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Optimum Configuration of Vibration Reducers
for Beam Systems with Random Excitations

Naofumi Fujiwara* and Yoshisada MuroTsu**

(Received June 15, 1973)

A new method for finding optimum configuration of vibration reducers for elastic
systems with random excitations is discussed. Optimum control theory in frequency
‘domain is applied to this problem. The optimization technique is illustrated on a
beam supported at both ends. It is found that for white noise excitation, the
optimum vibration reducer for the first mode vibration of a beam can be mechanized
by spring-dashpot element and can be really effective for vibrations with whole
modes of the beam.

1. Introduction

The problems of designing vibration reducers for suppressing magnitude of
response of elastic systems to random excitations have broad applications in the
mechanical engineering, civil engineering and architecture. Many techniques for solv-
ing the problems were considered. One of those is a technique that adds a localized
spring and mass® or dashpot® to the elastic systems and determines its position
and parameter values so as to obtain the desired performance of the systems. It
is, however, not always certified that the configurations of vibration reducers deter-
minied by the techniques mentioned above are the best.

In this paper, a new method for finding optimum configurations of vibration
reducers for elastic systems with random excitations is proposed. The method
makes use of the optimum control theory which- is recently developed in the con-
trol engineering. The optimization technique is described for a general beam
system subjected to random foundation excitations and illustrated on typical simple
systems. Numerical examples are presented for simply-supported uniform beam
excited by white noise or a typical random foundation motion. While the technique
is basically equal to that for multi-degree-of-freedom systems®®, the satisfactory
results are obtained for elastic systems.

2. Optimizing procedure

A beam supported at both ends and having n vibration reducers is considered
as shown in Fig. 1. The characteristics of the vibration reducers are assumed to
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Fig. 1. Schematic diagram of a general beam system
with # vibration reducers.

be black boxes which generate the undetermined forces. The wave equation that
describes the transverse vibration of the beam may be written as follows;

Pulxt) , 9% Py(E,E) \ _ o . '
o) PUED + T (Brn BSED ) =3 fiot—an | (1)
where
u(x,b) . transverse deflection of the beam
=y(x,8) + (1 —x/L)uo(t) +(x/ LYthn+1 () : (2)

o(x) : mass per unit length

EIx) : flexural rigidity

¥zt . elastic deformation

fi®) : force generated by the i-th vibration reducer

ui(t) : deflection of foundation at x=a;

a; . length from left end of the beam to the #-th vibration reduce:

(%) : delta-function.

Problem will be stated as follows: When the foundations of the system shown
in Fig. 1. are excited by the zero-mean stationary Gaussian random forces, design
the optimum vibration reducers so that the elastic deformation of the beam may be
minimized with specified constraints on the forces of the vibration reducers. This
problem is formulated as an optimum control problem: Under the constraints

<Sfi@P>LM; (=12, n) (3)
design the linear vibration reducers to minimize the performance index
1= yx >0 (4)
where
M; : given constraint value for the ith vibration reducer
< >: time average
() : weighted mean over the beam=~IES:(°)w(x)dx

w(x) : weighting function; _
Following the Lagrange’s method of undetermined multipliers, the above design
problem is reformulated as the problem to minimize the following penalty function

7= y(x,t>2>>w+§z.-2<ﬁ(t>2> ' (5)

where



Optimum Configuration of Vibration Reducers for Beam Systems 25

1%: Lagrange’s undetermined multiplier for the i-th vibration reducer.

For simplification of mathematical mampulatlons Eq. (5 is converted into the
frequency domain. First, consider the functional relation between the force of the
i-th vibration reducer and the foundation motion #:(). Since the candidate vibra-
tion reducers being seeked are of linear type as assumed, fi(t) is characterized by
the relation®

fils) =:2+1F,-k(s>ak(s) (6)
=0

where Fy (s) is a transfer function which will be determined. In Eq. (6), the follow-
ing notations are introduced;

s : Laplace transform variable

. . time derivative

fils) o L)

ix(s) L)},

Next, the relation between »(x,) and #@(f) is considered. Substituting Eq. (2) into
Eq. (1) leads to ' : '

Pzt 0 y(x )
o ELED. 1. B o DX} =5 fiwrate—ap

_ —p(x)(1 —x/ Lio(#) — P(2)(%/ LYlin11(2) (7
The solution to Eq. (7) can be represented in terms of all the normal modes Y;(x)
and all the normal coordinates ¢;(#), and thus y(x,t) is expressed as

3D =5 Yi0a, S (8)

Where Yi(x) is determined by specifying the boundary conditions. Substltutmg Eq.
(8) into Eq. (7) yields

d? Y,(x)

S Y0 +E 5o & L Jaso

é (o)~ o) (1= Yt - LD ot (9)

Multiplying Eq. (9) by Yi{x) and integrating over the beam, the following equation
is obtained;

M;q 8+ Kiqi( =in(di)ﬂ(t)~bjﬁo(t>"‘Cjiin-;—l(f) ‘ (10
i=1 )
where
M= S (0 Yxyds

" & ps >d YOy nax
o dx

S o) (1-£) vywdz

K;

t

!l

b;
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L
¢ ={ Fowymdx

By taking the Laplace transform of Eq. (10) and substituting Eq. (6) into it, the
normal coordinate is obtained as follows:

(Jj(S) =:ilej(S)ﬁk(S) 11)
=0
where
2 Yi(a)Fir(s) —prj g:s)
(o) = t=1 = 4i
Gk](s) ‘ Mj82+Kj ﬁk(S) az
b; for k=0
Dei=4 0 for k=12, -, n
¢; for k=n+1
Substituting Eq. (11) into the Laplace transform of Eq. (8) leads to
¥,9) =,:§Hk(x,s)ak(s) (13)
=0 :
where
Hi(%,9) = 50Y {(£)Gas(s) 14
i=1

Using the well-known relationship between the mean-square value and power
spectral density, the mean-square value of deformation at point x of the beam is

> =" SIS H o Hi,—99uds 15

Wheré $4;, is the cross power spectral density between #:(#) and # (). Thus, the
weighted mean of <y(x,£)>> over the beam is

L
5N =4 <owpr> » wind

__ 1 (=
T 2nf S_joo¢yd3 ‘ (16)
where
7+l n+l 0 co 1 L
by =250 333 | w) Vi) Yo Gir(5)Gan(— $)015, an
§=0 k=0 I=1 m=1 (1}

From the relation Eq. (6), the mean-square value of the ith reducing force is
written as follows;

_ 1 joo .
<> =g\ rds (18)
where
#+1 n+1
br; =21 2V Fi{S)Fu( =38y, , ; (19)

1=0 k=0

Substituting Eqgs. (16) and (18) into Eq. (5), the following relation in frequency
domain is obtained
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1 Sj°° (¢y+§x.-2¢f,.)ds, | | @0

- 275] —joo
Af)plying the frequency domain optimization technique by Chang®, the condition
for the penalty function J to be minimized is

6¢y +\i lg a¢flg

P T8GR (—s i) | @1

(#=1,2,+, n; j=0,1,, n+1)
where Ri;(s) is a function which does not possess any pole in the LHP (left-half-
plane). The equation (21) yields a set of linear simultaneous equations for Fi;(s).
By solving the Eq. (21) the optimum transfer functions F:;%s) are determined. The
procedure of determining F;;%s) will be illustrated on the next chapter.

In addition to the above problem, some other problems to minimize the accele-
ration (<¥(x,H)2>), or the moment (<m(x,>>), of the beam with specified const-
raints on the forces < f{)2> or the relative displacements < y:;(a:,1)2> of the vibration
reducers are considered. For such problems, the formulations are done in the
same way as that of the above problem by replacing (<3(x,07>), or (<m(x,2)2>)y
with (<y(x,H=>), and replacing <y,i(a:,#)>> with <fi®)>>.

Next, we get the expression of the quantities mentioned above. Since ¥(x,)
and m(x,}) are the acceleration and the moment at point x of the beam, respectively,

they are represented by following relations

HaH =Yg 22)
i=0
mx)=—Ela) TLED 3

Taking the Laplace transform of Egs. (22) and (23) and substituting Eq. (11) into
them, the acceleration and the moment of the beam are written in frequency
. domain as follows:

5,9) =’§Pk<x,s>uk<s) | @4)

m(%,s) =:Z:'.(1;Qk(x,s)ilk(s) : (25)
where

Pk(x,s>=i2'=°oyi<x>szc,,;<s> 26)

Qulr,9) = —gjﬂ(x) dzg;;(;‘) Gals) . @n

The equations (24) and (25) are of the same type as the equation (13). Therefore,
(<H(,H2>)e and (<m(x,52>), can be calculated in the same manner as (< y(%,0)%>)u.
The relative displacement of the i-th vibration reducer is expressed as
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Do) =ulait) —ut) : » L :
=y(a;,t) + {1 =ai/L)to(t) +(ai/ LYthntr(8) — ;) p (28)
Taking the Laplace transform of Eq. (28) leads to ‘

911(as,9) =:Z+1Hk' (@1,9)4(s) (29)
= . .
where
Hy (ai,s)=Hila;,s)+ Aila;,s) ‘ (30
(1—ai/L)/s* for k=0
0 for k=1,2,---, n (ki)
, A , ) = bt ’
Hais —1/s? for k=i
a;/Ls? for k=n+1

Then, the mean-square value of the relative displacement of the i-th vibration re-
ducer is expressed .as

1 joo n+l n+l ’ » ‘
%S SV SHY @i, 9 HL (1, — )65 ds . (31)

—joo k=0 I=0

<yr,'(ai,t)2 =

3. Minimum-deformation problem

Consider a system with a vibration reducer as shown in Fig. 2. In this chapter,
it is assumed that the random foundation motion is uniform, ie.,

o) =1, () =ux(#) (32)
and that the weighting function w(x) is proportional to #(x):

w(x)=(L/M)o(x) (33)
Using Eqgs. (6) and (32), the following relation is obtained

J(8)=F(8)ii(s) (34)
where f(s)=/i(s) and F(s)=Fi(s)+Fuls)+Fis). :
Substituting the above relation into Eq. (11) leads to
g4(s) - Yj(d1)F(S) —bj—c
tio(s) M;s?+K;
(j=1,2,++, o0)
Substituting Eq. (33) into Eq. (17) and using the well-known orthogonality relation
between the normal modes, the following relation is obtained

L=Gs) (35)

b, =3 GG~ b, (36)
J=1

1 ra)
/7777777777777 777777777
QA )

Fig. 2. Schematic diagram of a beam supported
at both ends and equipped with a vibration
reducer.
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where ¢u, represents the power spectral density of the acceleration of the foundation
motion (). From Egs. (19) and (34), we have - C
br=F()F(—8)¢3, , « e (37)
The further assumption that the vibration of the beam consists of the only
first mode is introduced. Then,

Y1(01)F(S) _‘dl . Yl(al)F( 8)— d1 ' (38)
M1(SZ+Q’12) Mi(s*+w?) Pito

where di=b+¢, and o2=K,/M,.
Substituting Eqgs. (37) and (38) into Eq. (21) leads to
Py,
e ({2 ot + 2RO~ R 7 )=RO) (39)
where £2=Yi(a,)?/3*M,. Giving the functional form of ¢4, F(s) can determined by
the following procedure. ‘

¢y =

3.1. White noise excitation

".. First, consider the case of white noise excitation;

bu,=Sp=const. ' . (40
Then, F(s) must have the form
o Ass+Ao

PO G re—m “n

where A, and A; are undetermined coefficients and s=—¢&+47 are the LHP roots
in Eq. (42)

(s+ w22+ p2=0 ' 42)
thus,
E={ o+ 2—o0/2
1/0)1 +ﬂ 1 / } 43)
P=E 10,2
Substituting Eqs. (40) and (41) into Eq. (39) leads to
(-2 €+ A+ A~ A =R(S) (44)

Smce R(s) does not possess any pole in the LHP, the LHP poles in Eq. (44) must

be cancelled out by the zeros. Hence, :
O Av=28%/Yi(ay)

) Ar=2¢dy/ Y (ay) }

Substituting Eq. (45) into Eq. (41), the optimum transfer function Fo(s) is obtained.

Therefore, the optimum vibration reducing force fo(s) is

(45)

2di&E(s+£) .
o) =)+ 2 + e o) | 4o
and substituting Eq. (41) into Eq. (35) leads to
00 == i) un

Cancelling out #(s) from Egs. (46) and (47) yields
fo(S) =— {2M1f/ Yi(ad} (.S +f)41(8)
= —(Co$ +k0)yr(d1,8) ’ (48)
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where
co=2M¢/Yi(a,)?
ko=2M &/ Yi(ay)? } .
and y,(a,?) is the relative displacement of the vibration reducer, i.e., y.(@1,8) = Yi(a)q:(®).
From Eq. (48), the optimum vibration reducer can be mechanized by a spring with
spring constant %k and a dashpot with damping .coefficient ¢, as shown in Fig. 3.
For general discussion, the following variables are introduced ;.

(49)

Q’O:l/ko/Ml
N (50)

Co=6‘o/21/M1ko
Substituting Eq. (41) into Eqs. (16) and (18) leads to

(<y(x,t)2>w= (dl/M)2w13 (51)

So/ @13 4E(E2+79) ‘
and
2 2 2
<S> __ E2E+7P) (52)

Sody %y A AAIGET D)
For example, consider the case of the simply-supported uniform beam as shown
in Fig. 3. Then, .
Yi(x)=sin(zx/L)
A(x)=p=const. (53)
Elx)= El=const.

=X |

7 77 4

Fig. 3. A beam supported at both ends and
equipped with a spring-dashpot vibra-
tion reducer.

The values of w, and {, for some positions of the optimum vibration reducer
are calculated by the use of Eq. (50) and shown in Fig. 4. It is found from Fig.
4 that {, is constant for the specified value of @; and takes the minimum wvalue
1/vV9 at ex=L/2 and @, is proportional to the value of <f(#)2>. Fig. 5 shows the
value of ¢, versus the position of the vibration reducer. The relation between
(<y(x,07>), and <f(H®> is shown by solid lines for specified positions of the
vibration reducer in Fig. 6. It is found that if one chooses the value of <f(#?%>,
the deformation of the beam will be obtained and the minimum deformation is
obtained at a:=L/2. Although higher modes of the beam are not considered in the
above description, influence of the higher mode vibrations against the vibration
containing the whole modes of the beam must be considered in practice. The sum
of the responses of the first, second and third modes is shown by dotted lines in
Fig. 6. From Fig. 6, the responses of the higher modes are smaller than that of
the first mode and the whole response of the beam is nearly equal to that of the
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Fig. 6. Performance of a simply-supported
and uniform beam with the optimum

vibration - reducer for white noise
excitation.

first mode. Therefore, it is found that the dptimum vibration reducer for the first
mode vibration can be really effective for vibrations with the whole modes of the
beam.

3.2. A typical random excitation _
Consider the case of a typical random excitation whose power spectral density
is given as

2
¢u0=—_—~—f§’i°¢02 (54)
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where & is a constant. Then, F(s) must have the form

. BzSz+Bls+Bo 3
FO =i e s ré - ' (55)

where B,, B and B, are undetermined coefficients, and ¢ and 7 are constants given
in Eq. (43). Substituting Eq. (55) into Eq. (21) leads to

ZZSomoz ’ (

(—s?+wg?) (s> + o,

The LHP poles in Eq. (56) must be cancelled out by the zeros. Hence,

) d;
2)2{(82 —28s+ E2+72) (Bys*+ Bis+Bo)— Yl((lh) /92} =R(s) (56)

B 2H@FOd
2 ((1)02+wa0+£2+772) Yi(an ‘ ’
By =2¢&d,/Y1(a) "(57)

By =@*B;+£B,
Substituting Eq. (67) into Eq. (55), the optimum transfer function Fy(s) is obtained.
Therefore, the optimum-vibration-reducing-force is
e Bys®+Bys+B,

fo(3)= 32+253+52+772 wo(S) A 58
and the normal coordinate is expressed as
. Cdi/Ms .
q:(8) = —sz+253+“52+772 tio(s) | N (59)

10%

a1/L=0.5
R Sowzo
Sio —s*twi

107}

10~*1 - !
T 107t 107 10-* 10%

[ <H8)*>
Sod{w;
Fig. 7. Performance of a simply-spported and uniform beam

with the optimum vibration reducer at @1/L=0.5 for
a typical noise excitation.
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where
' c= Wo2+ @, 2
@y + 2wy +E2+ 72
‘Cancelling out #ls) from Egs. (58) and (59) yields
Jo(8)=—{Cdi/ M Yi(a1)} (Bas*+ Bis + Bo)yr(a1,5) (60)

Since fo(s) has the term of s?, the optimum vibration reducer can only be mechanized
by active elements. The relation between (<y(xf2>), and <f(H)2> for a simply-
supported beam is shown in Fig. 7. As seen from Fig. 7, when o, is greater than
207 rad/sec, the performance is approximately equal to that for wy=o0, ie., white
noise excitation.” Therefore, the vibration reducers for such a case may be mecha-
nized by a spring-dashpot element as shown in section 3.1. :

4. Conclusion

A method for finding the optimum configuration of vibration reducers for elastic
systems with random foundation excitations is discussed. The optimization technique
is illustrated on a beam supported at both ends and having a vibration reducer.
As a numerical example, a simply-supported beam is considered for white noise or
a typical random foundation excitation. It is concluded that for white noise excita-
tion, the optimum vibration reducer for the first mode vibration of a beam supported
at both ends can be mechanized by spring-dashpot elements and can be really effec-
tive for vibrations with the whole modes of the beam, but the mechanization of the
optimum vibration reducers for the other systems can only be realized by the use
of active elements.

Although no mention has been made of complex systems and of systems sub-
jected to random force excitations, the proposed technique will be easily extended
to thqse systems. Such studies are to be reported in near future.
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