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                                                                 '
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'

        Residue interaCting operations can be split into five broad categories: scaling,

     mixed-radix conversion, base-extension, general division and floating-point arithmetic.

     These operations are fundamentally composed of the residue independent operations of

    addition, sul)traction and multiplication. For implementation of the three arithmetic

     operations, the use of logical gate matrices offers conceptual simpliciy. This method･ has

     assu!ned that residues of a number are encoded in a "one of many" representation. This

     is obviously uneconomical in terms of matrix components. This paper discloses how the

     three residue' operations mentioned 'ah6ve can be mechanized to advantege by using the

    symmetric residue notation.

                                                                             '

                                1. Introduction

    Considerable atternpts have been made to use residue number theory for computa-

tion. The characteristic of the residue system of interest to computer designers is

that in addition, subtraction and niultiplication any particular digit of the result is

dependent only on the corresponding operand digits. This property makes it possible
                                                                     '                                                             'to add, subtract and multiply without a carry (or borrow) and removes the need to
            'form partial products in rnultiplication. The operations of addition, subtraction, mul-

tiplication and complementation are called residue independent operations. In the
symmetric residue systepa, the complementation, i. e., finding the additive ifiverse of a

residue, digit can be accomplished merely by complementing the sign of the digit.

    Other operations such as relative magnitude comparison, sign determination, over-

flow detection, scaling, general division, mixed-radix conversion, base-extension, and

floating-point arithmetic are called residue interacting operations. These operations

are fundameneally cornposed of residue addition, subtraction and multipiication.i)3)4)

    For implementation of the three residue arithmetic operations mentioned above,

the use of logical gate matrices offers conceptual simplicity. This method has assumed ･

that residues of a number are encoded in a "one of many" representation. This is

obyiously uneconomical in terms of matrix components. It haS been suggested by the

Radio Corporation of America2) that a significant reduction in matrix components is

realized by using a sign-magnitude notation, and the present investigation makes

improvements in this idea.
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140 E. KINosmTA, H. KoSAKo and Y. KoJIMA'

    In the subsequent discussion it will be assumed that the reader is familiar with
                      '                                                              'the basic concepts of residue arithmetic. '

                       2. Symmetric Residue. Representation

    Let there be given a set of odd prime numbers mi, m2, ･･･, mn called moduli.

Then, for any integer x in the interval' [-(M-1)12, (M-1)/2], the least remainder

                                                                              nin absolute value when x is divided by mi may be computed, where M=Hmi.

                                  '- i=1
This quantity is represented by the symbol /¢/., and is an integer such that

-(mt-1)12$/xl.,:-f!l;(mi-Tl)/2. For a given set of moduli an i?-tuple {/¢/m,, /Xfm,,

"' , /¢/m.} uniquely represents x. This n-tuple is called the symmetric residue repr-

esentation of x. The integer lxlm, is called the ith symmetric residue digit of x･

    It is possible to reconstruct the natural number from its residue representation by

means of the mixed-radix conversion process.t) This procedure converts the residue

code of a number to its mixed-radix representation.

    The method to be described will be applicable only to residue systems with moduli

mtl7. This method may, however, be modified to remove this restriction.

                     3. Coding the Symmetric Residue Digit

    For residue arithmetic, the use of rnatrix units is attractive because an array of

logical components can be wired to give a direct representation of the truth table for

the residue arithmetic operation. The relative ease with which the quantities can be

obtained is a direct consequence of using 1-out-of-mi coding, where mt is the modulus

in which the operation is being performed. The number of components required for

 each rnatrix is m?. '
    The symrnetric residue representation is a sign-magnitude notation. In this repre-

sentation a residue digit is expressed in 2-out-of-(mt+1)/2 code. Table 1 shows the

2-out-of-(mi+1)12 coding for modulus 7. For modulo-mt matrix, the coding scheme

reduces the number of matrix components to (mi+1)(mi+3)/8, as will be seen later.

             Table 1. Binary coding of modulo--7 residue in the 2-out-of-4 code.

Digit Code

o o o o o

･1 o o o 1

2 o o 1 o

3 o 1 o o

-3 1 1 o o

-2 1 o 1 o

-1 1 o o 1

Since rnost digital storage

4. ArithmeticURit
'

devices eonsist of two states, the 2-out-of-(mt +1> /2

.
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coding is uneconomical in terms of storage eficiency, 'too. Hence a recoding process

must' take place whenever information passes between the arithmetic unit and the

' For the symmetric residue system consisting of moduli mi, m2, ･･･, mn an lnteger

x will be represented by n symmetric residues. The number range for the ith residue

digit /` /m, is

            - (?t :-s{ /`n1m, :-f{Qi ,

where Qi =(mi-1)1213 (recalling that miZ7).

    Now let us assume that /x/m, is stored in binary code and has t bits, the sign

bit and t-1 magnitude bits, where 2`'2S.Qi<pt2t-i--1. For operation modulo mi, an

arithmetic unit employs three registers, as show.n in Fig. 1.

           i

.

1axm,IX/m
2 ---

!xlmi
--- lxl.

Frommemory'2t2t-1
2120

--- RIi2 RIilRIi, RIi,,-1

RIiregister

RII,iRIIil RII4,-1 -e- RIIi2

RIIir6gister

Matrices

Ai, --" Ai2 Ail,Ai,t-1

Airegister

                               , To memory
                    Fig. 1. Three registers for modulo-mi operations.

                              '

    These registers are named RIi, Rlli, and Ai. Capital letters with subscripts il

to it denote the t'flipfiops in the registers of Fig. 1. RIti, RIti, and Ati aer the

least significant bits; RIit, Rlltt, and Ait, the sign bits. '  .
    Register'RIi stores the first operand transferred from the At register, the result

of the previous arithmetic operation. Register RIi merely stores the second operand

fetched from memory during arithmetic operations. Register At functions as an accu-

mulator. It stores the result of arithmetiic operations involVing the first and second

operands and u'pon receiving the result transfers it to the RIt register.

'
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    Three separate matrices are provided to perform addition, subtraction and mul-

tiplication modulo mt. Since in the symmetric residue system the oniy difference

between positive and negative numbers is the sign bit, each matrix is implemented

assuming that the ith residue digits of the operands are positive, The correct sign is'

determined by means of additional equipment. The magnitude bits of the RIt and

RUi registers are decoded into the 1-out-of-(mt+1)/2 coding form. The output lines

from each decoder are connected to the three matrices. To simplify the following

description, we use Q for Qt.

4.1. Add Mauix Unit
    From the standpoint of logic, the arithmetic tables for the residue operations are

essentially truth tables. The modulo mt addition of positive residues shown in Tabel

2can be interpreted as truth table of two (mt+1)12-valued variables. '

                         Tahle 2. Modulo-mt addition tahle.

+
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    Now let A denote this table, and let akt be the (k, l)･ elements (k, l=1, 2, ･･･,

Q+1) of A. Then we have

           an=O, eZQ+i,e+i==-"1,

           aki=ak-b2=""..=aik =k"1>O for k=f2, 3"･･ ･･･, Q+1

and

           cZe+i, i -"- ae,t+i == "'"' =at, Q+i == - (Q+27 1) <O for lt=2, 3, ･･････, Q

Proof.
                          '
           an == /O+O/m, " O･

           a(?+i, Q+i = /Q+Q/mi=/mt -1/m, == /mt -1-mt /m, =-1.

For the subscripts u and v such that vt= k+1-a (u=k, k-1, ･････., 1),

           anv=/u-1+v-i/mi =/u+v-2/mit=/k-1/mi.

Since 2SkSQ+1, 1<=k-ISQ.
Hence,

           auv=/k-1/m,ts:k-1>O･

In similar fashion, we have

           au-b v+i"= k- 1.

For the subscripts u and v such that ut=Q+1+l-v (v==l, l+1, ･･････, Q+1), it can

be easily seen that

'
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                                                                   '
                            '                                                        '   ･ aecv =au-i,v+i :/u+v-2fmi==/Q+l-1/mi. '･ ･ -
Since 2SISQ, Q+1:-E{;Q+l'lf-{!;2Q-1･

           -Q<=Q+l-1-m, == - (Q+2-l) S.-2.

Hence we have

           1Q-l-l-1/m,==-((?+2-l)<O.
                                                         '                                                     '
    From the above exarnination, it is possible to reduce the number of elements in

A. The reduced truth table itself is represented by a folded matrix. Fig. 2,illustrates

the wiring for a modulo-7 add matrix. Two of the lines, O, 1, 2, 3, to the matrix are

energized at one time except when the magnitudes of the contents of the RIt and

Rgt registers are equal. Line E in Fig, 2 is energized by control logic whenever the

magnitudes are equal, and the output St is the sign bit.

                                                              o

                                                              2
     '
              o
                                                              3

                                                             ,s･i

                                                                     .

              3

                         Fig. 2. Add matrix unit fot mi ==7. ''.

4.2. Subtraet lhatrix Unit .
                                                                         '    Table 3 illustrates the modulo mt subtraction of positive resid:ues in tabular form.

                        Table 3 Modulo--mi subtraction table.
                                                                       .
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    Let B denote this table, and let bkt be the (k, l) elements (k, l=1, 2, ･･･, Q+1)

of B. Then we have . ,                                                      '                                                                '
           bkk'=O, bi,e+i= Q, bQ+m==-Q,

           bit"=b2,t+i="""=bQ+2-t,Q+i==l-1>O for l==2, 3, ･･････,Q

                                  'and bki==bic+i,2==･･･-･=be+i, e+2-k=-(k-1)<O for k=2, 3, ･･-･･, Q,

                               '                                                        'which may be easily proven.

    The above relationships make possib!e a reduction in the size of a subtract matrix.

The difference windlng for a, modulo-7 subtract matrix is shown in Fig. 3.

   '           '                          tt    '

                                                                2

                                                               y,

                1

                2'

                3
                                         , k"
                       Fig. 3. Subtract matrix unit for mi=7.

          .                                                        ,
    Note that the sign bit of the output is positive. This implies that the subtract

                             'matrix forms the difference in absolute value.

4.3. Multiplication Using Index Calculus

    To have simpler product windings, let us consider index sum multiplication.

According to algebraic knowledge, if the modulus mi is a prime and p denotes a

prirnitive root of mt, then every nonzero rnodulo-mi residue digit can be expressed

uniquely'as the modulo-mi residue of P raised to some power. Table 4 illustrates

           Table 4. Modulo-7 symme,tric residue digits expressed with powers of 3.

Residuedigit ･Index

1==13017. o

2=1321, 2

3=:!3i!7 1

-3=!3-21, -2
-2==!3-il, -1

.- 1==!33/7 3
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how the residue digit and the integer power of p correspond each other for m'i=7,

P=3. -
    From Fermat's Theore'm, we obtain

            /pMt"-i/., =1. , (1 )'
                                                                       '
Then for any integer¢we may write '
            x==q(mi-1)+/¢/mi-i

and

            !pxf., =:/pg(Mi-i)xpix!mt ･- i/.,, , (2)
where q is an integer. But, by (1), the first te'rm of (2) on the right-hand side must

be equal to 1. Consequently,

' /pX/mi == /.piXimi -nyi/mi. (3)
    Now let Sr be the set of the modulo-mi symmetric nonzero residues, and let Se

be the set of the exponents or indices corrcsponding to the residues. If the elements

ri and r2 of Sr are expressed in the form

            rl== /pel/mt ･

            r2=/pe2/mt,

it follows from (3) that i
            /ri × r2/mt =, /plei+e21mi-i/mi.

This means that rathar than carrying out modulo-mi multiplication in Sr, we can
            fcarry out modulo mt-1 addition in Se and retransform the result into Sr.

    Table 4 illustrates this method for perforrning multiplication. Assume that the
                                                      .mod-7 residue digits, 3 and -2, are to be rnultiplied. The corresponding indices are

1 and -1. The sum of these indices is O, and the corresponding residue digit is 1.

    Two useful relationships of correspondece are

                                                                            '                      ,            /pOf.,=1 ･ (4)                     '
and
             .      ' /pCMt-i)i2/.i=-L (5)
Probf. The proof of (4) is obvious.

Since

            lpMi-'1/mt=/p(Mi-1)!2/mix/p(Mi-1)12/mi,

it follows from (1) that

            fp(mt-1)12/.,=-L

4.4. Multiply Matrix Unit

    For the modulus mi and its primitive root P, we assume that the indices, O, 1, 2,

･･･ , Q-1, -(Q-1), -((?-2), ･･･, -1, have one to one correspondence to the residue

digits, ro, rl, r2, .･･, re-b r-cQ-1), r-<e-2), "', r-1.

    The following simple property of the correspondence will be useful to construction

ofamultiplication table. '                                           '
                                             .t

.
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            . tlTHEOREM For u>fv and O:-S{;u, v$Q`1 the following holds:

     ' lr.iAflrvl･ ･Proof. The proof is by contradiction. ･ ･ -
    Let 1rul=lrv1 and u<v, then

           1/ptt/m,1=1/pvl.,l･ ･

           /pu/mi =±/p"1mi.

This implies

    , /pU/mi±/P"/mt =O,
                                     'which in turn implies

           /pu/mi×1i±pv'-u/.i=/pul.i×(i±/pv-u/.i)==o;

           /pu fm, >< O,

therefore the only way /pUlm,×(1±lp"H"lm,) can equal zero is for

           1±/1)V-"fm,= O･

Consequently, from (4)'or (5),

           v-u=O or v-u==Q.

It is apparent that v-u=O contradicts the original assumption, Since

v:-:!I;Q-1,

           IS.v-u<=Q-L

This contradicts (6).
                                   .The two contradictions prove the theorem. '
    It follows from the theorem that the, residue digits rk (k==O, 1,

Sgffsehreowntnfi.;MT2::easnOitshceornisntruacbtSeOarte value. Hence a moduio m, mu

                '
                      Table 5. Modulo-mt multiplication table.

         (61)

u<w and O<=u,

 .1

   '

2, ･･･, Q-1) are

ltipl,ication table

        ,
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k
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 .

 .
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4 rl fe . . . re-1
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lri × rol.i

lr2 x ro!.i
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lrlo×ri!.i

lri × ril.i

lh x ril.i
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lrc}-ixri!mt .

1rb×rla1.,

lri × nglmi

1fe × 'le!mi
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lroxre-il.i

lri x re-il.t

lhXl'(I-i!mt

     -,

     .

     .
!rQ-1×re-1/.i

   Let

C. Then

C denote this table, and let cki

 we have

   Ck1=Ck-b2== """=:C1ic"=rk-1 ,

      .

be the (k, l) elements

 for k=1, 2, ･････',Q

(k, l=1, 2, ･･･, Q) of
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                                                                        tt

                                                       '   '           Cei=CQ-i,i+i ="'"' =CtQ=:rie+i-2i.i-i for l =2, 3, ..., Qs

Proof. For the subscripts u and v such that v=,k+1-u (u=k, k-1, .･･, 1),

           Cdiv=: /ru-i× rv --i/mi = /lpu-ilmt × /,pv-ilmi/mt ,.. IpiU+V-2imi-i/mt.

Since u+v-2'--k-1 and IS.kSQ, it follows that

           o,:-sgu+v -- 2$Q --･ 1.

                  1"+v-21mt-1 , . cuv :/P /mt=/pee+V"21minru+v-2 ==rte-i.

In the same manner we have

           c.-1, v+1 =frk-1. '

It can be seen easily that, gor the subscripts u and v such that u=lr+-Q-v (v==l,

l+!, -･, Q), -
                           lu+v'2!mt-.1           Cctv ='Cu-1, V+1 == /P                                     lmi'

Sinceu+v-2=Q+l-2 and 2g-l$Q,

           Q<-.u+v-2Sm2Q--2.

           /piu+,v"'2imt-ilmi,.Iriu+v-2imi-i =r!Q+t-2!mt--.i.

    From the assumptio4 that the symmetric residue digits of the operands are

positive, this table needs a little modification. If there are negative residue digits

among ro, ri, ･･･, rQ-i, each of them must be replaced by its absolute value. Con-

sequently, the element cki must be replaced by ---cki when rk-i and ri-i have the

opposlte s!gn. . ･
  ･ It is possible, frorn the above examination, to fold the multiply matrix unit. Fig.

4 illustrates the wiring for a modulo-7 multiplication matrix, assuming P =3. It should

      '                                                '                                 '
                                                               :

                                                                           x
                o
                                                               2

                                                               3
                1

                                                               si

                       '                                                   '                2
                                                                  ,                    Fig. 4. Multiply Matrix unit for mi=7, P==3. -

`

/
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  .be noted that the order bf the input variables is, in general, different from that of

add or subtract matrix.

                            5. Selection of Matrix
                  '              '                                                                   '
    Let us suppose that the computer control section generates the I7A or Fs function

to indicate the add or subtract command, respective!y. The addition or subtraction

actually performed by the add or subtract matrix is determined by the FADD function

             ,or the FsuB function generated in the add-subtract control block by combination of

the functions FA, 17s, and the two signs in RIit and Rllit according to the truth

table in Table 6.

                        Tal]le 6. Truth tal)le for FADD, "FlsuB.

RIi,-･ 'LF'A･' Fs Rlli, FADD FsuB

o

o

1

1

o

o

1

1

1

1

1

1

o

o
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o

o

o
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o

1

1

1
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o
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1

o

1

o

1

1

o

o

1

o

1

1

o

o

1

1

o

1

o

o

1

The logic equations for the functions FADD and FsuB are given as follows:

           FADD=FA'G-ri+Fs'G

           FsuB=FB'G+FA･G,

    The computer control section generates also the FM function to indicate the

rnultiply commarrd. The multiply matrix is selected directly by the function FM.

                     6. Sign Determination of the Result
                                                               '                ttt
    Initially, magnitude bits RIii to RIi,t"i and Rll" to REt,t-i are compared by

the comparator 1･ and comparator 2 to generate function F" and Fi2. Assume that

           Fii=1 when KRIi)l==l(REt)l

and Fi2=l when 1(RIi)I>IRIi)l,
where the parentheses denote contents of a register.

    The arithmetic matrix selected generates the sign signal assuming the residue

digits are positive. The sign of the result is determined through the combinatorial

logic block which generates the function Wi. If WiF=1, the sign Si from the matrix

is to be complemented. If Wi==O, St is uncomplemented. The truth tables for VVt in

three operations are given in Table 7, 8, and 9. From these tables we have

           VVi =FADD'Rrit+FsuB'F"'(RItt'l7i2+R!it'Fn) +FM G. .
             '    The truth table for the..correct sign Ait of the result is give in Table 10. Hence,

                         '

                                ,

'

'



.

,

t

we have

Table

    Logical imPlementation

           .

   A,,=:I)V,eS, '

7. Truth table for I]Vi in

   add operation.

of Arithmetic Qperations

Tahle

in the Symmetric

            -

8. Truth tal)le for IVi in

   subtract operation.

149

RIi,

o

o

1

1
.

Rffit

o

1

o

1

wi

o

o

1

1

'

s

RIi,

o
s"
o

1

1

o

o

1

1

o

o

1

1

Rlit

o

1
'

o

1

o

1

o
e ･a

1

o

1'

o

1

Ft1

o

o

o

o

o

o

o

o

1

l

1

1

Fi2

o

o

o

o

1

1

1

1

o

o

o

o

IVi

1

1

o

o

o

o

1

1

o

o

o

o

N

  Table 9. Truth table for IJVi in

           multiply operation. Table lO. Truth tal)le for Ait.

                                                       I)Vt St Ai,

                                                        ooo
                                                        101
                                                        Oll
                                                        1 1 0

                                   7. Conclusion

    Utilizing the concept of matrix unit, we have proposed a method for implementing

addition, subtraction and multiplication in the symmetric residue system. A rule of

the wiring for modulo-mi arithmetie matrices was presented in Section 4. The

proposed method could be rea}ized with LSI techniques and would give high speed to

the three residue operations. ,
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