the

ordinary deterministric linear programming and thus the simplex methpd is applicable

and 2) when the random variables are continuous, the problem is proved to be a convex

program and an algorithm using the gradients is presented fbr the case of Gaussian random

                                         '
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Further, the relation between the present problem and the two-stage problem8)

          '

                       2. Statement of the problem

    First consider the standard linear programming problem.

PROBLEM I: Under the constraints ･

                                 Ax ;}rb (1)
                                  x >- O, (2)
find the control vector x to minimize the objective function

                       '
                                        ･il                           x==: <c･x> =:=Xc,xi, (3)
                                       i--1

where < > represents the inner product of the vectors and

              x = col (xi) == n dimensional control vector,

              b = col (bi) = m dimensional coethcient vector,

              c = col (ci) = n dimensional cost cQeMcient vector,

             A == (ai,･) ='` m×n coeMcient matrix.

    Let us now imagine that the control variables xi(i--1,2, ･･･,n) have been determined

by some means or other. However, when the coeMcients are not deterministic, i.e.,

random variables with some distribution, the constraints may not always be satisfied for

all realizations of the coeficients. Even if this can be done, the decision under these

severe conditions may be too conservative to be practical. In practice, we may select

the decision that will possibly result in a low expected-cost even if there may be some

possibility of risk to violate the constraints. Thus we have a stochastic programming

problem to determine the decision based on the trade-off between the expected cost and

the expected risk. An approach to the problem is, as originally formulated by Hadley`',

to add penalty costs to the activity costs when the constraints are violated. This for-

mulation may be justified since there may be some additional costs associated with emer-

gency actions due to violation of the constraints. Thus we formulate the stochastic

programming problem as mentioned above.

    First, define m dimensional vector

                           e =: col (ei, e2, ..., em)

by

            . e- b- Ax. (4)･
Thus ei>O mea,ns that the i-th constraint of (1) is not satisfied. Assume that the penalty

function of the i-th constraint is given as Vi(ei). Then the total cost is defined by

                                 m                    x,=<c･x> +2] 3b"i(Ei)1(ei), (5)
                              - }==-1
                                        '
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where

                 i(ei)-(8 il.iO,, (65

                 NO'i(Ei) = monetonously increasing convex function with suficient

                         smoothness, (7)
   .                 yb-,(O)-O. (8)
In particular, when the penalty function is linear, we have

                                sbi(ei)=giei, (9)
where gi( >O) is the penalty coeficient.

  Since the elements of A and b are random variables, those of e are also random

variables. Denoting the probability density function of ei by jF}(ei), we obtain the

expected value of the total cost

                                  '
                      E(x,) == <c･x>+1.Ili.,1, I,O" No･,(e,)L(e,)de,. (io)

                  '
    In the foregoing discussion, we presume that all the constraints are random variables.

In general, there are some constraints which are deterministic. Thus we divide the

constraints into two sets depending on whether they are deterministic or random, i.e.,

                                                               '                        Il.I=ve-iiii;lg,d,e:gtm.i?is"c} }, ,,,,

where {(･)K.･)} denotesthe set of(.)that satisfies the condition (..), For the case,

the expected total cost becomes

                      E(xo) == <c'x>+,:.IEI, I,oo Ndei(ei)fi(ei)dei, (12)

                                       r

where Z means that the summation is carried out over the set I..

      iETr
    Finally, the stochastic programming is fbrmulated as fbllows.

PROBLEM 2: When some elements of A and b are random variables with known pro-

bability distribution, find the control variables xi(i=1, 2, ･･･, n) to minimize the expected

total cost E(Nty,) given by Eq. (12)･under the deterministic constraints

                                            '           '     ' ii.I-,b"(/) ."Z'XiSi.?, .:'.Eid) l ('3)

    It should be noted here that the constraints under uncertainty in PROBLEM 1 are

imbedded in the expected total cost and thus they are omitted from the constraints.

                  3. The case of discrete random variables

A. OptimalityCondition

    Consider the case where the random variables have discrete probability distribution
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and the penalty functions are given by (9). First we assume fdr brevity that only the

coeMcient a,, is a random variable with probability distribution:

                                              i                P(a.(k')=Pk (k == 1,2, ''',l), ZPk=1, ･ (14)
                                             k=;"1

where P(a.(k)) is the probability that a.=a.(k). -
    Now we define the vectors :･

                               '                ::- =',- 2011(ftt (",2,t",Ll'r,Cm,j.)) (i= 2･ 3･ '''･ n) 1 (i,)

and the vector corresponding to each realization of a. :

                A,(k) == col (a.(k), a,. ･.., a.,) (k = 1, 2, .･･,l). (16)

                                               '
For each realization of a,,, (4) is written as fbllows:

                E(k) == Ao-{Ai(k)Xi-i-A2X2+'''+AnXn}, (17)
where

                e(k)=col(e(k), e2, ..., em) (k=1, 2, ..., l). (18)

    The expected total cost yields

                                i                E(2,) == <c･x>+g,2e,`klpkl(e,(k'). (19)
                                k=.1

It must be remembered here that the constraints: e,SIO, e,sgO, ･･., e.SO are deter-

mlnlstlc.

    Substituting (17) and (18) into (19) yields

                          i          E(c,) = <c.x>+g, 2 {b,-a.(k)x,+a,2x2+･''+a,.x.)}Pkl(ei(k')
                         k=1
                       l              = {ci-gi Z a.(klpkl(e,`k')}x, ･
                       k==1
                   nt l'                 +X {c,--gia,,- 2Pkl(e,(k')}x,･+g,bi Zpkl(E,(k)) . (20)
                   J'･--2                              k=-1                                                b=-1

Since the function 1(e,(k)) is O or 1 depending on the sign of e,(k), we find that the ex-･

pected total cost becomes linear with respect to xi if we divide the problem into the sub-

problems by the sign of e,(k). For example, when e,(i)>O and e,(le)fEgO (k=2, 3, ･.･, l),

the constraints and the expected total cost become as fo11ows:

              ei(i) === bi-{an(i)xi+ai2x2+ '''+ainXn} >O

              Ei(2) == bi-{aii(2)xi+ai2x2+,..+ainXn}SO '
                                                                    (21)
              -----t--tet---t--t--------.

              e,(i)=b,-{a.(Dxi+ai2x2+'"+ainXn}f{O ,

                 .t n              E(z,) ={c,-g,a.('lp,}x,+Z{cJ･-qiaiipi}x,･+gib,pi･ (22)
                                   1'--2
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                                '
Thus the subproblems are reduced to the original problem.

PROBLEM 3: Find the control variables xi(i=1,2, ･･･,n) to minimize the objective

function E(x,) given by (22) under the constraints (21) and

                       '                                                      '                  ;:.l-obi-IS･-,ai,'xi<-O (/,'.i.21,,3iJ::,:)).l. (23)

    The optimal solution to the problem lies on the extreme point of the region given

by the constraints (21) and (23). Similarly the optimal solution to each subproblem is

on the extreme point of the corresponding region determined by division of the problem

depending on the sign of e,(k). Thus if we can prove the continuity of the expected

total cost (19), we see that the optimal solution to PROBLEM 2 is the one that gives the

minimum value to the expected total cost among the optimal solutions to the subproblems.

    The continuity of E(x,) is proved in the fbllowing. Since e,(le) and E(x,) are the

functions of x, we denote them by e,(le)(x) and E(x,) (x). In order to prove the con-

tinuity of E(x,) at any point xO we should only prove the fact: for an arbitrary positive

number e, there exists a positive number 6 such that

                           i E(xo)(nc)-E(x,)(xO) 1 < e

in the vicinity of xO: Hx-xOH<0, where 11(.)1i is Euclidean norm.

    e,(k)(x) can be written in the form

                          E,(le)(nc)=b,-<B,(k).nc>, (24)

where Bi(k)=col (an(le), ai2, ''') ain).

    Thus we have

         1 E(xe)(x)-E(x,)(xO) 1

                   l- t       = l <c.x>+g, E] e,(h'(oo)ple1(e,`k'(nc))-<c. xO>-'g, = e,(k'(paO)pkl(e,(le'(xO)) [

                  k=T-･1 k=-1
                        t       sll l <c･ (x-xO)> +g, Z pk 1 e,(k'(x)-e,(le'(xO) l

                       k=.!
                         l       = = 1 <c ･ (x-xO)> i +g, X pk 1 <B,(k) ･ (x-xO)> 1

                        k=`1

                 l       fE{;{ilcll+g,XpkHB,(k'H}llec-scOll･ (2s)
                k=;'1

Hence (25) holds if we take S such that

                       O<S< ,e . (26)
                              {ilc11+g,2ple1IB,(k'ii}
                                      k=-1

    This completes the proof of the continuity of E(x,).
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B. ComputationalMethod
    Division of the problem into the subproblems can be made automatically, if we

introduce the slack variables:

         ei(k'=yi(k)'-y,(k'-, y,(fe">-O, y,(k)";}l:O, (k == 1, 2, ･･･,l) (27)

Then the constraints and the objective function are rewritten in the fdrm

           ei(k)(x) = bi-<B,(k'.nc> = y,(k)' -y,(le)- (k = 1, 2, ･･･, l) , (28)

                           i           E(xo) == <c･x>+gi 21 pkyi(le", (29)
                          k=.1

Thus the problem is reduced to the ordinary deterministic linear program.

PROBLEM 4: Find x,(i--1, 2, ･･･, n) and y,(le", y,(le'-(k== 1, 2, ･･･,n) to minimize the

objective function (29) under the constraints (23), (27) and (28).

    The fbregoing discussion has been limited to the case of a single random variable.

The procedure, however, can be extended to the case where more coeficients are random

as shown in the fbllowing.

    Let us now define the set

                    Jid = {1' 1 aiti is deterministic, iEI.}

                    Ji.={1'laii is random, iEI.} (3o)
                        =: {1'1)1'2) '''}]'ni} )

and introduce the slack variables:

                yi(kiii,kij'2,"',kiini)+ ;}l o, yi(kY'i,kY2,"',kiini)- ;}irO (31)

such that the constraints are written as

      bi-{ iZ,,Jidaii'X]'+ iX.J, aij'CkY)Xj･} =! yi(kY"kii2,"''kj"i)+7 yi(kiii,kii2,･-･,kiini)- (32)

        (iEI.; ki7i= 1, 2, .･･, li'; ki]'2 = 1,2, .･･, li2; ･..; kihi -- 1, 2, ･.., li"i).

Then the objective function becomes

                                   /T                    '
              '                         til li2 lini
      E(x,) = <c.x>+Xg, X 2 ･･, X y,(k!i'kii2'"''lei""P-tp(k,,'i, k,]'2, ･･･,k,dni) ,

                   iEIr k/1=l kii2=1 leiini=1

where p(kitii, kl'2, ･･･, kiJ'"i) is the joint probability to taken on the values:

                     aiJ･i =: aiii(kiJi), ..., aij..i -- aii.i(kY"i) .

    Thus PROBLEM 2 is reduced to the ordinary deterministic linear programming

problem.

                                            '
PROBLEM 5: Find xi(i=1, 2, ･･･, n), yi(k!i'kid2'"'"kii"i)+ and yi(kiii'leii2""'kiini)-(iEJ.;

kiii:=1, 2, ･･., li'; ･･,; k!'"i=1. 2, ･･･, li"i) to minimize the objective function (33) under
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the constraints (13), (31) and (32).

    Thus the stochastic programming problem can be solved by using the well-known

technique such as the simplex method.

C. NumericalExample

    The objective function and the constraints are given as fbllows:

                  x=2x,+x,, (34)
                  a.x,-x,>-O, x,+x220, x,;})O, x,20, (35)

where a,, is a random variable which takesthe values 1 and 2 with probability: P(a,,==1)

==P,, P(a,,=2)=P, (p,+p, =1). The penalty cost is given as g,e,.

    The stochastic programming problem is reduced to the following form: Find x,

and x, to minimize the objective function

        E(2,) == {2-g,p,yCi'"-2g,p,y(2'"}x,+{1+g,p,y`i"+g,P,y(2"}x, , (36)

subject to the deterministic constraints:

        e2 = 1-xi-x2SO,

        et(i)= y,(')+ -y,(!)-=-x,+x,, (37)
        ei(2) -- yi(2)+-yi(2)- = -2xi+nc2 ,

       x,;}rO, x,;)O, y,Ci)+})O, y,(')";)O, y,(2)"l}rO, y,(2)';}IO,

  Thus th6 problem is solved by using the sirnplex method. The extreme points and

the feasible regions are illustrated in Fig. 1. The optimal solution is dependent on the

                                     .
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value of e, and p,. Fig. 2 illustrates the transition of the solution. For example, when

gi=5 and P,=1/2, the optimal solution is given as ,

        x, = 1!2, x, == 112 , y,(i)+ == y,(i)- =y,(2)+ =O, y,(2)- = 112 , (3g)

and the minimum value of the expected t'otal cost is

                           E(g,)(112, 1!2) =: 3/2. (39)
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                4. The case of continuous random variables

    For the case when the coethcients are continuous random variables, we will show

that PROBLEM 2 is a convex program. Further an algorithm for solving it will be

given for the case of Gaussian random variables.

A. Convexity of Expected Total Cost

    In order to show that PROBLEM 2 is a convex program, it is only necessary to show

that the objective function E(2,) is convex in x because the deterministic constraints are

linear. The first term in E(g,) is linear, and thus we will consider the second term, i.e.,

the cost due to violation of the constraints. We assume that the first m, constraints are

random and the remaining are deterministic, i.e.,

                I.={1,2, ･･･,m,}, Id === {m,+1, m,+2, ･･･,m}. (40)

Corresponding to the random elements of e i.e., the first m, elements of e which is denot-

ed by re, we define the matrix 'A and the vector 'b by

                                re .. rb-rAsc,

and 2m, dimensional vector e- by

                   eny = col (ei+, e2+, ･.., e.+, E,-, e2-, ..., em-) (41)

where

                    ei'=I8i E,itioO, ei-=I.,O, iis>;oO. 1 (42)

                                     .
The penalty cost corresponding to a realization of rA and 'b is denoted by xp(x, 'A, 'b),

i.e.,

                    2,(x, rA, rb) 4$l ssn,(e,)i(ei) -Sllr Nb'i(ei')･ (43)

                                 i--1 i---1

Particularly, when the penalty cost is given by (9), it becomes

                                          tn1
                    2,(x, 'A, rb)-<g･e'v>=Xgie,', (44)
                                          i--1
where

                                               Ml
                        '                                           -N-.d-x
                        g== col (e,, g,, ･･･, g.,, O, O, ･･･, O). (45)

                           '
    To prove the convexity of 2p(x, rA, 'b) fdr an arbitrary realization of the random

elements of rA and 'b, we will consider the following problem.

PROBLEM 6: Given a realization of rA and rb, find y to minimize the objective func-

tion

                                       Ml
                               Ve( y) -2 "b'i( yi) (zl･6)
                                       i--1

under the constraints
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                           ,i71y-rb-rAx,. y}}ro, (47)

where y= col(y. y,, ･･･, y,.,), (48)
                               Ml Ml
                            ab de                      B- 1 .1 ol-1.1o

                                ,: . m,. (49)
                          , o "llO "-1
                                   .

                          {tlt=By,y}IO}=RMi, (50)

PROBLEM 6 has a solution for all realization of rA and 'b. The optimal solution is

given by

                                  y=-g (sl)
as will be shown in the following.

    From (4) and (42), the elements of E'v are expressed in the fbllowing form for any

y which satisfies (47):

                        :i.::.::li81;LT.l,lf;lll ('--i･2･'''･mi)･ (s2)

where max {(･), (･.)} means the maximum value of (.) and (..). By assumption (7),

9i(ei) is a monotonously increasing function of ei and thus the following inequality holds

                     Nb"(s) - SIi Nb'i(ei')

                            i=-1
                             Ml
                          = X NSei(max {O, yi-y.i+i})
                            i-L;1

                             Ml ''                          :f{XNb'i(jyi) == Ve( y)･ ' (53)
                            i--1
                                 'Equality holds only when y ==S. Hence the optimal solution to PROBLEM 6 is given

by (51).

    The objective function for the case y=e" is given as

                                    m!
                             Ye(e-) -Z bee ,(ei), (54)
                                   i--1

which, from (47), is also equal to '

                            }bn(E--) =- x,(x, rA, rb). (ss)

Finally we conclude that the penalty cost term in the total cost (12) is equal to the optimal

value of the objective function of PROBLEM 6. ,
 ' Next we will show that xp(ec, 'A, rb) is a convex function of x. Let yi and y2 be

the optimal solutions to PROBLEM 6 when x=xi and x=x2, respectively. Although

y" given by ' '                                  '
                      yX=Ryi+(1-2>y2 (O<Z<1) (56)
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                                         '
is a feasible solution, it is not always the optimal solution to the problem when

                            xX=2x'+(1-2)x2. (57)
To prove this, we consider the sets

                      Ii' = {i l eii'>O, yi = eAvi, i <- m,}

                      I2'={ilei2'>O, y2=e-2, i<-m,} (58)

                                Ii+ .t l2+. (59)
Hence fdr i which satisfies

                         iE{Ii+UI2+-Ii+AI2+}, (60)
eii+ , ei2- (i<-mi) are positive while ei2+, Ei'- are zero and vice versa. Hence we have

                   ,.f/i.X[lii,i:.',(III]il.i:;g](i<-m,)･ (6i)

On the other hand, the optimal solution to PROBLEM 6 when x==xX is given in the form:

             y= E'X = col (eiX+, e2X+, ･.., emiX+, eiX-, e2X-, ..., emiX") , (62)

where

                iil: == ::l i8i ,",,.i',.f.llil'Jilll}} ] (i- i, 2, ･･･, m,), (63)

                                                 'Then the inequalities:

                   eiX'>O, e,X->O (i=1,2, ･･･,m,). (64)

do not hold simultaneously and thus the elements ofyX and gX do not coincide with the

elements corresponding toigiven by (60). Therefore, yX is not always the optimal solu-

tion to PROBLEM 6 when x=xX.

    From the foregoing discussion, we have the fbllowing inequality:

              xp(xX, rA, 'b) = No-(e--x)

                         g v(yx)

                         f{g 2th(yi)+(1-1)v(y2)

                         = 22p(xi, rA, rb)+(1-2)xp(x2, rA, rb) , (65)

where the last inequality follows from the convexity of V(e). (65) proves that 2p(x, rA, 'b)

is a convex function of sc. Since the inequality (65) holds for any realizations of 'A

and rb, the fo11owing inequality holds from the property of integral

           E(xp(xN, rA, rb)):i{:RE(2,(xi, rA, rb))+(1-Z)E(x.(x2, rA, rb)), (66)

where E(･) means the expectation with respect to 'A and rb. Thus we conclude that

E(2p) is a convex function of x.
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     It is easily seen that PROBLEM 6 is equivalent to the second stage problem of the

 two-stage problem'proposed by Dantzig and Madansky8):

PROBLEM7: Undertheconstraints

                          liij, -- rb-rAx, x;) o, y}lo, (67)

 and (14), minimize the objective function

                             E(<c･x>+min lyb(y)), (68)
                                        y
where Nb(y) and B are given by (46) and (49), respectively.

    Thus we can conclude that PROBLEM 2 is equivalent to the two-stage probiem

formulated as PROBLEM 7. Therefore, given the penalty function Ye(y) by Eq. (7),

problem 2 with continuous random variables is reduced to the special case of simple

recoursei3).

B. Computational Method for Case of Gaussian Random Variables ,

    In the previous section, it is shown that PROBLEM 2 is a convex program and

thus the optimal solution can be obtained by the well-established extremum seeking

methods. In the following an algorithrn using the gradients is shown to be applicable

to the case where ai,･ and bi(i Eii l., j' EEi JT}.) are Gaussian random variables.

    First calculate the mean and the standard deviation of ei:

                    .-n               e-i= bi- ;.ll..l diy'Xi' (iE Ir), (69)

                      nn               oEi2 = l..i ;l.!l-iPaii･aikaaskaaifeXi'Xle

                            n                        L2 ;.li..I Pais'biaaijobl･Xd+ ob i2 (iE Ir) , (70)

          '                        '
where (-･ )=mean of (･), ffc.)=standard deviation of (･)

       p(.)(..)=correlation coeficient between (.)and (, .).

When aii and bi (iE I.,iEli.) are Gaussian random variables, ei is also a Gaussian

random variable and the probability density function is given as

                      A(e') =v ..,, eXP (-(eS7,'i')2i.. (71)

By standardizing ei by the transformation:

                               ui=(ei-5i)lo,,, (72)
we express the objective function of PROBLEM 2 as

                E(-nyJo)(X) =: <c'x>+ g..., j:,,/.,, Vi(as,ui+ e-i)¢(ui) dui, (73)

where ¢(t) == vl-i.7 exp (-t212). , ' (74)

'
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Thus the first derivative of E(x,)(x) is calculated as

          OtgS.o) - c,-S., sb-i(o)di(-syo,,)(t/Il,>'., g£ii- .l, g£;'. )

                  +i..,,SilE,1..,,Vi'(ae,ui+Ei), (ui oO.aii+giil. ) qs(u,)du, ,

                == cj'+ 1.IIIi.. i, IllE,i.,,Nb' i'(ae,ui+ e-i) (ui ao.a;i + aO.E: ) gs(u,)du,, (7s)

where

                             Nb",'(e,)-4-"`,"t21.e')-, (76)

and the last equality fbllows from (8). Further, we have the following relations from

(68) and (69):

                                              '                   OEi -

                   gS.i = {;£.].,Paiiaihoaiiaaihxle-paijbioai,･obi} ･ (78)

                                                                  '
    When Vi' is differentiable, the Hessian of the objective function is calculated and

the second derivatives can be obtained. Thus the various extremum seeking techniques

using the gradients can be applied to the problem.

C. NumericalExample
    The constraints and the objective function are given as follows:

where aif and bi (i, 1'=

       an = 1, aan= O.1, ai2 = 1, aai2 == O.1, a2i == 1,

       a22 ==: -1, oa22 =O･1, bi == 1, ob,=O.1, b, =O,

    The mean and the standard deviation of Ei are calculated as

                    Ei -- 5i-ai,x,-bi,x, (i =1, 2),

                   Oei2 == oai12X12+oai22X22+obi2 (i = 1, 2) .

    When the penalty function is given by

                      V,(e,+) = g,ei , 92(ei) = g,e2' ,

the expected total cost becomes

 :l'iiJ,ai2Vx2,?>)-boi, a2iXi+a22x,>-b.],

 x = clxl+c2x2 = 2xl+x2 ,

1, 2) are independent Gaussian random variables given by

Oa21

Ob2

O.1

O.1 .

(79)

(80)

(81)

(82)

(83)

(84)
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            Er(2o) = t9., cj'x,'+},ll=1, gi !:E,i.,, (oei"i+ e-i)¢(ui)dui

                       '
                i= I.., cjxj+?,;..l, gi (Jltt. exp (-tt:.3)tgi¢ (

where //
                'i' ¢(`)= jl.. ¢(u)tlv･

   The first derivative of E(x,)(x) is

          Olli£liiio) =: cj･+S., gi (vt)li''jii xJ･ exp (- i-i2i,) -aiy･¢ (

                        Tablel Optimalsolution 1

e-

i

eei

e-

i

Oe

)
]
･

i

)
]
.
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(85)

(86)

(87)

No.
Penalty

ql 92

Optimai solution

 Xl X2

     Probability

Prob [eigO] Prob [e2SO]

Expected

total cost

1

2

3

4

  5
 10
 1OO

1OOO

  5
 10
 100

1000

O.608

O.667

O.818

O.945

O.450

O.459

O.471

OA76

O.678

O.835

O.982

O.998

O.896

O.947

O.994

O.999

1.828

1.933

2.221

2.472

s

6

7

5

s

5

 10
 1OO

1OOO

O.631

O.690

O.737

O.'427

O.367

O.319

O.676

O.672

O.669

O.948

O.995

O.999

1.849

1.905

1.952

8

9

10

 10
 100

1000

5

5

5

O.643

O.728

O.794

O.482

O.559

O.618

O.835

O.983

O.998

O.896

O.893

O.892

1.912

2.134

2.318

 1.0

 O.8

 O,6

Rcu

 O,4

 O.2

s
:
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×
 ×iSt"
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      2
    ×$b
  /stv
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   ,2
 '  1.  . .2N .s
 N.6
 N       .7  N
   N
    N
     N
     N
      N
  l

10
`

.3 .4

o.o O.2 O:4,

 Fig. 3.

O,6 O.8 1,O
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l
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The optimal solutions for various values of g, and a, are calculated by using SUMT

(Sequential!y Unconstrained Minimization Technique)2e). The results are shown in

Table 1 and Fig. 3. The numbers in the figure corresponds to those in the column

No. in Table 1. We see that the optimal solution tends toward the safety side and thus

the probability to satisfy the constraints becomes higher as the penalty becomes largg.

5. Conclusion

    An approach to stochastic programming is presented: A total cost is defined by

adding penalty costs when the constraints are violated and a problem is set up to mini-

mize the expected total cost. It is shown that 1) when the coeMcients under uncertainty

are discrete random variables, the problem is reduced to the ordinary deterministic linear

program and 2) when random coeMcients have continuous probability distribution, the

problem is proved to be a convex program. Further, computational methods are pre-

sented for both cases.
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