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Number of Hamiltonian Circuits in Basic Series
of Incomplete Graphs

Tamotsu Kasar*, Hiroshi SHINTANI** and Mitsuru IMAr***

(Received November 15, 1971)

The problem of counting Hamiltonian circuits in incomplete graphs made by removing
some branches from a complete graph is dealt with and a method for finding the number
of Hamiltonian circuits is described. The concept which was named as the “inversion of
branches” by the authors is introduced and then the formulas for the number of Hamiltonian
circuits in six basic series of incomplete graphs are derived. Some applications of the
method in this paper to the incomplete graphs, which do not belong to the basic series,
are also shown as the examples.

1. Introduction

A sequence of branches in a given graph is called a path when no branch appears more
than once in it. If the path forms a loop, this cyclic path is called a circuit. Hamilton
circuit is defined by the property of being cyclic path with respect to the nodes and if a
circuit passes through every node in the finite connected graph, this circuit is called Hamil-
tonian. On the other hand, there is a sequence of branches which is called Euler path.
This path is characterized by the property of being cyclic path with respect to the branches
and the every branch in the graph appears just once in it.

In spite of the similarity of the definitions of Euler paths and Hamiltonian circuits, the
theories for the two concepts have little in common. For Euler paths, it is easy to establish
a criterion for their existence, that is, if and only if a given finite graph is connected and
the local degree, which is defined as the number of branches at every node of the graph,
is even number at all the nodes, that graph has some Euler paths.” However, for Hamil-
tonian circuits no such general rule is known and even in a specific graph it may be difficult
to decide whether such a circuit can be found.

Since Hamiltonian circuits contain all the nodes in a given graph and pass through
every node just once, by eliminating the branches which return to the nodes already passed
in the process of tracing the branches in order, or by making the system of operation®
embracing such a process, we can find Hamiltonian circuits themselves in that graph at the
end of the operation. However, when a given graph has a complex form, these works
will take plenty of time.

The purpose of this paper is to give a general method for finding the number of
Hamiltonian circuits in incomplete graphs. Computing the number of Hamiltonian circuits
in a given graph in advance will give an important aim in connection with the problem of

the existence of their circuits in that graph.
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The fundamental concept, which is used throghout the paper, is an idea named “inver-
sion of branches”. By using this concept, the formulas for the number of Hamiltonian circuits
in six basic series of incomplete graphs, which are called 7-, p-, ¢-, m-, s- and h-Series, are
derived. Furthermore, in order to show that the method in this paper-can also be applied
to the incomplete graphs, which do not belong to the basic series just mentioned above,

some examples are given.

2. Number of Hamiltonian circuits in a complete graph

The complete graphs having nodes over three in number are sure to have Hamiltonian
circuits. We now consider a complete graph of N nodes. Since the local degree at every
node of this graph is N—1, by tracinz any onz of the N—1 branches which are incidental
to the first node, that is, the starting point, we can arrive at the second node. The second
node has N—2 branches which are connected to the other nodes except the first node, and
in general, for /-th node, the number of such the branches becomes N—i, where i=1,2,
-y N—1. Consequently, by tracing any one of the N—i branches, we can arrive at the
i+1-th node from 7-th node. Thus, the running number of the circuits passing through
every node and returning to the first node is given by (N—1)!. Hereupon, we must pay
attention to the fact that the same Hamiltonian circuit is computed twice into (N—1)!. In
consequence of this fact, the number of Hamiltonian circuits in a complete graph of N nodes

is given by
(N=-1)!/2. ¢))]

3. Inversion of branches®

In this chapter, we consider Hamiltonian circuits containing some specific branches in a
complete graph. Fig. 1 shows two types of Hamiltonian circuits containing a specific branches
connected in series. These two types are sure to exist as a pair in the complete graph of
N nodes.

Comparing graphically the two Hamiltonian circuits shown in Fig. 1, we can observe
that one of them is obtained by connecting inversely right and left of the a branches after
taking off two branches which are connectected to the nodes 1 and a+1 in the other.

Such anlinversion does not carry out in practice, but it is used as an important concept in

a branches o branches
«

1 2

(a) (b)

Fig. 1 Two types of Hamiltonian circuits containing the specific branches.
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this paper and we will give it the name of “inversion of branches”.

From the above consideration, the number of Hamiltonian circuits containing a specific
branches connected in series in a complete graph of N nodes can be obtained by the
following equation:

2{(N—-1—-a)!/2} =(N=1—a)!. (@)

In the left side of Eq. (2), the multiplier 2 is based on the concept of “inversion of
branches” and (N—1—a)!/2, as we can understand from Formula (1), gives the number
of Hamiltonian circuits in a complete graph of N—a nodes. Consequently, Eq. (2) shows
that the number of Hamiltonian circuits containing & specific branches in a complete graph
is obtained by counting that in the complete graph of N—a nodes made by putting together
a+1 nedes incident to the a branches. For example, if we consider the Hamiltonian
circuits containing two specific branches (@ =2) connected in series in the complete graph

of six nodes, the procedure in accordance with Eq. (2) becomes as shown in Fig. 2.

(b) (c)
2 3 4 5 6
IQ\\ b a,zo‘\\b a A b a/n\\ b a_ A b
(d) (e)

Fig. 2 Procedure for finding the Hamiltonian circuits' containing two specific branches
in the complete graph of six nodes.

Fig. 2(a) is the complete graph of six nodes, with the two specific branches shown in
dotted lines, Fig. 2(b) is the complete graph having the same number of nodes as the
value of N—a and Fig. 2(c) shows Hamiltonian circuits in the graph of Fig. 2(b). The
number of these circuits equals to (N—1—a)!/2. In each of the circuits shown in Fig. 2
(¢), by separating a marked node into two nodes with one branch, respectively, and by
inserting the specific branches stated above between the two nodes, three Hamiltonian circuits
as shown in Fig. 2(d) are obtained and the number equals to that of the circuits of Fig. 2
{¢). Furthermore, by using the concept of “inversion of branches”, the circuits of Fig. 2(e)
are obtained from those of Fig. 2(d). The graphs of Fig. 2(d) and (e) are Hamiltonian
circuits containing both branches a and b in the complete graph of Fig. 2(a), and the
number of these Hamiltonian circuits agrees with the value obtained from Eq. (2).

By expanding the above consideration, we can find the number of Hamiltonian circuits
containing 8 sets of branches as shown in Fig. 3 in a complete graph. In this case, it is

evident that the number of combinations causing by “inversion of branches” is given by 2%.
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Consequently, in much the same way as the preceding consideration, the number of Hamil-

tonian circuits containing the sets of branches, shown in Fig. 3, is given by

D[ {N—1—= (a1t +ap)} /2] =25 (N—1—éai)1. 3

a; branches

a2 branches
OO me = m e —=O———O)
A sets :

a branches

Fig. 3 Sets of branches connected in series.

4. Patterns of the removed branches belonging to
Hamiltonian circuits in a complete graph

Since any incomplete graph is derived by removing some branches from a complete
graph, the number of Hamiltonian circuits in a given incomplete graph can be found theore-
tically by obtaining the difference between the following values:

(1) Number of Hamiltonian circuits in a complete graph having the same number of ndoes
as the incomplete graph.

(2) Number of Hamiltonian circuits containing the branches to be removed from the com-
plete graph to make the incomplete graph.

The value of the former is obtained from Formula (1). In order to obtain the value
of the later, we now consider the forms of branches belonging to the complementary graph*
of the given incomplete graph and belonging to Hamiltonian circuits in the original complete
graph. Let %2 be the number of such the branches. The forms of the removed branches
belonging to Hamiltonian circuits in the origial complete graph are determined by the values
of %, and the patterns to simple values of 2 become as shown in Fig. 4. As is evident
from Fig. 4, 8 has the values from 1 to k.

Each of the patterns, shown in Fig. 4, is made by combining some of the branches to
be removed from a complete graph. Consequently, if the number of such the combinations

is calculated, the number of Hamiltonian circuits in a given incomplete graph can be obtained
from Formula (1) and Eq. (3).

5. Formulas for the number of Hamiltonian circuits
in basic series of incomplete graphs

The six basic series of incomplete graphs dealing with in this chapter’ are called
! P p
7y P C-, m-, s- and h-Series,¥~% respectively. The incomplete graphs belonging to these

series are made by removing the graphs as shown in Fig. 5 from a complete graph. The

#* The graph to be removed from a complete graph to make a given incomplete graph is called com-
plementary graph.
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Fig. 4 Patterns of the removed branches belonging to Hamiltonian circuits in a complete graph.

" Loop

Complete gréph
1

-~ ~~
e ~

/ N
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. -

(a) r-Series (b) p-Series (¢) c-Series (d) m-Series (e) s-Series (f) h-Series

Fig. 5 Forms of branches to be removed from a complete graph in six basic series of incomplete
graphs.

formulas for the number of Hamiltonian circuits in these six series of incomplete graphs are
derived by obtaining the number of selecting % branches, which form the patterns in Fig. 4,
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from the branches belonging to each of the graphs shown in Fig. 5.

5.1 Formula for the number of Hamiltonian circuits in r-Series

The r branches, shown in Fig. 5(a), to be removed from a complete graph make the
r patterns of £=1,2,---,7 and S=%, shown in Fig. 4, as the forms which are contained
within Hamiltonian circuits in the original complete graph. For convenience of the consider-
ation, we now consider an incomplete graph of N=5 and r=2. Fig. 6 shows Hamiltonian
circuits centaining either or both of the two dotted-line branches which were removed from

the complete graph.

Incomplete graph

under consideration

Hamiltonian circuits Hamiltonian circuits

containing branch a containing branch b

Hamiltonian circuits Hamiltonian circuits
containing only containing only
branch a branch b

Hamiltonian circuits Hamiltonian circuits
containing both branches | containing both branches
a and b a and b

Fig. 6 Hamiltonian circuits containing either or both of the two removed branches.

First the following values are obtained from Eq. (3):
(1) The number of Hamiltonian circuits containing branch a or containing brahch b is

(N—-2)1=3l. ‘ Y
(2) The number of Hamiltonian circuits containing both branches a and b is

2-(N—-3)1=2.21, (B
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(3) The number of Hamiltonian circuits containing only branch a or containing only branch
bis
(N=2)!—2-(N-3)!=3!—2-21, 6)
Consequently, from Formula (1), Egs. (4), (5) and (6), the number of Hamiltonian

circuits in incomplete graph under consideration is given by

(N—-1)1/2—2{(N—-2)!—2-(N—3) 1} —2-(N—3)!
=(N-1)!/2—2-(N=2)! +2-(N—-3)!
=41/2—2-3!+2-2!, )

and becomes 4.

Eq. (7) shows that there is no necessity for calculating expressly the value of Eq. (6).
In the last equation of Eq. (7), the first term expresses the number of Hamiltonian circuits
in the complete graph of N=>5 and the second term gives the number of all the circuits,
shown in Fig. 6. The second term, however, has coubly the Hamiltonian circuits containing
both branches a and b, as shown in Fig. 6. Censequently, it is necessary to add the
third term representing the number of such the Hamiltonian circuits. With similar consider-
ation, we can find generally the formula for the number of Hamiltonian circuits in 7-Series
of incomplete graphs.

Since the number of selecting £ branches out of » branches to be removed from a
complete graph is given by ,Ci, where 2=1,2, -, 7, if the expression for the number of

Hamiltonian circuits, F,., is written in the same form as Eq. (7), it becomes as follows:

Hy=(N=1)1/2=,Cr- (N—=2) ! +,Cy-2- (N=3) | —,C5-22- (N—4) | + -+
ot (1), Cre 2 (N—=1=1) . (8

Each term in Eq. (8) has the similar meaning as that in Eq. (7). Arranging Eq. (8),
we obtain the following formula:

H,.=éo{(—1)‘-2*"~,C,,-(N—l—k) 1},  0<2r<N. (9)

5.2 Formula for the number of Hamiltonian circuits in p-Series

The p branches, shown in Fig. 5(b), to be removed from a complete graph make the
two patterns of £=1,2 and 8=1, shown in Fig. 4, as the forms which are contained within
Hamiltonian circuits in the original complete graph. Fig. 7(a) shows p branches to be
removed from a single node A of a complete graph and N—1—p remaining branches, and
Fig. 7(b) shows two kinds of Hamiltonian circuits containing the patterns just mentioned
‘above in the original complete graph.

The numbers of selecting one and two branches out of p branches are given by p
and ,Co=p(p—1)/2, respectively. Consequently, by using these values and the concept of
“inversion of branches”, we can find the number of Hamiltonian circuits in p-Series of

incomplete graphs, which becomes as follows:

Hy=(N—1)1/2—p- (N=2) 1+ p(p—1) - (N—3)1/2
= (N=1=p)(N—=2—p)-(N=3)1/2. ao
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N-1-p

branches C/O—"“
A

S~

(a) (b)

Fig. 7 State of branches at single node A and two kinds of Hamiltonian
circuits containing the branches to be removed.

From Formula (10), it is evident that the Hamiltonian circuits exist when N=3 and
N—-3=p.

5.3 Formula for the number of Hamiltonian circuits in c-Series
The incomplete graphs belonging to this series are derived by removing another com-
plete graph of N,(<N) nodes, shown in Fig. 5(c), from a complete graph of N nodes.
Each of patterns, shown in Fig. 4, is made by combining some of the branches belonging
to the removed complete graph and the number of their combinations can be found as
follows:
k! 5.Corirr 2041-rCi* 41 Cra /2517, 1§FT§N0_ L 11

In Eq. (11), the value for 7=1 expresses the number of combinations for making the
patterns (1) in Fig. 4, the value for 7 =2 corresponds to the patterns (2) and so on.
Thus, the number of Hamiltonian circuits in ¢c-Series of incomplete graphs is arranged

as the following equation:

N.-1
H=% £ [E((-D"RGH (N=-1-B1],  N22, (12)
y=0
where
1 for 7=0,
£G b= | (13)
) R 5. Corirr 2241-/Ch - 5-1Crn for r=1,

0 for y=0
lc={(Nc——1+r)/2 for =21 if one of N, and 7 is odd and the other is even, } (14)
(N,—2+7)/2 for r=1 if both N, and 7 are odd or even, E

and the {zalue of Formula (12) for y=0 expresses the number of Hauniltonian circuits in
the complete graph of N nodes. This matter is also the same in the formulas to be given
in the succeeding sectlons

The calculated resu]ts of Formula (12) to some simple values of N, are shown in
Table 1. From this table, we observe that Formula (12) can be rewritten in the simple

form as follows:

Ne-1 )
Hy=1 (N-N)!- I (N-N-2),  NeZ2. (15)
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Table 1 Expressions for Hs

Ne H.

2 (N=2)1-(N-3)/2

3 (N=3)!-(N—-4)(N—-5)/2

4 (N—)!-(N-B)Y(N—6)(N-7)/2

5 (N=5)!-(N—6)(N—T)(N—8)(N—-9)/2

6 (N=6)1-(N—T(N—8)(N—9)(N-10)(N—-11)/2

7 (N=D!-(N—8)(N-9)(N—10) (N—11) (N—12)(N—-13)/2

5.4 Formula for the number of Hamiltonian circuits in m-Series
The branches to be removed from a complete graph to make the incomplete graphs
belonging to 7~ and p-Series do not form the cireuits by themselves. In the incomplete
graphs belonging to c-Series, such the branches form some circuits by themselves, but there
are no circuits which become Hamiltonian in the original complete graph. On the other
hand, the set of branches, shown in Fig. 5(d), to be removed from a complete graph in
m-Series is clearly a circuit and when N=m, it becomes Hamiltonian circuit in the original
complete graph. Furthermore, when N=mz=5, the incomplete graphs made by removing
the m branches from a complete graph have some Hamiltonian circuits. - Consequently, in
the case of calculating the number of Hamiltonian circuits for N=m=5 in m-Series, it is
necessary to add one circuit formed by 7z branches to the result obtained by the same
consideration as in 7-, p- and c-Series. Since the circuit formed by m branches becomes
Hamiltonian in the original complete graph when N=m and does not become Hamiltonian
in the original complete graph when N=em, its number can be expressed by the following
notation: ’
B { 0 for m=N, }
Omv = 1 for m=N. (16)

The number of combinations for making each of the patterns, shown in Fig. 4, by

some of the m branches to be removed from a complete graph is given by
M- m14Crr 1Cr1/k, 1=r=m—1. an

From Egs. (16) and (17), the formula for the number of Hamiltonian circuits in -

Series of incomplete graphs becomes as follows:
m=1 Iy
Hm=20[2{(—1)*-2*"-Fm(r, £)-(N—1—E)1}] +(=1)"dny, 3=m=N, as)

y=0 k=y

where

1/2 for y=0, } a9

Fu(y, k)= {
@ &) 1 mo1-4Cier sCro/ for rz1,

0 for r=0,
lm={(m—1+r)/2 for y==1 if one of m and 7 is odd and the other is even, } (20)
(m—2+7)/2 for y=1 if both m and r are odd or even,

and the last term in Formula (18) is added when N=m2=5.
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5.5 Formula for the number of Hamiltonian circuits in s-Series
The number of combinations for making each of the patterns, shown in Fig. 4, by
some of the s branches, shown in Fig. 5(e), is given by

s+1-4Che1-r* lz—lCT—-l‘ , 1sr<s. (2D

From Eq. (21), we obtain the formula for the number of Hamiltonian circuits in s-
Series of incomplete graphs as

H=%[3 [S{-D*27- R - (N-1-B 1], 0=sSN-1, (22)
where
1/2 for =0, }
Fi(r, & ={ 23
o B 3+1-Cri1or - 51Cr1 for r=1, @3

0 for y=0
={(s—1+r)/2 for =21 if one of 5 and 7 is odd and the other is even, } 24)
(s+r)/2 for r=1 if both s and 7 are odd or even.

5.6 Formula for the number of Hamiltonian circuits in A-Series

The incomplete graphs belonging to this series are derived by removing another com-
plete graph of N; nodes having % hinged branches at its one node, shown in Fig. 5(),
from a complete graph. The number of combinations for making each of the patterns,
shown in Fig. 4, by some of the branches to be removed from a complete graph is given

by
{21 %.Coirr-2001rCi +2h- (=1 1 3. 1Crto1 5+ 26-1-"Ci1
+h(h—DG—1) - (3—3) ! 5.1C2-2-r 28-2+Ci-1} 41Crat/2K177, (25)

where the third term in the equation expressing within the brackets is defined for 2=3.
From Eq. (25), we obtain the number of Hamiltonian circuits in A-Series of incomplete

graphs as
w1y
H=5 BIZ(-DARG A (N-1-D 1], N22, 520, (20)
=0 k=Y
where
_{Nc—l for h=0, } 7
A for A=1,
1 for r=0,

Fu(r, k) = {{k' 81 2ks1Ca+ 20 (B—1) | 5, 1Cotrr 28-1-1Ciet } (28)
+hth—1(G—-1)- =3 ! w1Cosger 2b-2-rCa1} 'I:-ICT—I for r=1

and /» depends on N, and 7, and becomes as follows:

(1) For A=0,

0 for r=0
Zn={(Nc—1+r)/2 for y=1 if one of N, and 7 is odd and the other is even, } 29
(N;—24+7)/2 for y=1 if both N, and 7 are odd or even. :
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(2) For h=1,

0 for y=0,
ln={(Ng——l+r) /2 for y==1 if one of N, and r is odd and the otker is even, } (€)]
(N:+7)/2 for y==1 if both N, and 7 are odd or even.

(3) For h=2,
0 for y=0,
L N./2 for =1 if N, is even, 1)

“Y(No4+7)/2  for 7=1 if both N, and 7 are odd or even,
(N,+14+7)/2 for r==2 if one of N; and 7 is odd and the other is even.

When ~=0, this series reverts to the ¢-Series and Formula (26) agrees with Formula
(12). Furthermore, when -N=2 this series reverts to the p-Series and by rewriting 2+1
to p, Formula (26) agrees with Formula (10) for p=1.

In the above, the formulas for the number of Hamiltonian circuits in six basic series
of incomplete graphs have been given. As is evident from these formulas, the number of
Hamiltonian circuits in incomplete graphs, H, can also be expressed by the following form:

H=(N-11/2+ B{(~ D 4 (N=1-D 1}, 32

where the values of M and A; are determined by the forms of the branches to be re-
moved from a complete graph to derive the incomplete graphs. Hereupon, we must pay
attention to the fact that there are some cases where Formula (32) have an additional
term as Smy in m-Series. Such an example is also shown in the following chapter.
Tables 2, 3 and 4 show the values of coefficient A; in Formula (32) representing the

number of Hamiltonian circuits in 7-, m- and s-Series of incomplete graphs, respectively.

Table 2 Values of A: in r-Series

Pl A ] As | As | Ad | As | A | A | As AglAm
1] 1

2

6 4

12 16 8

- 20 40 40 16

30 80 | 120 96 32

42 140 | 280 | 336 | 224 64

56 224 | 560 | 896 896 | 512 | 128

wlowlw|o|alelw!®
wlow wlalalsn|w|w

72 336 | 1008 | 2016 | 2688 | 2304 | 1152 | 256

o
<o
ot
o

90 480 | 1680 | 4032 | 6720 | 7680 | 5760 | 2560 | 512
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Table 3 Values of A; in m-Series

m | A | A | As | A | As | As | Ar | As | A
3| 3| 3

4| 4| 8 4

51 5|15 | 15| 5

6 | 6 | 24 | 38| 24| 6

71 7|38 | 7 7| 3| 7

8 | 8 | 48 | 136 192| 136| 48| 8

9 | 9| 63 | 219| 405| 405| 219| 63| o9

10 | 10 | 80 | 330! 760 | 1002 | 760 | 330 80 | 10

Table 4 Values of- A; in s-Series

s A A, As A | As As Ar | As As | A
1 1

1

4 1

9 6 1

16 19 8 1

25 44 33 10 1

36 85 96 51 12 1

49 146 | 225 | 180 73 14 1

O | ]S | s w| N
O |0 N || k] W]

64 231 | 456 | 501 | 304 99 16 1

[
=]
=
[}

81 344 | 833 | 1182 | 985 | 476 129 18 1

6. Examples

A graph is called regular of degree p if all local degrees have the same value p.
Some of regular graphs belong to 7- or m-Series described in the previous chapter. For
example, the regular graphs shown in Figs. 8 and 9 with their local degrees p, belong to
r- and m-Series, respectively. In these graphs, the branches to be removed from the
original complete graph are shown by dotted lines.

From Formula (9), the numbers of Hamiltonian circuits in the two regular graphs of
Fig. 8 become (a) 16 and (b) 744, respectively, and from Formula (18), those in the two
regular graphs of Fig. 9 become (a) 3 and (b) 177, respectively.

Fig. 10 shows three forms of the branches to be removed from a complete graph.
The incomplete graphs made by remoiring these branches do not belong to six series des-
cribed in the previous chapter. The number of Hamiltonian circuits in such the incomplete
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N=6,r=3, p=4
() r (b) N=8 r=4, p=6

Fig. 8 Regular graphs belonging to r-Series.

(a) N=6, m=6, p=3 (b) N=8, m=8, p=5

Fig. 9 Regular graphs belonging to m-Series.
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I - 1 - ot o] / S \

- -
[V } - —— 7’ Nt LY N
&< < = &. M v
______________ B o= ———————— JE .

(a) (b) (¢)

Fig. 10 Three forms of branches to be removed from a complete graph.

Table 5 Number of combinations of different branches

Patterns| k=1 k=2 k=3 k=4
Removed O ol o o] e
Fig. 10 (a) 5 2 8 0 6 0 0
Fig. 10 (b) 6 6 9 6 12 0 6
Fig. 10 (c) 9 12 24 24 36 6 24

graphs can also be calculated by using the method described in Chapetr 5. Table 5 shows
the number of combinations for making each of the patterns, shown in Fig. 4, by some
of the branches shown in Fig. 10. Thus, the numbers of Hamiltonian circuits in incomplete
graphs made by removing each of the three graphs, shown in Fig. 10, from a complete

graph of N nodes are given by
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Hpy=(N=5)!-(N=5)(N—6) (N*~11N+34) /2, (33)

Hap=(N—-4)!-(N—5)*(N-6)/2, }
He=(N—-5)1-(N=6)(N=-7)*(N-8)/2.

As is evident from Eq. (33), these incomplete graphs have no Hamlitonian circuits when
N equals to the number of nodes which are contained within the removed graphs. When
N=7, we can find from the first equation in Eq. (33) that the incomplete graph derived
by removing the graph of Fig. 10(a) from a complete graph has 12 Hamiltonian circuits.
However, when another branch between nodes A and B in Fig. 10(a) is removed further
from this incomplete graph, the remaining incomplete graph belongs to c-Series and as is
evident from Formula (15), the Hamiltonian circuits are no longer in existence.

Fig. 11 shows two other forms of branches to be removed from a complete graph, and
Table 6 gives the number of combinations for making each of the patterns, shown in
Fig. 4, by some of the branches shown in Fig. 11. Thus, the numbers of Hamiltonian
circuits in two incomplete graphs of N nodes under consideration are given by the following

equations:

Hep=(N-1)!1/2~12-(N—2)!1+99- (N—3) 1 —350- (N—4)!
+540- (N—5)1—330- (N—6) 1 +60- (N—7) !

=(N=-7)!-(N—8)(N°*—37N*+557 N3—4263N*+ 16582 N— 26220) /2, (34)
Hgy=(N-1)1/2—12-(N—2)!+108- (N—3) ! —464- (N—4) | +1008- (N—5)!
—1080- (N—6) I +504- (N=7)1—-72-(N—-8)!. (35)

Since the value of H becomes zero when N=8, it is obvious that the incomplste
graph derived by removing the graph, shown in Fig. 11(a), from a complete graph has no
Hamiltoian circuits when N=7. On the other hand, the value of Hy, doss not become

zero when N=8. In such a case, some of the branches to be removed from a complete
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Fig. 11 Two forms of branches to be removed from a complete graph.

Table 6 Number of combinations of different branches

Patterns' k=1 k=2 k=3 k=4 k=5 k=6 |k=7
m o wleolo ooleloleelw|e|e|e|n
Fig. 11 (a) 12 1333320102 66| O |{33|159 |90 01120 | 90 0(60 0
Fig. 11 (b) 12 |42 |24 |44 | 120 (48| 9 | 96 ‘ 240 | 72 1 108 | 264 | 120 {204 | 96 | 72
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graph form Hamiltonian circuits in the original complete graph. Consequently, in order
to obtain the value of Huyy for N=8, we must add the number of Hamiltonian circuits
in the graph of Fig. 11(b) to the value of Eg. (35) for N=8, as the term of dmy was
added in m-Series. The number of Hamiltonian circuits in the graph of Fig. 11(b) is
obtained easily by observing that graph and bscomes 6. Thus, the numbar of Hamiltonian
circuits in incomplete graph derived by removing the graph of Fig. 11(b) from a complete
graph of N=8 becomes as follows:

Huy=71/2—12-61-108-5! —464-4! +1008-3! —1080- 2! +504-1! —72-0! +6 =30.

Tt goes without saying that the values of Hyy for N=9 can be obtained from Eg. (35).

7. Conclusions

In the above, we have investigatea' a method for finding the number of Hamiltonian
circuits in incomplete graphs and have given the formulas for the six basic series of in-
complete graphs.

The idea of “inversion of branches” was used as a concept for finding the number of
Hamiltonian circuits and it was shown that this concept can also be applied to the incomplete
graphs which do not belong to the standardized series. As is evident from Egq. (32), the
number of Hamiltonian circuits in a given incomplete graph can be found by obtaining the
values of co=fficients A;, and these coefficients are calculated from the number of combi-
nations for making each of the patterns, shown in Fig. 4, by some of the branches to be
removed from a complete graph to make that incomplete graph. If the complementary
graph has a systematic form as the basic series described in Chapter 5 or has a compara-
tively simple form as the examples shown in the previous chapter, it is not difficult
particularly to obtain the number of combinations just mentions above. However, when the
complementary graph has a complex form and the number of branches in it much more
than that in the given graph, calculating the number of such the combinations bscomes a
work that takes plenty of time.

Furthermore, when the number of nodes belonging to the complementary graph equals
to that of the original complete graph, another considerable problem occurs. It is said that
we must find the number of Hamiltonian circuits which are formed by some of the
branches belonging to the complementary graph. The incomplete graphs belonging to -
Series, described in Chapter 5, and the incomplete graph, shown in the last of Chapter 6,
are examples of such a case. These examples suggest us a contradiction that we must
obtain the number of Hamiltonian circuits in the complementary graph for the purpose of
obtaining the number of Hamiltonian circuits in a given incomplete graph. When the com-
plementary graph has a systematic form or a simple form, the number of Hamiltonian
circuits in that graph can be obtained easily by observation. However, when the form of
complementary graph is complex, in general, there is no alternative but to obtain the
number of Hamiltonian circuits in that graph by trial and error. This matter is no longer
theoretically and does not agree with the purpose of this paper. Consequently, the esta-
blishment of simple method, which can also be applied to such a case, is expected.
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