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On a Solution of Stochastic Nonlinear
Programming Problems

Yoshisada MuroTsu#*, Fuminori OuBa*¥* and Hiroshi ITon***

(Received June 15, 1971)

There are many engineering problems which are reduced to the mathematical pro-
gramming problem. The constraints and/or the objective function established ‘are some-
times subjected to errors due to experiments or estimations, and thus they are probabilistic
in nature. In such a case, a stochastic approach must be adopted to make the program
realistic by treating the constraints and/or the objective function as random variables.
Thus we set up the problems 1) to minimize the expected value of the objective function
under the chance-constraints on the constriants and 2) to minimize the expected value of
the objective function under the chance-constraint on the objective function as well as
those on the constraints.

The constraints and the objective function are random variables, the distributions of
which are not predetermined. Thus, the chance-constraints are not to be calculated
directly. In this paper, a unique approach is employed to transform those into the equiv-
alent deterministic nonlinear constraints. Validity of this transformation is proved by
using Tchebychev inequality. A possible algorithm to solve the problems is proposed
and numerical examples are also provided to illustrate the given method.

1. Introduction

There are many engineering problems which are reduced to those of the mathe-
matical programming. The constraints and/or the objective function may be sometimes
deterministic in nature, but there are some other cases when those are modelled by ex-
periments® or estimations. In such cases, they are subjected to errors and thus the
solution obtained by using them may be optimal for the particular case, e.g., for the mean
value, but it is not so for general cases. It should be also noted that since the optimal
solution usually lies on the boundary of the constraints, the active constraints which are
best fit, for example, in the sense of mean are not satisfied with probability 0.5, approxi-
mately. Further, when the costs or the profits are selected as the objective function,
they may sometimes deviate too much to complete the program. In order to make the
programs in these cases realistic, a probabilistic approach must be applied, and thus the
constraints and the objective function are to be treated as random variables.

Fairly systematic researches have been made on the linear programming problems

with uncertainty®~®.

Those are categorized in the following three: 1) replacing the
random elements by their expected values, 2) replacing the random elements by pessimistic

estimates of their values and 3) recasting the problem into a two-stage problem where,
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in the second stage, one can compensate for inaccuracies in the first stage activities.
Little has been done on a nonlinear programming problems with uncertainty™~®,

This paper is concerned with the formulation and solution of the stochastic non-
linear programming problems. It is shown that the problems are reduced to the deter-
ministic nonlinear programming problems. Numerical examples are provided to illu-

strate the procedure and its usefulness.

Nomenclatures
(-): mean value of (+) oc.,: standard deviation of (-)
4c,=(+)—{(*): deviation of (-) from its mean value
Prob. [(+)]: probability of the event (-)
x: control vector, the elements of which are x.’s

a, c: coeflicient vectors, the elements of which are a,’s, ¢,’s

¢(t)=ﬁe"ﬂ/ ?: standard Gaussian probability density function

2. Statement of the Problem

Consider the standard nonlinear programming problem:
Under the constraints

Zgix, a)>0 (i=1,2,--,m) (1)
find the control vector x* to minimize the objective function

2 = f(x, c) (2)

In the above, we use the notations

x=col. (x;)=n-dimensional control vector
a=col. (a;)=q-dimensional coeflicient vector

¢=col. (¢;)=r-dimensional coefficient vector

and assume that g(-, +-) and f(+, ++) are real valued functions with sufficient
smoothness.

Let us now consider the case when the coefficient vectors a, ¢ are random variables
with known probability distributions. Then, we set up the following problems:
Problem 1 “Under the chance-constraints:

Prob. [g,(x, a)=0]>P, (i=1,2, .- ,m) (3)
find #* to minimize the expected value of the objective function =, where P,’s are given
constants.”

Problem 2 “Under the constraints (3) and an additional chance-constraint on the devia-

tion of the objective function:
Prob. [z > pz] <P, (4)

find x* to minimize 2, where £ and P, are given constants.”
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For the problems to have the solution, we assume the following: First we define
the sets
— {¥|Prob. [g(x, a)=0]=P} (5)
= {x|Prob. [>fz]<P,} (6)
For the problem 1, we assume that the set
X, =NX, (7)
i=1
is not empty. For the problem 2, we assume that the set
X, =X.NX, (8)

is not empty.

3. Formulation of the Problem

If we know the analytical expression of the distribution of the constraints and the
objective function, we can formulate the chance-constraints (3) and (4). This, however,
can not be done in general. In this paper, we evaluate them by the equivalent non-
linear constraints as mentioned below. ‘

First, we calculate the mean and the variance of g,(x, a). Expanding g.(x, @) into
Taylor’s series about the mean value a=a yields

o @ = s+ 5 L (52 sa, ) e (9)

n=1m! aaj

where da;=a;—a; and the partial derivatives are evaluated for the mean value a=a.

Thus, the mean of g,(x, a) is given by

[, - el 1 q m
850 = an D+ 3 (52 da,) e, 0
=zl \i=t O ;
“lﬁ(az )AA—l— é<-__-63 )AAA‘
= &il%, A a - i
g% a)* 2 ir=1\0a;0a, “ =1\ 0a,;0a,0a, sttt
13 ( o' )—-—-—
+— ———>5 \dada,da;da,,+ - 10
24 b da,0aya;0a,/ * (10)

The variance is

2

Og; = {gi('x’ a)_gi(x’ a)}z

S SRR A )
- ) e (0 2 Yo

F=1 \da da, i %1=1\8a ./ \ da,0a,

J J
2 2 3 -
)
12 5,6 7=1 0a ;0a;/ \0a,0a,, Oa;/\ 0a,0a;0a,,
1 g ( azg‘ )( d%; >____ -
T W22 \da.da, da, 4 e LY 11
4 g k;—';n =t \da ;0a,/ \da,0a,, 25400 S0 0h (1)
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Particularly, when a,’s are statistically independent Gaussian random variables, we obtain

the mean and variance, retaining the terms of the fourth-order moments,

&, @) = g a)+iz”:(@)4_a2+i > %% i (12)
g% @) = &80 Oy &6a2 /Y T8 i Batear

8o \2—s q 1 8%, \2 do, 5%, -
o2 = (i> a+ [—<_*_> _;.(i)( i )]A Ly 13
¢ ]Z; da; A=A ) da;da, da, aa]-aaﬁ ajda, (13)

Using the mean and the variance thus obtained, we transform the chance-constraint

(3) into the deterministic nonlinear constraint:
2w, @)—2,06,>0 (14)

where 1, is the undetermined multiplier and determined as shown below.
The validity of the transformation (14) is proved in Appendix A by using Tchebychev

inequality
Prob. [| gs— &l 24,0) < (15)
. i
Further, we can show that the chance-constraint (3) is necessarily satisfied when
i =1V1-P; (16)

If we choose 4;=1//1—P; from (16), the optimal solution is sometimes too conservative
because the condition (16) is sufficient but not necessary. In such a case, reducing the
value of 1; in the active constraint, i.e., the one on which the optimal solution lies, we
must lower the probability level to its fower limit. By this way, the feasible region be-
comes wider and thus the expected value of the objective function may be improved.
Similarly, the chance-constraint on the objective functions is transformed into

(8—1)z—1,0,20 (17)
where

_ 1 & & — 1 & 8

= f(x, ¢)+— dcidec,+ — ——S— dc . dc dc

2 =fx0) 2 F=18c;0c, 7R 6 #k7=10c;0c,0c, JTR
1 < f

_'__ —

24 j,k,;m=1 Oc ;0c,dc,0c,,

e () 2y 3 (N o

dcdcpde,dc,, oo (18)

dc;/\ 8c; ik 1=1\8¢ ;/ \Oc,0c;
» 2 2 3
"‘L > [3< o7 )(—-—af )-l— 4<_6£>(__8f —)]chAckAc,Acm
12 j.&'5m=1 0c;0c,/ \ Oc;0c,, Oc ;/\0c0c,0c,,
r 2 2 —
_1 <_"’f_.>(_if_>dc T4c, dedey,+ - (19)
4 imtm=1\0c ;0c,/ \Oc,0c,,

and 4, is the undetermined multiplier and adjusted by the way mentioned above.
Next we consider the simpler case when the constraint and the objective function

are the additive sums of the Gaussian random variables:
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£i(r, a) = 21,81, (20)
fe. 0 = S eif o) @)

where a; s and ¢;’s are Gaussian random variables. Equivalent nonlinear constraints to
Egs. (20) and (21) are given by (see Appendix B)

jz;; a;;8: %)+ 1 (P;) {Mzs;l da;;da;.g; (¥)gulx)} =0 (22)
(B=1) 2 &, /{0 —T(P){ 33 de dey f @0} =0 @3)
where
Py(t) = S:(P RGY 24)
B(t) = /2% (25)

Thus 7(P;) is not an undetermined multiplier in this case, but directly determined from
the value of P,.

From the discussion given above, we see that the chance-constraints (3) and (4) are
transformed into the equivalent nonlinear constraints. Thus the problems 1 and 2 are

reduced to the deterministic nonlinear programming problem.

4. Computational Procedure

We will give a possible computational procedure to solve the problems set up in the

START

SUMT me thodl Monte Carlo
thod

- - .
T=sz{Z(gi‘Xicqif
+((8-11 =20, T}

qrade=%%. (3=1,...n)

)

gi—xiagizo

(i=1,..

;)2

(B-1) 1—)\10220

YES

X.ox, +agradT,]
(3=1,...n)

Fig. 1.

Computational procedure.

Aj=himadg I [YCTVEY SN
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previous section, the flow chart of which is given in Fig. 1. 'The property of the functions
of the nonlinear constraints (14), (17), (22) and (23) are not known in general. Thus,
the random search method is employed to make a global search at first. When the local
convexity is assured, we can make the solution thus obtained finer by using the techniques
of the nonlinear programming. In the figure, we use the SUMT" combined with the
gradient method, but other methods are also applicable. Further, the calculation of the
probability is performed by the Monte Carlo method.

5. Numerical Examples
Let the constraints and the objective function be given by

& = axt+ax,*—a,>0 (26)

g, = agx,+axi—a, >0 27
%y, 2,220 (28)
® = €%, 2+ e} (29)

where the coefficients ¢;’s and ¢;’s are statistically independent Gaussian random vari-
ables. Let us now consider the following examples:
Example 1 “Specifying the probability levels of satisfying the constraints (26) and (27)
to the values higher than P, and P,, minimize the expected value of the objective function
(29).”
Example 2 “Specifying the probability level of 2’s exceeding 1.1 times its optimal value
to the value lower than P, as well as those of the constraints, minimize the expected
value of the objective function.”

First we consider the chance-constraint on the constraint (26). The mean and the

variance are calculated as
& = ax,+ax " —a,+ -;- 2,2,7(In x,)*da? + % (In x,)*(dady* + --- (30)
o;, = xidai+x3"sda3+ (In x,) (a0, ) dai+ da}
+ 2(In w,xdB AR daE + % {(ln x,Y'ax 7} (daky + -+ (31)
Neglecting the higher order terms “+ -.-”, we have the nonlinear constraint

G, = ax, +ax,3—a, + % a,%,7(In xz)z{ dai+ % (In x,)%(da3) }
— zl[Tam + dadx, s+ da¥(ax, ) (In x,) + dat + 2(In x,)x, %3 dal da?

+ 3 @y @y 20 (32)

Since Eq. (27) is the additive sum of the Gaussian random variables, we have the

constraint equivalent to the chance-constraint
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G, = ax,+agdh +7(P,)[ a3} + daZx§+ daF]"* —a, >0 (33)
Similarly, the chance-constraint on the objective function is transformed into the non-
linear constraint. The mean and the variance are
T = Cyx 2t g+ % ,%,°(In x,)Z{ZEZ + % (In 2,Y2(4c3+ - } ‘ (34
of = A_c%(xlgz)z + AE{El(ln xl)x1§} 2 dejxg + ‘?2)' (A_Cg)2 {c(in xl)leiz}z
+2(%,%2 In x,)°4c% Ack+ -~ (35)

Thus, retaining up to the fourth-order moments, we have
G, =(8— 1)[Elx1?z+ a3+ ;—Elez(ln xl)z{d_cg + 1—(In xl)z(zg)z}]
— 1, B+ B o Bt 20 I AL B
3 — - 1/2
+ 2 @ G mysiy] 20 (36)

Now, consider the case when the numerical data of the coefficients are given by

G=1, 0, =01 @G=1, 0,=01, &=1 0,=01 a=1
0,, =01, a=1 o0, =01 a=—1 9,= 01, a,=0, o, =01,
G=1, o0,=01, 5,=2 o0,=02 &=2 o0,=02 37)

<

To verify the validity of the computational procedure given in Section 4, first we
consider the case when the coefficients are replaced by their mean values, in which the

exact solution is easily obtained. Thus the problem becomes as follows: Under the

constraints
x,+x,—1>0 (38)
x,—x5>0 (39)
%y, 2,220 (40)
minimize the objective function
g==a2 4 2x2 (41)

The feasible region is shaded in Fig. 2. Since the contours of the objective func-
tion is elliptic, the optimal solution lies on the contour tangent to the line x, +x,—1 =0,
ie., x,*=2/3, x,%=1/3. Thus the optimal value of the objective function is g*=2/3.
The solution obtained by applying the authors’ algorithm is given in Table 1 and com-
pared with the exact solution, in which the stop command of the computation is given by
£,=0.001. As seen from the table, the solution is reasonable. If we want the more
accurate solution, we have only to make the value of ¢, smaller. The values of P, and
P, in Table 1 are the probabilities that the constraints (26) and (27) are satisfied when
we use the solution obtained by replacing the coefficients by their mean values. From



104

Y. Murotsu, F. Ousa and H, Iton

1.2
1.0
0.8}
X, A: Pl = 0.900
0.6 = B: .Pl =0.954
Iy ~— C: P, =0977
04} X Agc
13 [~/ 770777 h
: N
0.2H : \\\
! \
0.0 L ! Lll i //////////
00 0.2 04 0.6 0.8 1.0 1.2 1.4
2/3
X1
Fig. 2. Feasible region.
Table 1.
X * Xa* z* | 1 P, P, Gy G, Gy
Authors’ -5 -1 2
algorithm 0.6665 | 0.3336 | 0.667 0.506 1) 0.133| 8.7x10 5.6x10 6.7x10
Exact
solution 23 13 23

this, we find that the active constraint (26) is satisfied with probability 0.5, approximately.
Further, P, is the probability that the objective function exceed 1.1 times its optimal

value.

It should be noted that the trials of the Monte Carlo simulation is 5000.

Let us now consider Example 1. The calculations are carried out for several values
of the undetermined multiplier 2, while the probability level of the constraint (27) is
specified to 0.95. 'The mean and the variance are calculated up to the second- and fourth-
order moments, respectively. The results are listed in Table 2. The columns G, G,
and G, are the lists of the values of the transformed functions (32), (33) and (36). As
the value of 1, increases, the probability level rises. It is clear that the constraint (38)

is effective, for the value of G, is nearly equal to zero, i.e., the solutions are on the bound-
ary of the constraint (38). The values of probability P, are plotted against 2, in Fig. 3.

Table 2.
A X% x,* z* Py | P2| Py Gy G, G,
1 0 | 07478 | 0.3833 | 0.859 | 0.839 | 1|0.111 | 8.0x10° | 4.0x10! | 1.4x102
131 0 | 07763 | 0.4013 | 0.925 | 0900 | 1|0.104 | 7.8x10° | 4.1x107t | 9.3x10%
151 0 |0.7957 | 0.4116 | 0.973 | 0929 | 1]0.098 | 7.7x10% | 4.1x10? | 9.7x10%
1.7 0 | 08128 | 04247 | 1.022 | 0954 | 1]0.093 | 7.5x10° | 4.2x107 | 1.0x107!
2 0 | 0.8356 | 0.4480 | 1.100 | 0977 | 1}0.086 | 7.3x10°5 | 4.2x10?! | 1.1x10"
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1.00
0.95
0.90

Py
0.85

0.80

0.75 1 | ! |
1.0 1.2 1.4 1.6 1.8 2.0

(A =0)

A

Fig. 3. P, against 1.

Using such a plot, we can determine the value of the undetermined multiplier for the
specified probability level.

Further, to see the transition of the optimal solutions corresponding to the probability
levels, we plot them in Fig. 1. As seen from the figure, the solution becomes conservative
as the probability level rises.

Next we consider Example 2. The computation results are listed in Tables 3 to 5,
where the mean and the variance are calculated up to the second- and the fourth-order
moments, respectively. First we discuss the case when 1, is fixed to 1.0 and 2, is
made variable. If 2, exceeds 1.2, the constraint on the objective function begins to be

effective, which is known from the fact that the solution approaches to the boundary of

Table 3.

)\1 Az X 1‘* X 2_* F P 1 P2 PZ G 1 ‘ Gz Gz

0 | 07478 | 03833 | 0.859 | 0.839 0.111 | 8.0x10° | 4.0x10? | 1.4x10?
1.2 | 0.7497 | 0.3846 | 0.859 | 0.839 0.111 | 8.0x10° | 4.0xt0? | 1.9x10
1.3 | 0.7800 | 0.4767 | 1.064 | 0.967 0092 | 1.2x107 | 3.4x10? | 5.3x10%
1.35] 0.8381 | 0.5202 | 1.244 | 0.992 0.082 | 2.1x107 | 3.5x1070 | 4.5x10C
1.4 | 09223 | 0.6063 | 1.586 | 1 0.074 | 3.8xt01 | 3.2x107 | 3.0x10%

— b e b e
[ T Y

G, (see Table 3). When 1,=1.0, only the chance-constraint on the constraint (38) is
effective and thus that on the objective function is not so (Table 4). On the contrary,
when 2,=1.4, only the chance-constraint on the objective function is effective (Table
5). In order to determine the value of 2, and 2, for the specified probability level,
the technique such as the one used in Example 1 may be resorted to.

Lastly, we discuss the effect of the terms in the calculation of the mean and the
variance. The optimal solutions for the two cases are given in Table 6. One is the

case when the mean and the variance are calculated up to the second- and the fourth-
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Taqle 4.
AL | Az X ¥ X z* P, Py| Py G G, Gz
1 1 [07511| 03833 | 0.859 | 0.839 | 1(0.111 | 8.0x10° | 4.0x10" | 1.4x102
141 1 107861 | 04063 | 0.949 | 0914 | 10.102 | 7.7x10° | 4.1x107 | 1.9x107
16 ] 1 | 08038 | 04185 | 0.997 | 0942 | 1/0.096 | 7.5x10° | 4.2x107 | 2.1x102
2 1 108401 | 04438 | 1.100 | 0977 | 10.083 | 7.1x10° | 4.3x10™ 3.6x101J
Table 5.
7\1 7\2 x%9* X ¥ z* Py Py Py Gy Gy Gy
1 14 | 09223 | 0.6063 | 1.586 1 1{0.074 | 3.8x10" | 3.2x107 | 3.0x10°°
1.8 | 1.4 | 09233 | 0.6063 | 1.586 1 1]0.074 | 2.6x10 | 3.2x107 | 3.0x10°¢
20| 1.4 |09223 | 0.6063 | 1.586 1 1]0.074 | 2.3x100 | 3.2x10" | 3.0x10°6
Table 6.
A | A x* %* z*

Mean: up to second order moments
Variance: up to fourth order moments 1.6 1 0.8038 | 0.4185 | 0.997

Mean: up to zeroth order moments

i ] 1.6 1 0.8013 | 0.4224 | 0.999
Variance: up to second order momernts

order moments, and the other is the case when the mean is calculated up to the zeroth-
order moment, i.e., the coefficients are replaced by their mean values and the variances
up to the second- order moments. The discrepancies are not so great in this problem.
Thus the latter is preferable, which is simpler to calculate. The conclusion, however,
may not be true in general.

6. Conclusion

~ This paper is concerned with the formulation and solution of the stochastic nonlinear
programming problem by using the chance-constrained concept. The problems are set
up to' minimize the expected value of the objective function, specifying the probability
levels with which the constraints and/or the objective function are to be satisfied. It is
shown that they are transformed into the deterministic nonlinear programming problems
and an a‘igorithm to systematically solve them is also presented. Further, the numerical
examples are provided to illustrate the procedure and its validity.

Although we have not discussed the property of the transformed constraints, it must
be studied in the future.
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Appendix A

Theorem: 1) The supremum of 2; is 1/x/T1—P;.
2) The nonlinear constraint (14) with 2, satisfying the inequality (16) is a
sufficient condition for the chance-constraint (3).

Proof. 'Tchebychev inequality (15} is rewritten as

Prob. [g;,>g+2;0¢, or g,-ggi—/l,-agi]<1//lf d (A-1)
Thus the inequality ‘

Prob. [g;< g;— 2,08 ] <1/2} (A-2)
holds. Next we consider the set

X. = {x| g~ 06,20} - (A-3)

i.e., the set of x which satisfies the constraint

gi—2,0¢,20 (A-4)
For x contained in the set X, the following inequality holds
Prob. [g; <0]<Prob. [g;<g;—4,05] (A-5)
From (A-2), we have
Prob. [g;<0]<1/43 (A-6)
Using the well known relation:
Prob. [g;<0] = 1—Prob. [g;>0] (A-7)
we obtain
Prob. [g;>0]>1—1/22 , (A-8)
Thus, we get
1-1/23>P;
or
X421V T=P; | (a-9)

It is clear that the chance-constraint (3) is necessarily satisfied for x which satisfies
(A-4) with 2, satisfying (A-9).
Appendix B

The sum of the Gaussian random variables is also a Gaussian random vraiable.
Thus g,(x, a) and f(x, ¢) are Gaussian random variables. The means and the variances

are given by

g @) = 3lai8,) ®-1)
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Og, = [j’Z:_]__IAa; 4 8 ,-(x)g:'k(x)]l/z (B-2)
fe ) = 338,140 (B-3)
0 = [ 32, de,deuf ()] (B-4)

Thus, the chance-constraint (3) is written as

Prob. [g(x, @)=0] = Sw ., HO)E =P, = Sip')qS(t)dt (B-5)

Og;

which is equivalent to
—gilos, <7(P;)

or
231,810+ 7(P){ 32 Barydaun g (2gul)} =0 (B-6)

Similarly, the constraint (23) is derived.
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