S5 ABBIAT iRy R by

Osaka Metropolitan University

Lévéque Model for Mass Transfer with an
[rreversible Second-Order Chemical Reaction

&4 eng

HARE

/ABAH: 2010-04-05

F—7— K (Ja):

F—7— K (En):

{EB & Hikita, Haruo, Asai, Satoru, Ishikawa, Haruo
X—=ILT7 KL R:

Firi&:

https://doi.org/10.24729/00008764




57
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The effect of an irreversible second-order chemical reaction on the rate of mass
transfer has been studied theoretically on the basis of the Lévéque model. The
approximate and numerical solutions for the reaction factor have been presented

. and compared with each other. It has been shown that the approximate solution
agrees well with the numerical solution.

\

1. Introduction

\ I,n“mass transfer operations, such as gas absorption, liquid-liquid extraction,
sblid 'c‘lissc‘)lution, etc., mass transfer is frequently accompanied by chemical reaction.
Therefore the theoretical analysis of mass transfer with chemical reaction is believed
to be of great importance for the reasonable interpretation of the experimental data
or the rational design of the equipment for such operations. Most works in this
area have dealt with gas absorption with chemical reaction on the basis of the film
- model? or the penetration model®, and simultaneous mass transfer and chemical
reaction between a solid wall and a flowing fluid has received somewhat less atten-
tion. . .

In this paper mass transfer accompanied by an irreversible second-order chemical
reaction has been studied theoretically on the basis of the Lévéque model® in which
mass transfer is assumed to take place in a flow with a constant velocity gradient.

2. Mass Transfer without Chemical Reaction

The flow situation in the Lévéque model® is shown in Fig. 1. The fluid with
a steady velocity profile flows along a solid boundary, the velocity gradient being
constant. In this paper we consider the case in which a solute A dissolves into
the liquid from the solid wall.

When chemical reaction is absent, the basic differential equation describing the
diffusion of solute A in the liquid phase can be written as:

2
aA--axiji=0 (1)

Dazgy oy

with the boundary conditions:
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‘Fig. 1. Flow pattern based on Lévéqﬁe model

x=0, y>0; A=A;
x=o00, y>0; A=0 (2)
y=0, x>0; A=0
This problem has been solved by Kramers and Kreyger®, Hikita et al.¥ and Den
Hartog and Beek®. The solution for the concentration profile of solute A is: .
A 3 S(a/QDAy)I/”x
A I(1/3, o)
Then the average rate of mass transfer over the entire length from 0 to y is given
by :

1 exp(—p*dp (3)

0

3 Dy, (4)
2 (1/3,00) A4 /YA
The liquid-phase mass transfer coefficient 2.* for diffusion without chemical reac-

¥
No* =._31:_So[ —Da(0A/0%)z=0ldy =

tion is defined as:

; Na*=k*A; (5)
whence '
3 *_L/s( D 2/ )1/3 ' (6)
L = or(1/3,00) 24V

From Eq. (6) it can be seen that in the absence of chemical reaction, the mass
transfer coefficient is proportional to the 2/3 power of the liquid-phase diffusivity
of solute A. This dependence of k.* on Dgs is the same as that derived from the
laminar boundary-layer theory”.

3. Mass Transfer with an Irreversible Pseudo First-Order Reéction

Let us consider the case where a solute A dissolves into the liquid from the
solid wall and reacts irreversibly with a reactant B which is already present in the
liquid phase according to the following reaction:

A+vB—>Products (7
with the reaction rate represented by
r=hk;AB (8)
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If the concentration of reactant B is much greater than that of solute A, the
reaction can be regarded as pseudo first-order with respect to solute A and the
concentration of B is constant throvghout the liquid phase at the value B, which
is the bulk concentration of B. The reaction rate is then given by:

r={(kBp) A (9)
In this case, the basic differential equation for the diffusion of solute A can be
represented as:

2
DiZ4 - ax%=(szo)A (10)

with the boundary conditions, Eq. (2).
Egs. (10) and (2) cah be solved® by Laplace transformation. The solution giving
the concentration profile of solute A is represented as:

__i:.g _1[1/ szo +asx KI/S_(ZV(szo+an)3/DAaz/33) (11)
A; sV kyB, K132V (ByBo)® | D ad?/35)

and then the average mass transfer rate is given by
Na=YkeBoDaAi coof 1 KopsQV (RsB)*/Daa’/39) a2

y s K152V (k,Bo)*/ D aa?/39)

Thus the reaction factor 8, which is defined as the ratio of the rates of mass transfer

with and without chemical reaction, is obtained from Eqgs. (4) and (12) as:
T (1/3,00)V BaBoAi oo 1 KopsQV (yBo)’/ Dad?/3)
3*3(ay/ D yV? $* Kya(2V (ryBo)*/ D ad?/39)

The inverse transformation is difficult, but it is possible to find the asymptotic ex-

pressions for small and large values of y by expanding the right-hand side of Eq.

B = (13)

. (13) in series for large and small values of s, respectively. For large values of ¥
(r=>2.4), the solution of £ is '

B=1+0.474715/72 as
while for small values of ¥ (r<2.4), the solution is '

ﬂ=1+§j bszi (15)
j=t1

where 7 is a dimensionless parameter defined by
r=(2/3Y31r(1/3,50)V kyBo(3/aV DP"?
=V kBoDa/kL* (16)
and by, by, -+ b; are the numerical constants, which are given in Table 1. Table 2
shows the value of the reaction factor # calculated from Eqgs. (14 and (15) as a
function of 7. As can be seen from Eq. (14), when the value of 7 is very large
the reaction factor # approaches the value given by the following expression

B=r amn
and the mass transfer rate is represented by :
NA=1/szoDAAi B (18}

This situation corresponds to the case of a fast pseudo first-order reaction and the
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Table 1 Values of &; in Eq. (15)

bj J bJ’

J
1 3.60459x 101" 8 —2.71339%x 10~8
2 —2.96306X 102 ] 2.09426 X 10~
3 3.37614x 1073 10 —1.54920%x 10-1°
4 —3.75698X 1074 11 1.01279%x 1011
5 3.88808%X 1078 12 —7.17765X 1018
6 3. 71726 X 108 13 4.01924x 10714
7 3.29083x 107 14 —2.65455X 10715

Table 2 Values of reaction factor for mass transfer with pseudo first-order reaction

T s T B
0.10 1.004 1.5 1.692
0.15 1.008 2.0 2.116
0.20 1.014 2.5 2.576
0.25 1.022 3.0 3.053
0.30 1.032 4.0 4.030
0.40 1.057 5.0 5.019
0.50 1.088 6.0 6.013
0.60 1.126 ' 7.0 7.010
0.70 1.170 ° - 8.0 8.007
0.80 1.219 9.0 9.006
0.90 1.274 10.0 10. 005
1.00 1.334

mass transfer rate in this case is independent of £.*, ie. the hydrodynamic¢ condi-.
tions. When the value of 7 is very small, #=1, corresponding to physical mass
transfer.

Fig. 2 shows the comparison between the Lévéque-model, film-model® and pene-
tration-model® solutions of the reaction factor for mass transfer with a pseudo
first-order reaction. The Lévéque-model curve lies between the film-model curve
and the penetration-model curve, and the maximum deviation between the upper
and lower curves is only 7%. The curve representing the numerical solution of £
based on the laminar boundary-la‘jrer model'® also agrees with the Lévéque-model
curve within less than 2%. (this curve is omitted from Fig. 2 for brevity) From
these results we can conclude that the effect of chemical reaction on the rate of
mass transfer is insensitive to the flow situation, when the value of 8 is compared
at the same value of 7. ' k

4, Mass Transfer with an Irreversible Instantaneous Reaction

In this case solute A reacts instantaneously and irreversibly with reactant B.
The reaction takes place at a reaction plane beneath the solid surface where the
concentrations of A and B are zero, and the reaction rate is equal to the rate at
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Fig. 2. Comparison between Lévéque-, film- and penetration-model
solutions of reaction factor for mass transfer with an irre-
versible pseudo first-order reaction

which the two substances can diffuse to the reaction plane. The basic differential
‘equations governing the diffusion of A and B can be written as:

2 :
Da gxfﬁ - ax%y‘i=o O0<2<52) ‘ (19)
; |
D3z % Jg —ax—%%——-() (g, < <Lo0) @20

* with the boundary conditions:
' =0, y>0; A=A

x=co0, y20; B=DB,

y=07 x>0; B=Bo

1=%,, y>0; A=B=0, Da(0A/0x)+(D3/v)(65/0x)=0
where x, represents the location of the reaction plane. The solutions of Egs. (19)
to (21) are:

@21

A _,_ I(/3,85%/9Dsy)
4

i (/3,0 0<x<xy) : (22)
B _ I'(1/3,ax%/9Dsy)—I'(1/3,06Da/Dp)
Bo I(1/3,00)—TI'(1/3,6D4/D3s) (i g<Co0) (23)

 where ¢ is the root of the following equation:
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"(Ds\**B, _ D4 _\ )\ I(1/3,00)—I(1/3,6D4a/Ds)
(DA) uA;_eXp[(DB 1)e) T(1/3,9) @0
The average rate of mass transfer of solute A is obtained from Eq. (22) as:
_ 34/3 y
NA—W(GDAZ/_}’)I 34; (25)
The reaction factor is then expressed as:
B=r(1/3,0)/r(1/3,0) 26)

It should be noted that Egs. (26) and (24) are the same as those obtained by Acrivos'
on the basis of the laminar boundary-layer model. The solutions obtained above
were also derived by Den Hartog and Beek® and the solution giving the concentra-
tion profile of reaction product was presented by Hikita et al'®.

When Da=Dpg, Egs. (24) and (26) can be simplified to

Bo
vA;

which is identical to the film-model'® and penetration-model® solutions with Da=
Ds. When D4 and Dp are not widely different and the value of By/vA; is large, the
following approximations can be permissible :

eXP[(%ﬁ‘l) aJ~1 ' 28)

1(1/3,6D.4/Dg)/T(1/3,0)~(Da/Ds)"/® (29)
Making these approximations in Egs. (24) and (26), the expression for the reaction
factor now becomes:

(D4 1/3 & 2/3 Bo

p=(54)"+(32) B 30
This is the same equation as obtained by Potter'® based on the laminar boundary-
layer model. For the case where By=0 which corresponds to the physical mass
transfer of solute A, Eq. (30) reduces to A=(Da/Dp)"/3. Therefore, in order to obtain
an approximate expression of the reaction factor which is valid when Bo=0, the
first term of the right-hand side of Eq. (30) should be replaced by unity. Thus:

/9 =1 +(g—j)2/3 V?‘i,,'

Eq. (31) agrees with the exact solution to within a maximum deviation of 15%, if
the value of Dg/Da lies between 4 and 1/4, and the agreement between the approxi-
mate and exact solutions is much better at very large and small values of Bo/vA..

A=1+ @n

(31

5. Mass Transfer with an Irreversible Second-Order Reaction

Here we consider the case where mass transfer is accompanied by an irre-
versible second-order reaction between solute A and reactant B, with the reaction
rate given by Eq. (8). The basic differential equations describing the diffusion of
A-and B can be written as:

2 A
2 ;3 _ ax%y— ~ L,AB (32)

D
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0B _ 0B _
B2 T O% 7 =yk,AB . (33)

with the boundary conditions:

x=0, y>0; A=A; 8B/ox=0

x=o00, y>0; A=0, B=B, ( (34)

y=0, ¥>0; A=0, B=B5,
Eqgs. (32) and (33) with Eq. (34) cannot be solved analytically. Then these equations
were solved numerically by a finite-difference method similar to that used by Brian
et al®®'®, Convergence tests and comparison of the computed results with known
asymptotes indicated that the error of the computed results was less than 1%. The
computed results of reaction factor for four given values of fo which represents
the reaction factor for the case of an instantaneous reaction are shown as solid
curves in Fig. 3, where the values of # are plotted against 7 with the diffusivity
ratio Ds/Ds as parameter. The three solid curves for each value of B« approach
the pseudo first-order reaction curve at low values of 7, and they approach an

D

7 B T T T 1 //I 1 l

6 Numerical ’ —
- solution . / ]

e Approximate ,/ 7
- solution / . —

Pseudo first-order
reaction

DB/DA=1/4 1 4
1L | l | | N
1 2 4 6 g8 10 20

Fig. 3. Numerical and approximate solutions of reaction factor for mass transfer
with an irreversible second-order reaction based on Lévéque model



64 o : - H. Hikita, S: Asai and H. IsHikawa

asymptotic value Ao at high values of r. These three curves agree well with
each other within 4% over the range of the Dg/Da values from 1/4 to 4. Thus it
may be concluded that the reaction factor is quite insensitive to the diffusivity
ratio Dg/Da. The numerical solutions of the reaction factor were also obtained by
Den Hartog and Beek® for Dp/Da=1 and fe=2, 3 and 6.

In the present work, the approximate solution of the reaction factor has also
been derived using the method similar to that used by van Krevelen and Hoftijzer'”
and Hikita and Asai®. In the following treatment, it is assumed that the con-
centration of reactant B in the liquid-phase is uniform and equal to B;, the con-
centration of B at the solid wall, and that the value of B; is independent of y, the
distance in the flow direction. The reaction rate is then given by

r=(kB)A (35)
and Eq. (32) can be written as
2A A
DAZh - ang=(sz.-)A (36)

Since Eq. (36) has the same form as Eq. (10), the solution giving # in this case is
represented by the following equations '

B=r7+0474715/(r7)? (r7=2.4) 37
=1+ ji bi(rn)? (r7<2.4) (38)

which are the same forms as Eqgs. (14) and (15). Here by, b;, ---b; are the numerical
constants given in Table 1, 7 is the same parameter as Eq. (16), and 7 is a dimen-
sionless parameter defined by

1=V Bi/By=V (Bo —F)/(Feo—1) (39
where B isthe reaction factor for an instantaneous irreversible reaction and given
by Egs. (24) and (26). Thus the approximate solution of # for the case of an irre-
versible second-order reaction is composed of Egs. (16), (24), (26)k and (37) to (39).

The approximate solutions of the reaction factor calculated for the casésjof
Be=L15, 2, 3 and 5 are shown in Fig. 3 as dotted curves and compared with the
numerical solutions. As can be seen in this figure, the agreement between the
numerical and approximate solutions is good for large and small values of 7. For
intermediate values of 7, the approximate solutions are slightly lower than the
numerical solutions. However, the maximum deviations between the approximate
solutions and the numerical solutions for Dg/Da=1 are only about 3%.

Fig. 4 shows the comparison of the Lévéque-model approximate solution of the
reaction factor with the film-model and the penetration-model approximate solutions
at the constant values of B =2 and 5. The solid curves in this figure represent
the Lévéque-model approximate solution calculated from Egs. (37) to (39), while the
chain curves show the film-model approximate solution of van Krevelen and Hofti-
jzer'” given by:

B=rn/tanh(rn) (40)
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Fig. 4 Comparison between Lévéque-, film- and penetration-model
approximate solutions of reaction factor for mass transfer
with an irreversible second-order reaction

Further, the dotted curves represent the penetration-model approximate solution
derived by Hikita and Asai'®, which is given by:

B =(n+—eerf@ra/ v &)+ g exp(—4r/x) 4D

The values of g based on these three models agree well with each other within
10%, when compared at the same values of fo and 7. This indicates that the
effect of chemical reaction on the rate of mass transfer is insensitive to the hydro-
dynamic conditions.
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Notation

A concentration of solute A, g-mol/cm?

A; concentration of solute A at the solid wall, g-mol/cm?®

a velocity gradient of the flowing liquid at the solid wall, 1/sec

B concentration of liquid-phase reactant B, g—mol/cina

B;:, By . concentrations of liquid-phase reactant B at the solid wall and in the
bulk of liquid, respectively, g-mol/cm®

b; . coefficient in Eq. (15), —

Da, Ds : liquid-phase diffusivities of solute A and reactant B, respectlvely, cm?/sec

Ky(z) : modified Bessel function of the second-kind of order p, —

kr* . liquid-phase mass transfer coefficient in the absence of chemical reac-
tion for solute A, cm/sec '

ks . rate constant for irreversible second-order reaction, cm®/g-mol sec

Na* Na : average rates of mass transfer of solute A without and with chemical
reaction, respectively, g-mol/cm? sec

x : distance from the solid wall into liquid, cm

Xy : distance from the solid wall to the reaction plane, cm

y : distance in the flow direction, cm

Greek letters

B : reaction factor, —

B . reaction factor for thass transfer with an instantaneous irreversible
reaction, —

7 : dimensionless parameter defined by Eq. (16), —

¢, : incomplete gamma function, Sz#’“e"’dt, —

7 . dimensionless parameter defined by Eq. (39), —

v : number of moles of liquid-phase reactant B reacting with each mole of
solute A, —

¢ : dimensionless parameter defined by Eq. (24), —
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