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Fourier T ransform of Modulated Signal

Isao MizosHIRI*, Suemitsu MiNamoTo* and Kazuo MivakosHI*

“(Received June 15, 1971)

In a broad sense, all of signal functions can be regarded as the modulated signals.
The modulated signal is composed of two independent functions, the carrier signal and
the modulating signal, and it can be represented as the section of the modulation model
in the three-dimensional space under the consideration of independence between the
carrier and the modulating signal.

This paper reports how to obtain one-dimensional Fourier or Laplace transform
from the two-dimensional transform which is given by transformation of the modulation
model in the three-dimensional space. This method is available for the spectrum anal-
ysis, the transient analysis and others.

1. Introduction

Already, several methods have been reported for analizing a modulated signal. - Some
representatives of them are a method of double Fourier series®'® and a method of mul-"
tiplex Fourier series. They are inavailable, however, for the non-periodic functions
without only case that both a carrier and a modulating signal are periodic functions.

In this paper, it is shown Fourier transform of any signal (or function) is derived
from two-dimensional Fourier transform, and any kind of modulated signal can be analized
by means of converting two-dimensional Fourier transform to one-dimensional Fourier
transform.

In the same manner, the method of converting two-dimensional Laplace transform
to the one-dimensional transform. It will be available for the calculation of the transient

analysis when a modulated signal is applied to networks as an input signal.

2. Conversion of two-dimensional Fourier transform to
one-dimensional transform

The modulated signal f(¢) is composed of the carrier signal g(¢) and the modulating
signal A(z). In general, it is represented as follows;

F®) =1fug(@®), k(2)) (1)
The function fi(g(¢), /(¢)) determines the relation between g(¢) and A(¢), namely it
indicates the manner of modulation.
Fourier transform F(w) of f(¢) is shown in Eq. (2).

F) = | e, e (2)
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So that
=5 | Fepde (3)

In general, the calculation of Eq. (2) is difficult and has been made Fourier trans-
formation of the modulated signal troublesome. In order to avoid this difficulty, a two-
variable function f,(x, ¥), which represents modulation model in three-dimensional space

(%, ¥, 2), is introduced.
2 = fi(% y) = fulg(*), M) (4)
In Eq. (4), the carrier signal g(x) and the modulating signal A(y) are separated, and

&(x), h(y) are independent one another, for x, y are independent two variables.
Two-dimensional Fourier transform F(g,, ¢,) of the Eq. (4) is given by

Fiow o) = | {7 flew), waperessranay (5)

The calculation of Eq. (5) is easier than that of Eq. (2), for the carrier signal g(x)
and the modulating signal k() can be treated independently.
Evidently, an inverse transform of Eq. (5) is shown as follows;

78, ) = (o) | |7 Fee, ayereisrovraodo, (6)

In fact, the modulated signal f(¢) is the function of only one variable ¢, and it appears
on the plane ¥=y=t in the three-dimensional space, for both carrier signal g() and
modulating signal (#) are functions of time ¢. Evidently, the modulated signal f(z) is
obtained as a project of a section of the modulating model from x=y plane to x=0 or
=0 plane in the three-dimensional space.

Putting x=y=¢ into Eq. (6), it can be rewritten as

£(8) = fo&(2), We))
=('21;)T S Fo(o,, 0))e’1**2" do, do, (7)

In Eq. (7), the variable ¢ appears at an exponential term. Inserting Eq. (7) into
Eq. (2) and exchanging the order of integration, next Eq. (8) is derived.

2 foo oo oo
F(o) = (‘1—> S S S NFO(UI) 06,)e! 1 P dt do do,

27/ doed )

2 oo oo
- (il‘;) S _mS __Fyo,, 0,)+228(0,+0,—w)do,do,

1(* 5 PR W ol ; .
= g ) Sl om ek =, 1) Fle—on a)do, (8)

where 0(0) indicates a unit impulse function, and it is assumed that the existence of

two-dimensional Fourier transform Fy(o,, 0,) is beforehand ensured. Fourier transform
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of Eq. (8) is evidently the same Fourier transform in Eq. (1). Eq. (8) proved the funda-
mental equation for converting two-dimensional Fourier transform into one-dimensional
one, and this calculation is comparablly easy.

In this manner, difficulties of the direct calculation of Eq. (2) can be avoided by way

of two-dimensional Fourier transform.

3. Some examples

In this section, some of examples are introduced and propriety of this method is
shown. At first, an amplitude modulated signal, which contains cos .t as the carrier
signal and A(#) as the modulating signal, is analized. And the analysis of PWM signal,
whose leading edge is modulated by the modulating signal A(t), is presented. In above
two examples, the carrier signal is periodic. For the last example, non-periodic signals
are chosen.

Example-1. Amplitude modulated signal
The amplitude (balanced) modulated signal f(#) is represented as the product of
the carrier signal cos .t and the modulating signal A(#). The modulation model

z=f,(g(x), A(y)) in the three-dimensional space is shown as follows;

7 = fulg(x), H(y)) = h(y)-cos wyx (9)

Using Eq. (5), two-dimensional Fourier transform Fy(o,, ,) is obtained in the next

equation.
Fyfo,, a,) = n{d(0,—wo)+0(0,+@o) H(a,) (10)

where H(o,) indicates one-dimensional Fourier transform of A(y). Applying Eq. (8)
to Eq. (10), one-dimensional Fourier transfoim F(@) is given by

F(0) = - {H(o+0)+ Ho—0)} ()

The above result is well-known and the propriety of this method is proved.

Example-2. Pulse width modulated signal

In Fig. 1, the modulation model of pulse width modulated signal is shown. The
rectangular wave, whose leading edge is modulated with the modulation signal A(t) (=0),
is used as the carrier signal g(¢).

In three-dimensional space, the modulation model 2=f(g(x), (y)) is represented
in next Eq. (12).

1, (RTo—Ph(y)=x=kT,)

# = folg(x), H(y) = § 0, (R—1T,<x<kT,—Ph(y)) (12)
B=oe, —1,0, 1



154 I. Mizosuir:, S. MiNnamoTo and K. MivakosHI

Fig. 1. PWM model in three-dimensional space.

where T, indicates the primary interval of the carrier rectangular signal. P is an arbltrary
constant which satisfies 0 <PA(y) < T, and shows a degree of modulation.

The modulation model fi(g(x), #(y)) is the periodic function with regard to the

variable x, and it can be expanded to the Fourier series.

Ty

— I ERITOMPIC) gi2n/ Tom=

f(e(®), b(y)) = —h(y)+ 2 T 2m

m#O

M)+ 2;2,,,,,[1 E{ﬂmn H) | [t Jremmoms13)

where the exponential term containing the modulation signal A(y) was expanded to Taylor’s
series. Two-dimensional Fourier transform F(a,, a,) of f(g(x), #(y)) is given as follows;

Fioy o) = 7. H(o)-280(s) + 3| 25000

-5 {( j2nm%> -H"*(az)} /n! ]27:6(01—27tm/T0) (14)
where, | n

o P W
o) = | e dy = HloerwH(o) (15)
Applying Eq. (8) to Eq. (14), one-dimensional Fourier transform can be obtained.
P e T &gy ,,
F(o) = 7 H(@)+ 3 j5-—[278(0—2zm|T)— X {(j2zmP/|T,)
° i "0

« H*(w—2zm|T,)} n!] (16)

In this way, the modulation products in the vicinities of harmonics of the carrier
rectangular signal can be calculated.

Example-3. For non-periodic signals
The modulated signal f(¢)=#*, which is non-periodic function, is considered. In
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this case, the modulation model f(g(x), 2(»)) in the three-dimensional space can be
chosen as '

z = f,(g®), H(y)) = x-y (17)

On the other hand, Fourier transform of # is known as shown in the next equation.
T et Y 4

tee /o dt = —j2n — 8(w) (18)
—o do

By referring to Eq. (18), two-dimensional Fourier transform of Eq. (17) can be
obtained.

Fyo, o) = {— i2n ‘—i%:(?(al) } { — jzzd;j;a(az)} (19)

Applying Eq. (8) to Eq. (19), one-dimensional Fourier transform of Eq. (17) can be
given as follows;

F(o) = 51; Sl{—jzng‘i—la(ol)}{_jznd_(w_d__aa(w_al)}dal

= — AT - —i— o ———d——— G g

= —2e[" o )} Sy ) }ds,

= n——‘iz—— »—0

a 2 d(w_al)zs( 1) 'y =0

- 2z d_‘i:_za(w) (20)

This result coincides with that of already known, and the propriety of this method
was proved for the non-periodic function.

By this method, Fourier transform of some functions are more easily obtained than
the direct method.

4., Conversion from two-dimensional Laplace transform to
one~-dimensional transform

It is more convenient to use Laplace transform than Fourier transform in some cases,
such as the calculation of the transient response of the system, etc. In this section, the
method of the conversion of two-dimensional Laplace transform to one-dimensional
transform is considered.

The modulated signal f(#) is given as in Eq. (1).

fO=fle®) KD),  (¢=0) (21)
where g(t) and A(f) represent the carrier signal and the modulating signal respectively.
Laplace transform F(s) of f(¢) is given by the next equation.

F©) = | e, ey ar (22)
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Evidently, the inverse transform of F(s) in Eq. (22) is given by

10 = fist®, 1) = = Feras 23

-y

In calculating the Eq. (22), two-dimensional Laplace transform of two-variable
function fi(», y) of the modulation model in the three-dimensional space (x, y, ?), as was

presented, is treated. The modulation model is given by

2 = filx ») = fg(x), A(y)) (24)
Two-dimensional Laplace transform Fi(s,, s,) of Eq. (24) is represented as
Fofsy, s5) = So So f&(x), W(y))e™**°7 dxdy (25)

The inverse transform of Eq. (25) is given by

€+ sc2+joe

7t 1 = () | Flsy s)osswdsas,  (6)

€1 joo Jeg— oo

Putting x=y=t into the Eq. (26), it represents the same function as Eq. (21) as follows;
f(®) = f&(@®), ()
SN Rl i (8,480t
- (27]) [ R, st as (27)

€1=jeo Jeg—joo
Only the exponential term in Eq. (27) contains the variable #. Inserting Eq. (27)
into Eq. (22) and exchanging the order of integration, one-dimensional Laplace transform
is given by

2pc joo (*C § oo oo
2z 0

€1~ joJeg— joo
2pC o0 PO+ joo
- (h—l—_) s - S T FO(SI’ sz)’;dﬁdsz
27L’j €1- joo Jegt joo $—8§—9,
1 (i 1 (€47
= ——g Eysy, s—s,)ds, = —S Fy(s—s,, s,)ds, (28)
2xf Jei- e 2mf Jez-jo

where, it is assumed that the modulation model f,(g(x), A(y)) is reduced to zero in the
range of x<<0 or y<0 for ensuring the existence of F(s,, s,), and the real part of complex
number s,-s,—s is negative.

Equation (28) proved the fundamental equation for converting two-dimensional
Laplace transform to the one-dimensional transform. The calculation of Eq. (28) can be
performed by using the calculus of residues in genenal.

Example; The same example in Eq. (9) is considered again.
z = f(g(x), () = h(y)-cos wx, (20, y=0) (29)

Two-dimensional transform F(s,, s,) is represented as
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_ s
Fo(sv sz) = H(Sz)'m (30)
where H(s,) indicates Laplace transform of #(y). Applying Eq. (28) to Eq. (30), one-

dimensional Laplace transform F(s) is given as follows;

1 (o=
F(s)—Z_S‘ H(s—s)- = ds,

Tj o/

1= Jj* s 0
1 . .
= L {1+ jod+ o) &

It is evident that this method contains the formula of convolusion. Laplace trans-
form of some kinds of functions can be more easily derived by this method than by the

direct one.

5. Conclusions

The modulated signal is originally the function of one variable time 7. It contains,
two independent functions. One of them is the function of carrier signal and the other
is that of modulating signal. The modulation manner of the modulated signal can be
easily studied by treating these two functions of ¢ as separate ones independently.

In this paper, it is mentioned how to obtain one-dimensional Fourier or Lalpace
transform of the modulated signal from the two-dimensional transform which is given by
transformation of the modulation model in the three-dimensional space under the consid-
eration of independence between the functions of the carrier signal and the modulating
signal.

In this method, Fourier or Laplace transform can be easily obtained even if the
carrier and the modulating signal are non-periodic functions.

It is shown in examples this method contains the convolusion formula in Fourier
and Laplace transform when the modulated signal is represented by the product of func-
tions of the cairier and the modulating signals. All of functions can be regarded as
modulated signals, and Eq. (8) and Eq. (28) are the generalized convolusion formula in
Fourier and Laplace transform respectively. The converted Fourier transform and the
converted Laplace transform are adapted for the spectrum anaysis and the transient

analysis respectively.
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