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Optimum Configuration of Vibration Reducers
                                                'for Beam Systems with Random Excitations
                                              '

             Naofumi FuJiwARA* and Yoshisada MuRoTsu**

                           (Received June 15, 1973)

                            t,

       A riew method for finding optimum configuration of vibration reducers for elastic

    systems with random excitations is discussed. Optimum control theory in frequency
    'domain is applied to `this problem. 'The optimization technique is illustrated on a

    beam supported at both ends. I't is found'that for white noise excitation, the
    optimum vibration reducer for the first mode vibration of a beam can be mechanized
    bmYodSePsrionfgidhaeShbPeOatm.eleMent and can be really effective for yibratigns with whole

                             1. Introduction

    The problems of designing vibration reducers for suppressing magnitude of

response of elastic systems to random excitations 'have broad applications in the

mechanical engineering, civil engineering and architecture. Many techniques for solv-

.ing the problems were considered. One of those is a technique that-adds a localized

spring and mass') or dashpot2) to the elastic systems and determines its position

and parameter values so as to obtain the desired performance of' the systems. It

is, however, not always certified that the configurations of vibration reducers deter-

mined by the techniques mentioned above are the best.

    In this paper, a new method for finding optimum configurations of vibration

reducers for elastic systems with random excitations is proposed. The method

makes use of the optimum control theory which is recently developed in the con-

trol engineering. The optimization technique is described for a general beam

system subjected to random foundation excitations and illustrated on typical simple

systems. Numerical examples are presented for simply-supported uniform beam

excited by white noise or a typical random foundation motion. While the technique

 is basically equal to that for multi-degree-of-freedom systems3)`), the satisfactory

results are obtained for elastic systems.

                         2. 0ptimizing procedure

    A beam supported at both ends and having n vibration reducers is considered

 as shown in Fig. 1. The characteristics of the vibration reducers are assumed to
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                Fig. 1. Schematicdiagramofageneralbeamsystem '
                      with n vibration reducers.

be black boxes which generate the undeterminetf forces. The wave equation that

describes,the transverse vibration of the beam may be written as follows; . .

          p(x) a2Uo(t3t) + aax2, (EKx) OaYa(xXit))=i.ll=,f}(t)6(x-ai) ' '. ' ,[,i)

where

  ' u(x,t) : transverse deflection of the beam

          ==y(x,t)+(1-x/L)uo(t)+(x/L)u."(t) i                                                                   (2)

   p(x):mass per unit length ･ -
   EKx): flexural rigidity .
   y(x,t): elastic deformation '
   rt(t) : force generated by the i-th vibration reducer

   ui(t) : defiection of foundation at x=ai

   ai : length from left end of the beam to the i-th vibration reducei

   6(x) : delta-function.

   Problem will be stated as follows : When the foundations of the system shown

in Fig. 1. are excited by the zero-mean stationary Gaussian random forces, design

the optimum vibration reducers so that the elastic deformation of the beam may be

minimized with specified constraints on the forces of the vibration reducers. This

problem is formulated as an optimum control problem : Under the constraints

          <n(t)2>kZM (i--1,2,･･･, n) (3)
design the linear vibration reducers to minimize the performance index '

                                                           '          ]r =(<y(x,t)2>). (4)
                                                                '   M} : given cortstraint value for the i-th vibration reducer

   < >: time average '
   (.). : ･weighted mean over the bearri==IJ!,`(.)w(x)dx'

   w(x) : weighting fqnction.
Following the Lagrange's method of undetermined multipliers, the above design

problem is reformulated as the problem to minimize the following penalty function

                         n-          J=(<),(x,t)2>).+Z]Zi2Ci(t)2> ' (5)
                         i--1

where
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   Zi2: Lagrange's undetermined multiplier for the i-th vibration reducer.

   For simplification of mathematical maniPulations,' Eq. (5) is converted into the

frequency domain. First, consider the functional relation between the force of the

i-th vibration reducer and the foundation motion uk(t). Since the candidate vibra-

tiQn reducers being seeked are of linear type as assumed, f}(t) is characterized by

the relation3)

         n(s) -tSin,(s)tik(s) (6)
               ksO '
where IF?k (s) is a transfer function which wil! be determined. In Eq. (6), the follow-

ing notations are introduced ;

   s : Laplace transform variable

    . : time derivative
   .f}(s) : .Sf'{f}(t)}

   tik(s): .97{di,(t)}. ･ .
   Next, the relation between y(x,t) and tii(t) is considered. Substituting Eq. (2) into

                                                                     'Eq. (1) leads to ' ;
          p(x) 62Ya(tl,t) + 6ax2, {EKx) aaYa(xXit) } =tl,f}(t)s(x-ai)

                      -p(x)(1-x/L)ito(t)-p(x)(x/L)tin+i(t) (7)
The solution to Eq. (7) can be represented in terms of all the normal modes Y}(x)

and all the normal coordinates qi(t), and thus y(x,t) is expressed as

                       '
                co ･･
'- , N(x,t)=:ZY,･(x)q,･(t) ,- (8)
                j-1
  '                                       '                                                         ' whege Y}(x) is determined by specifying the boundary conditions. Substituting Eq.

(8) into Eq. (7) yields

          i.lll..o,(x)Y}(x)4j(t)+II.;=,eddi,{EKx)d2d]Kxi(,X)}qj(t)

                 '           --' l=,n(t)6(x-ai)-P(x)(1-f)ito(t)-PfX)xdi.+i(t) (9)

 Multiplying Eq. (9) by M(x) and integrating over the beam, the following equation

 is obtained;

                                                     '                        n          M]i4j(t)+K)qi(t) ==ZIL(aiM(t)-bj･i'o(t)-cj･u".+i(t) ' , ..(10)･
                        .                        t=1                                            tt tt                                                        '                                           tt                                              '
           M) = !,`p(x)u(x)2dx

           K} == S,L dd.2, {EKx) d21ZiX)}y)(x)dx ' ,

           bj == S:P(x)(i -f) U(x)dr
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          ci = S,`-2 p(x) y)(x)dx

By taking the Laplace transform of Eq. (10) and substituting Eq. (6) into it, the

normal coordinate is obtained as follows :

          qi(s) =Il'iic' ki(s)dik(s) (ii)
               k=o

where

          G,,(s)-i#-i¥ltjlZ;'lfil:(k' -Pk' -- #.f[g] (i2')

              fb,･ for k=-O ,
          pki=ig. io.;le,:-h･er･"

Substituting Eq. (11) into the Laplace transform of Eq. (8) leads to

          y(x,s) == tt'H]le(x,s)dik(s) (13)
               k= o

where

                 co          H]b(x,s) =- ZI Y}(x)Gk ,･(s) (14)
                i=1

Using the well-known relationship between the mean-square value and power

spectral density, the mean-square value of deformation at point x of the beam is

          <y(x,t)2>= 217･ Sj-co.til"ii ",Z:.IM(x,s)th(x,-s)¢ti,,ds (is)

where ¢ili, is the cross power spectral density between dii(t) and dile(t). Thus, the

weighted mean of <y(x,t)2> over the beam is

          (<y(x, t)2>)w "" I2:!,`<y(x,t)2> . w(x)dx .

                                          '                          '
                    -,l,･ !Li.¢,ds (i6)
                                      'where

          ¢s=II.lii,iltil,',:coX=,.Zco=,rLi-S,`zv(x)Y}(x)y;n(x)dx'Gii(s)Gh.(-s)¢tii, (i7)

From the relation Eq. (6), the mean-square value of the i-th reducing force is

written as follows '
               '

          <n(t)2> == 2-･ Sl;.¢f,ds ' (ls)
where

             n+1 n+1
          ¢fi -m i-, kX.-,"Fleh(s)Flei( -s)diuki (lg)
                                                    'Substituting Eqs. (16) and (18) into Eq. (5), the following relation in frequency

domain is obtained '
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         J-2;d!tl.(¢s+;..,zi2¢f,)ds, . . ,, ' ,'- (2o)

Applying the frequency domain optimization technique by Chang5), the condition

for the penalty function J to be minimized is

                                                       '          afia;,,9(s-s)+:,z2k o]ill?.idik s) ==Rij(s) , (2i)

          (i=1,2,･･., n; 1'=O,1,･･t, n+1)

where RiJ･(s) is a function which does not possess any pole in the LHP (left-half-

plane). The equation' (21) yields a set,of linear simultaneous equations for F>j(s).

By solving the Eq. (21) the optimum transfer functions F}jO(s) are determined. The

procedure of determining njO(s) will be illustrated on the next chapter.

   In addition to the above problem, some other problems to minimize the accele-

ration (<Y(x,t)2>). or the moment (<m(x,t)2>)w of the beam with specified const-

raints on the forces <L(t)2> or the relative displacements <thi(ai,t)2> of the vibration

reducers are considered. For such problems, the formulations are done in the

same way as that of the above problem by replacing (<0(x,t)2>). or (<m(x,t)2>).

with (<),(x,t)2>). and replacing <yr,(ai,t)2> with <J`}(t)2>.

   Next, we get the expression of the quantities mentioned above. Since Y(x,t)

and m(x,t) are the acceleration and the moment at point x of the beam, respectively,

they are represented by following relations ･

                            '          y(x,t) -Sy}(x)qi(t) (22)･
                '

                     '          m(x,t)=-EKx)aflYa(xXit) ' ' . (23)

Taking the Laplace transform of Eqs. (22) and (23) and substituting Eq. (11) into

them, the acceleration and the moment of the beam are written in frequency

domain as follows:

               n+1 ･          Y(x,s)==Za(x,s)tik(s) (24)               k=O
                                  '                                                 '                                                        '                                                                  '

          m(x,s)=:=Qk(x,s)tik(s) ･ (25)
                k==O
                                                 '                                            '
                                                       '                       '
                 co          Rb(x,s) ==ZY}(x)s2G,i(s) (26)
                 i--o

          Qk(x,s)==-S..,,EKx)d2dYxl(,X)Gki(s) ., .. (27)

The equations (24) and (25) are of the same type as the equation (13). Therefore,

(<Y(x,t)2>). and (<m(x,t)2>). can be calculated in the same manner as (<y(x,t)2>)..

   The relative displacement of the i-th vibration reducer is expressed as .

.
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'' '' -yri(ai,t)=u(ai,t)Tui(t) '･- --･･ ,,., ... .,1 - .
             ' =y(ai,t)+(1-ailL)uo(t)+(ai/L)u#+i(t)-ui(t) .･' ', ･'･ (28)

Taking the Laplace transform of Eq. (28) leads to ' '･ ･
                                                                '          y;i(ai,s) == swk' (ai,s)dik(s) ' ' ''(29)

                 k=e ' ''                                     tt                                                              'where

          H]b' (ai,s) == Hile(abs)+Ah(ai,s) ' (30)
                   (1-ai/L)/s2 forkt=O
          '
                              for le==1,2,･･-, n (k )Fi)                      o
         ･･Ak(ai,s) =
                     '1/s2                              for k=i

                  , ai/Ls2 for･k=n+1 ･. .
Then, the mean-square value of the relative displacement of the i-th vibration re-

ducer is expressed ･as
                                                                  '                                                            '                                                          '                                                                   '
          <yri(ai,t)2> == 21]･ Sti di ;.lli Xm'iHii' (ai,s)M' (ai,-s)¢ihids ･ (3i)

                                                           t t /t/
                   3. Minimum-defortuationproblem

   Consider a system with a vibration reducer as shown in Fig. 2. In this chapter,

                 'it is assumed that the random foundation motion is uniform i.e , , ･
                                                   '                                                      -}
          u,(t)=",(t)=u2(t) ･ .<32)i-
and that the weighting function w(x) is proportional to p(x) :

          zo(x) == (L/Mi)p(x) (33)
Using Eqsr (6) and (32), the following relation is obtained

          7C(s)-F(s)dio(s) (34)
where rts) =A(s) and F<s)=Ao(s)+Ei(s)+a2(s). ,J
Substituting the above relation into Eq. (11) leads to

                                                                  '          qjny(s) - Y}(ai)JF<s)-bj-cj

          iio(s) M)s2+K) =Gj(S) ,(3s)
                                                            '             (7'=1,2,'･･, oo)

Substituting Eq. (33) into Eq. (17) and using the well-known orthogonality relation

between the normal modes, the following relation is obtained

          ¢,=S21Gj(s)G,･(-s)¢il, (36)             i--1

                 Fig, 2. Schematic diagram of a beam supported
                       at both ends and equipped with a vibration

                       reducer.

'f(t)'

tan
'
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where diil, represents the power spectral density of the acceleration of, the foundation

M6tion ito(t). From Eqs.･(19) and (34), we'have '･. ''･'/,, ,

                                        '
          ¢f=F(s)F(-s)¢b･, ･ ･ '' ･'･ '. '.,1 (37>
    The further assumption that the vibration of the beam consists of the only

first mode is introduced. Then,

          ¢, -= Yth/ a2}eis}i,)di . M(M'iilF,,(i.sl,d) di ¢,, (3s)

where di==bi+ci and tei2==K/Ml. '
 Substituting Eqs. (37) and (38) into Eq. (21) leads to '

          (s2Aill¢6ti,e2)2 ({(s2+toi2)2+P2}F(s)- yl{b,) fi2)=:R(s) (3g)

 where P2==Yi(ai)2/z2Ml. Giving the functional form of ¢il,, F(s) can determined by

 the following procedure.

 3.1. White noise excitation

    First, consider the case of white noise excitation;

                                                               '                                    .-
          ¢i,=Sb mconst. ･' , (40) Then, F(s) must have the form
                                              '                   Ais+Ao ' ･ ' '' F(S)-(s+e+iopxs+e-in) ' ' (4i)
                           '
 where Ao and Ai are undetermined coethcients and s=-e±iq are the LHP roots
 in' Eq. (42)

          (s2+to,2)2+p2=o ' (42)
 thus,

          ii:::iyl-sr.i,1,+B2-a'i2)/21 ' ' . ･･ (43).

 Substituting Eqs. (40) and (41) into Eq. (39) leads to

           (s,A+2[l9,,),((s2-2es+e2+op2)(A,s+Ao)- ylf},) p2) =R(s) (44)

 .t   ' Since R(s) does not possess any pole in the LHP, the LHP poles in Eq. (44) must

 be cancelled out by the zeros. Hence, ' '
''' 'i'"'i' lll,i:ZiZ(>/.M,Xl']･ ' ･ (4s)-
 Substituting Eq. (45) into Eq. (41), the optimum transfer function Fb(s) is obtained.

 Therefore, the optimum vibration reducing force fl}(s) is

                                                '          .fb(s)r-itp(EmiilSI{iSlillZii?i'Fsiis"iao(.)(,gi+e(2Sef$)e2+n2)(s) ' (46)

 and substituting Eq. (41) into Eq. (35) leads to

           qi(S) == -- ,2+2f',/+Mei2+n2 tio(s) (47)

 Cancelling out ito(s) from Eqs. (46) and (47) yields

          k(s) - - {2Mle/M(ai)} (s +e)qi(s)

              == --(cos+leo)yr(ai,s) (48)
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where

          2-z-ZM.i,2/,,M.(Zbl2,,] (4g)
and y,(ai,t) is the relative displacement of the vibration reducer, i.e., yr(ai,t) = M(ai)qi(t).

From Eq. (48), the optimum vibration reducer can be mechanized by a spring with

spring constant ko and a dashpot with damping coeihcient co as shown in Fig. 3.

For general discussion, the following variables are introduced ;

          tuo == Vleo/Mi }

          Co=co/2VMile, j ' (50)
                      ･7Substituting Eq. (41) into Eqs. (16) and (18) leads to

          (< v(x,t)2>.- (d!/Mi)2toi3

             Sb/toi -4e(e2+op2) .(5!)
and

           <.f(t)2> - e(2e2+n2)
           Sbdi2toi -wiYi(ai)(e2+n2) . ,(52)
   For example, consider the case of the simplY-supported uniform beam as shown

in Fig. 3. Then, .
          Yl(x) -= sin(zx/L) } ,

          }(ftx'=)=P-E7-2",S.`.',tj (53'

Fig. 3. A beam supported at both ends and
equipped with a spring-dashpot vibra-

tion reducer.

   The values of too and Co for some positions of the optimum vibration reducer

are calculated by the use of Eq. (50) and shown in Fig. 4. It is found from Fig.

4 that Co is constant for the specified value of ai and takes the minimum value

1/V-2 at ai==L/2 and too is proportional to the value of <.f(t)2>. Fig. 5 shows the

value of Co versus the position of the vibration reducer. The relation between

(<v(x,t)2>). and <f(t)2> is shown by solid lines for specified positions of the

vibration reducer in Fig. 6. It iS found that if one chooses the value of <f(t)2>,

the deformation of the beam will be obtained and the minimum deformation is

obtained at ai==L/2. Although higher modes of the beam are not considered in the

above description, influence of the higher mode vibrations against the vibratiQn

containing the whole modes of the beam must be considered in practice. The sum

of the responses of the first, second and third modes is shown by dotted lines in

Fig. 6. From Fig. 6, the responses of the higher modes are smaller than that of

the first mode and the whole response of the beam is nearly equal to that of the
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where Sb is a constant. Then, F<s) must have the form

              . &s2+Bis+& '                              ･ ･ (55)         E(s)-          . .(s+4+in)(s+e-iop) . ･ .
where &, Bi and B2 are undetermined coeMcients, and e and n are copstants given

in Eq. (43). Substituting Eq. (55) into Eq. (21) leads to

                         .t         ( .s, ÷Zi,S,b)℃2, +.,,),{(s2 -2es + e2 +n2) (B,g2 + B,s+B,) - Itfh,) P2} =R(s)' (s6)

The LHP poles in Eq. (56) must be cancelled out by the zeros. Hence,

                                                          '                                    tt t           - 2e(te,+e)d,' . ･:,       ' '&-(tao2+2eteo+e2÷op2)M(ai) ' '
  - Bi =2edi/Yi(ai) ･<s7)
         Bb = wi2B2+eB,

Substituting Eq. (57) into Eq. (55), the optimum transfer function JFb(s) is obtained.

Therefore, the optimum-vibration-reducing-force is

                                                       '   'L'' '･ k(s)=s?$S2iesB+'Si2+Bnb2dio(s) '(58)
                              'and the' normal coordinate is expressed as

         qi(s)=ds2+2Cedsi/+Mei2+n2ilo(s) (59)
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                                                       d

                        tt ttwhere '･･ ' '･ ･'' ･' ･'･ '･' -i" '',' '/- '''"
                                        '         ' `' C= to,2+ZOe2.+,$ie22+,2 , " '' il '1 ''1., , ,' .

'Cancelling･out tio(s) from'Eqs. (58) and (59) yields

          fb(s)=-{Cdi/Mi Yl(ai)} (&s2+Bis+Bb)pt.(ai,s) (60)
Since k(s) has the term of s2, the optimum vibration reducer can only be mechanized

by active elements. The relation between (<y(x,t)2>)w and <.f(t)2> for a simply-

supported beam is shown in Fig. 7. As seen from Fig. 7, when too is greater than

20rr rad/sec, the performance is approximately equal to that for teo==oo, i.e.,' white

nQise excitation.' Therefore, the vibration reducers for such a case may be mecha-

nized by a spring-dashpot element as shown in,section 3.1. '

  '' ' ' 4. Conclusion
   A method for finding the oPtimum configttration of vibration reducers for elastic

systems with random foundation excitations is discussed. The optimization technique

is illustrated on a beam supported at both ends and having a vibration reducer.

As a numerical example, a simply-supported beam is considered for white noise or

a tYpical random foundation excitation. It is concluded that for white noise excita-

tion, the optimum vibration reducer for the first rnode vibration of a beam supported

at both ends can be mechanized by spring-dashpot elements and can be really effec-

tive for vibrations with the whole modes of the beam, but the mechanization bf the

optimum vibration reducers for the other systems can only be realized by the use

Qf active elements.

   Although no mention has been made of complex systems and of systems sub-

jected to random force excitations, the proposed technique will be easily extended

to those systems. Such studies are to be reported in near future.

                                     `
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