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    Leveque ･Model for Mass Transfer with

an Irreversible Second-Order Chemical ReactiOn

                                            tt           Haruo HiKiTA*, Satoru AsAi* and Haruo IsHiKAwA*

  ''. (Received June 15, 1973)

       The effect of an irreversible second-order chemical reaction on trie rate of mass

    transfer has been studied theoretically on the basis of the Lev6que model. The
    approximate and numerical solutions for the reaction factor have been presented

                                                              solution    ,and compared with each other. It has been shown that the approximate

    ,agreeg.well with the numerical solution.

                   x      ' L 'Introduction
  ' In mass transfer operations, such as gas absorption, liquid-liquid extraction,

s61id dissdlution, etc., mass transfer is frequently accompanied by chemical reaction.

Therefore the theoretical analysis of mass transfer with chemical reaction is believed

to be of great importance for the reasonable interpretation of the experimental data

or the rational design of the equipment for such operations. Most works in this

area have dealt with gas absorption with chemical reaction on the basis of the film

model') or the penetration mode12), and simultaneous mass transfer and chemical

feaction between a solid wall and a flowing fluid has received somewhat less atten-

    Inthis paper mass transfer accompanied by an irreversible second-order chemical .

reaction has been studied theoretically on the basis of the Leveque mode13) in which

mass transfer is assumed to take place in a fiow with a constant velocity gradient.

               2. Mass Transfer without Chemical Reaction

    The flow situation in the Leveque rnode13) is shown in Fig. 1. The fiuid with

a steady velocity profiIe fiows along a solid boundary, the velocity gradient being

c6nstant. In this paper we consider the case in which a solute A dissolves into

the liquid from the solid wall.

    When chemical reaction is absent, the basic differential equation describing the

diffusion of solute A in the liquid phase can be written as: .

           DAaa2xA, -ax aaAy ==o ' (i)
with the boundary conditions:
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v= ax
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   . Fig. 1. Flow pattern based on Leveque model

        ::k･,;lgl. 1:eil ･, ,,,
        y-=o, x>o; A-O J
This problem has been solved by Kramers and Kreyger`), Hikita et al.5) and Den

Hartog and Beek6). The solution for the concentration profile of solute A is: .

           AA, =1- r(1/33, ..)ii"/9DA')i/S"exp(-p3)dp (3)

Then the average rate of mass transfer over the entire length from Oto y is given

by:
          ALa"=LjYS',[dDA(aA/ox)x..o](ly == 2r8`/133',..) (aDA2lv)'/3Ai (4)

The liquid-phase mass transfer coeMcient leL" for diffusion without chemical reac-

tion is defined as:

          IVLi* == kL*Ai ' (5)
whence

          feL'= 2r( 13/`/33, ..) (aDA2/y)'i3 ' (6)

From Eq. (6) it ca4 be seen that in the absence of chemical reaction, the rnass

transfer coeMcient is proportional to the 2/3 power of the liquid-phase diffusivity

of solute A. This dependence of leL' on DA is the same as that derived from the

laminar boundary-layer theory').

    3. Mass Transfer with an Irreversible Pseudo First-Order Reaction

   Let us consider the case where a solute A dissolves into the liquid from the

solid wall and reacts irreversibly with a reactant B which is already present in the

liquid phase according to the following reaction :

          A+yB.Products (7)
with the reaction rate represented by



.

             .

   teve'que 1vabdel for MZzss rle'anofler tvith an frreversible Second-Order Chemical Reaction 59

   If the concentration of reactant B is much greater than that of solute A, the

reaction can be regarded as pseudo first-order with respect to solute A and the

concentration of B is constant throughout the liquid phase at the value Bo which

is the bulk concentratiori of' B. The reaction tate is then given by:

In this case, the basic differential equation for the diffusion of solute A can be

represented as:

            o2A aA                       -(le,Bb)A (10)          DA                - ax            6x2                    by
with the boundary conditions, Eq. (2).

   Eqs. (10) and (2) cah be solved6) by La'place transformation. The solut,ion giving

the concentration profile of solute A is represented as :

   .. AA,==y-'(i/,feii>ll,',baSXKitt(2,,IE,((l>2ii,li,ba);;IS3/.D.ia,2,/)3S)) (n)

and then the average mass transfer rate is given by

          ivL4=-i/le2B,bD.A"'ym'(iY,iliii-i[:lf$ilZI,l]llSfZif332')) , (i2'

                                                  '
Thus the reaction factor P, which is defined as the ratio of the rates of mass transfer

with and without chemical reaction, is obtained from Eqs. (4) and (12) as: .

          p-2'il,{3.',O,Oii"iif,2,Bf,"iy-i(fY･ilil,il[:lf[2i:i']l5Sf:lf3,;i) (i3)

The inverse transformation is dithcult, but it is possible to find the asymptotic ex-

pressions for small and large values of pt by expanding the right-hand side of Eq.

(13) in series for large and small values of s, respectively. For large values of y

(r2)2.4), the solution of P is

          P==r+O.474715/r2 (14)
while for small values of y (rK2.4), the solution is

               co          P=1+Zl bir2, (ls)               iLl
where' r is a dimensionless parameter defined by

          r=(2/3`13)r(1/3,oo)i/le,B,(y/ai/DII)'13

           == l/ le2BoDA/feL' (16)
and bi, b2, ･･･ bj are the numerical constants, which are given in Table 1. Table 2

shows the va!ue of the reaction factor fi calculated from Eqs. (14) and (15) as a

function of r. As can be seen from Eq. (14), when the value ofr is very large

the reaction factor P approaches the value given by the following expression

and the mass transfer rate is represented by :

          Aik=l/fe,BbD.Ai (18)This situation corresponds to the case of a fast pseudo first-ordei reaction and the
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    Table 1 Values o.f .b,･ i'n .Eq, (15).

/' "'/t't''t ''1/1'i"' '/'

j

1

2

3

4

5

6

7

b
i

 3. 60459 × lo-t ･

-2. 96396× lo-2

 3. 37614× 10-S

-3. 75698 × lo-4

 3. 88808 × lo-5

-3.71726×lo-6

 3. 29083 × lo-7

j

8

9

10

11

12

13

14

b
i

-2. 71339 × lo-8

 2. 09426 × lo-9

- 1. 54920 × lo-10

 1.01279×lo-il

-7. 1776s × lo-13

 4. 01924 × lo-14

-2. 65455× lo-15

Table2 Values of reaction factor for mass transfer with pseudo first:order reaction

r

O. 10

O. 15

O. 20

O. 25

O. 30

O.40

O. 50

O. 60

O. 70

O. 80

O. 90

1. 00

p

1. 004

1. 008

1. 014

1.022

1. 032

1. 057

1. 088

1. 126

1.170

1. 219

1. 274

1. 334

r

1.5

2.0

2.5

3.0

4.0

5. 0

6.0

7.0

8.0

9.0

10. 0

p

1. 692

2.116

2. 576

3. 053

4. 030

5. 019

6.013

7.010

8. 007

9. 006

10. 005

mass transfer rate in this case is independent of leL', i.e. the hydrodynamig cpqdi-.

tions. When the value of r is very small, fl==1, corresponding to physieq1 mass

transfer.

   Fig. 2 shows the comparison between the L6veque-model, film-mode18) and pene-

tration-mode19) solutions of the reaction factor for mass transfer with a pseudo

first-order reaction. The Leveque-model curve lies between the film-model curve

and the penetration-model curve, and the maximum deviation between the upper

and lower curves is only 7%. The curve representing the numerical solution of P

based on the laminar boundary-layer modeliO) also agrees with the Leveque-model

curve within less than 2%. (this curve is omitted from Fig. 2 for brevity.) From

these results we can conclude that the effect of chemical reaction on the rate of

mass transfer is insensitive to the fiow situgtion, when the value of P is, corppa.red

at the same value of r. , .
      4. Mass Transfer with an Irreversible Instantaneous Reaction

   In this case solute A reacts instantaneously and irreversibly with reactant B.

The reaction takes place at a reaction plane beneath the solid surface where the

coneentrations of A and B are zero, and the reaction rate is equal･to the ratg. at

.
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                                                                 '
which the two substances can diffuse to the reaction plane. The basic differential

equations governing the diffusion of A and B can be written as :

   ., DAgi;ll-axaaAJ, lto (o<x<x,) ' (ig)

,,/ DB aa2.B, -ax aaB), ==o (t.<x<oo) (2o)
with the boundary conditions :

          x=io, y>O; A=Ai
          x = oo, y:;}rO ; B" Bb
                                                                 (21)
          y-rO, x>O; B='Bb'
     ･ x==x,, pt>O; A==B=iO, DA(OA/ax)+(DB/v)(aB/ax)==O

where x. represents the location of the reaction plane. The solutions of Eqs. (19)

to (21) are:

                                   N,          AA, -=i--- r(i/i?tail33/,.9)D"Y) (o<x<x,) ' (22)

,, .B,=-r(i/.3
,'
,a/X

,3,/oo9?fl{7',',/r,i'./ia/D.A./,DB' (x,<x<oo) ' (23)

where o is the root of the following equation:
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         '( DD.B )2i3,BAb,= exp(( S: -1) a) r(1/3'OO Iit-( i(31,/.3),aDA/DB) (24)

The average rate of mass transfer of solute A is obtained from Eq. (22) as :

          AILi =' 2r(3ii33,.) (aDA2Zy)'/3Ai (2s)

The reaction factor is then expressed as :

          P=r(1/3,oo)/r(1/3,a) (26)
It should be noted that Eqs. (26) and (24) are the same as those obtained by Acrivosi')

on the basis of the laminar 'boundary-layer model. The solutions obtained above

were also derived by Den Hartog and Beek6) and the solution giving the concentra-

tion profile of reaction product was presented by Hikita et ali2).

   When DA =DB, Eqs. (24) and (26) can be simplified to

          B == 1 + ,Bi, (27)
which is identical to the film-model'3) and penetration-mode19) solutions with DA==

DB. When DA and DB are not widely different and the value of &/vAi is large, the

following approximations can be permissible :

          exp(( S2 -1) a)f ,1 ' (2s)
          r(1/3,oDA/DB)/r(1/3,a)fw(DA/DB)i13 (2g)
Making these approximations in Eqs. (24) and (26), the expression for the reaction

factor now becomes :

          p..(S2 )i/3+( li]: )2/3 io, (3o)
               'This is the same equation as obtained by Potteri`) based on the laminar boundary-

layer model. For the case where Bb=O which corresponds to the physical mass
transfer of solute A, Eq. (30) reduces to P==(DA/DB)i13. Therefore, in order to obtain

an approximate expression of the reactiori factor which is valid when a)==O, the

first term of the right-hand side of Eq. (30) should be replaced by unity. Thus:

          fi =1 +(DDAB )213 ,k, (31)
Eq. (31) agrees with the exact solution to within a maximum deviation of 15%, if

the value of DB/DA lies between 4 and 1/4, and the agreement between the approxi-

mate and exact solutions is much better at very large and small values of BolvAi.

       5. Mass Transfer with an Irreversible Second-Order Reactien

   Here we consider the case where mass transfer is accompanied by an irre-

versible second-order reaction between solute A and reacta'nt B, with the reaction

rate given by Eq. (8). The basic differential equations describing the diffusion of

A- and B can be written as:

            a2A aA                       == le,AB (32)          DA                - ax             ax2                    5pt
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             62B aB                       ==yk2AB , (33)          DB                - ax             ax2                     ay

with the boundary conditions:

     x=O, y>O ; A== Ai, aB/6x=O }

     x-= oo, y20; A=O, B= Bo i , (34)
     y=O, x>O;A=O, B-m--Bo 1
       'Eqs. (32) and (33) with Eq. (34) cannot be solved analytically. Then these equations

were solved numerically by a finite-difference method similar to that used by Brian

et al'5,'6). Convergence tests and comparison of the computed results with known

asymptotes indicated that the error of the computed results was less than 1%. The

computed results of reaction factor for four given values of Pco which represents

the reaction factor for the case of an instantaneous reaction are shown as solid

curves in Fig. 3, where the values of P are plotted against r with the diffusivity

ratio DB/DA as parameter. The three solid curves for each value of Pco approach

the pseudo first-order reaction curve at low values of r, and they approach an

,
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asymptotic value Pco at high values,of r. These three curves agree well with

each other within 4% over the range of the Ds/DA values from 1/4 to 4. Thus it

may be concluded that the reaction factor is quite insensitive to the diffusivity

ratio DB/DA. The numerical solutions of the reaction factor wefe also obtained by

Den Hartog and Beek6) for DB/DA=1 and Pco ==2, 3 and 6.

    In the present work, the approximate solution of the reaction factor has also

been derived using the method similar to that used by van Krevelen and Hoftijzeri')

and Hikita and Asaii8). In the following treatment, it is assumed that the con-

centration of reactant B in the liquid-phase is uniform and equal to Bi, the con-

centration of B at the solid wall, and that the value of Bi is independent of y, the

distance in the fiow direction. The reaction rate is then given by

           r==(k2Bi)A (35)
and ,Eq. (32) can be written as

      ' DA-jgFlfAi-axaayA=(k2Bi)A (36)
Since Eq. (36) has the same form as Eq. (10), the solution giving P in this case is

represented by the following equations

           P==rq+O.474715/(rop)2 (rn;?r2.4) (37)
                 co           P==1+Zbi(rop)2j (rvs:2.4) (38)
                jnl
 which are the same forms as Eqs. (14) and (15). Here bi, b2, ･･･bj are the numerical

 constants given in Table 1, r is the same parameter as Eq. (16), and v isa dimen-

 sion!ess parameter defined by

           n== l/B,IB,-V(P.-P)/(B.-1) (39)
 where P. is the reaction factor' for an instantaneous irreversible reaction and given

 by Eqs. (24) and (26). Thus the approximate solution of P for the case of an irre-

 versible second-order reaction is composed of Eqs. (16), (24), (26) and (37) to (39).

    The approximate solutions of the reaction factor calculated for the cases/of

 P.=1.5, 2, 3 and 5 are shown in Fig. 3 as dotted curves and compared with the

 numerical solutions. As can be seen in this figure, the agreement between the

 numerical and approximate solutions is good for large and small values of r. F, or

 intermediate values of r, the approximate solutions are slightly lower,than,the

 numerical solutions. However, the maximum deviations between the approximate

 solutions and the numerical solutions for DB/DA==1 are only about 3%. . , .,･

    Fig. 4 shows the comparison of the Levaque-model approximate ,solution of the

 reaction factor with the film-model and the penetration-model approximate solutions

 at the constant values of Poo ==2 and 5. The solid curves in this figure represent

 the Leveque-model approximate solution calculated from Eqs. (37) to (39), while/the

 chain curves show the film-model approximate solution of van Krevelen .and ･H'o'fti-

 jzeri') given by :

           P=rn/tanh(rny) (40)
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Further, the dotted curves represent the penetration-model approximate solution

derived by Hikita and'Asai'8), which is given by :

          P == (rn+ s;n )erf(2rn/Vli-) +Sexp(-4r2op2/z) (41)

The values of P based on these three models agree well with each other within

10%, when compared at the same values of Pco and r. This indicates that the

effect of chemical reaction on the rate of mass transfer is insensitive to the hydro-

dynamic conditions.
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                                Notation

              ttA : concentration of solute A, g-mol/cm3 ･
Ai : concentration of solute A at the solid wall, g-mol/cm3

a : vel'ocity gradient of the fiowing liquid at the solid wall, 1/sec

B : concentration of liquid-phase reactant B, g-mol/cm3

Bi, Bb : copcentrations of liquid-phase reactant B at the solid wall and in the

          bulk of liquid, respectively, g-mol/cm3

        : coethcient in Eq. (15), .b
i        : liquid-phase diffusivities of solute A and reactant B, respectively, cm2/secPA, DB
Kh(2) : mQdified Bessel function of the second-kind of order p,
leL" : liquid-phase mass transfer coethcient in the absence of chelnical reac-

           tion for solute A, cm/sec

le2 : rat'e constant for irreversible second-order reaction, cm3/g-mol sec
IVLa',IVL4 : average rates of mass transfer of solute A without and with chemical

  - reaction, respectively, g-mol/cm2 sec

x : distance from the solid wall into liquid, cm

xr : distance from the solid wall to the reaction plane, cm

y : distance in the fiow direction, cm

Greek letters

B, : reaction factor,
B. : reaction factor for mass transfer with an instantaneous irreversible

           reaction,

r : dimensionless parameter defined by Eq. (16),
         : incomplete gamma function, Se,tP-'e"'dt,
r(p, q)

op : dimensionless parameter defined by Eq. (39),

v : number of moles of liquid-phase reactantB reacting with each mole of

 a : dimensionless parameter defined by Eq. (24),
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