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Tensile Rigidity of Flanged Strips
Containing Holes

Yoichiro OxamMura*, Kenichi Kitaura* and Yoshio FukumoTo*

(Received June 15, 1971)

The tensile rigidity of flanged strips containing holes was evaluated experimentally
and theoretically, and it was confirmed that theoretical results nearly coincided with ex-
perimental results. From the results it was found that the tensile rigidity of flanged strips
containing holes was mainly affected by the net cross sectional area and the pitch of
holes, but hardly by the shape of the cross section.

1. Introduction
The authors previously carried out the investigation on tensile rigidity of perforated
strips™, and determmed the effect of size and pitch of holes on the tensile rigidity of the
perforated strips. ’

In the present study, the tensile- rlgldlty of flanged strips contalmng holes is evaluated
and the effect of flange on the tensﬂe rigidity of flanged strips'is determined.

2. Test specimeﬁand experimental procedure

Specimens used in this study were steel H-beam and flat bar with one row of circular
holes (diameter d, pitch p) as shown i in Fig.1. The flat bar specimens were made to cover
the shortage of the previous results®. - The results for flat bar specimens will be compared
with the H-beam spe01mens in order to determine the effect of flange on the tensile
rigidity of flanged strips confaining holes

Tension test of specimens were carried out by using Amsler type universal testing
machine. For the purpose of evaluation of the tensile rigidity the measurements of
displacement for gage length (100 mm or 150 mm) of the test specimens were performed
by using optical extensometer.

3. Experimental results and discussions
We define the effective cross sectional area of flanged strip containing holes 4, using
the mean strain per pitch of holes & produced by the tensile load P,, by
. i
EA

where E is Young’s modulus.  Then the value of 4/4,, where 4, is the gross cross sectional

E:

area, shows the effect of the holes on the tensile rigidity of flanged strip containing holes.

* Department of Naval Architecture, College of Engineering.
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Ay = gross cross sectional area of specimen
A = net cross sectional area of specimen

Fig. 1. Shapes and dimensions of specimens.

The experimental values of A4, is plotted against p/d in Fig. 2, where 4/4, is taken
as parameter (4 is net cross sectional area). For the purpose of the comparison the
experimental results for the perforated strips, which have been obtained both in the
previous and present study, are also shown in Fig. 2. For given values of A/A4, and
p/d, the value of A/A, for H-beam specimen seems to be about the same as the flat
bar specimen. This means that the tensile rigidity of flanged stiip containing holes
is mainly affected by the net cross sectional area and the pitch of holes, but hardly
by the shape of the cross section.

The approximate formula of the evaluation of the tensile rigidity of flanged strips
containing holes is given as follow (see Appendix):
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H-Beam Flat Bar A4/A,
s * 0.9
§ Experimental ( 2 ° 0.8
~ results & a 0.67
04r . <05
- i — Theoretical
= ‘e‘q? Ej} & = results’
02+ <= ? =z
A =effective cross sectional area, Ao =gross cross sectional area
0 A = net cross sectional area .
1 2 3 4 5
p/d
Fig. 2. Relation of A/A, to p/d.
4 _ 4/4,
A, 1_§<1_i>§ T,
? p/ "= (2n—1y
where
1+ :1— tanh %@, —tanh’w,,
T, = On
1 _ 2 — 2
— tanh @,—tanh®*®»,— 1+ —=
Wy, 1—A4/4,
(2n—1)z

o)

The numerical values which have been computed for z up to 6 are shown by full

lines in Fig. 2. The theoretical results nearly coincide with the experimental results.

4. Conclusions

The tensile rigidity of flanged strips containing holes was evaluated experimentally
and theoretically, and it was confirmed that theoretical results nearly coincided with ex-
perimental results. From the results it was found that the tensile rigidity of flanged
strips containing holes was mainly affected by the net cross sectional area and the pitch

of holes, but hardly by the shape ot the cross section.
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Appendix

Approximate Calculation

We derive an approximate formula for tensile rigidity of flanged strip (such as H-
beam) containing one row of square holes (sides d, pitch p) as shown in Fig. 3, instead of

circular holes for the convenience of calculation.

y
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e 4 '
fA2

Fig. 3. Flanged strip containing one row of square holes.

Cartesian co-ordinates (x, y) has its origin mid-way between the holes and the x-axis
lies on the center line of the holes.

Because of the symmetry of the stress system, the analysis will be developed only for
the shaded region such as I, IT and III (Fig. 3). We assume that the parts I and IT are
submitted to the action of normal stress o,, uniformly distributed at the cross section.

Denoting by %’ andl%x) the longitudinal forces in parts I and II respectively,

extensions of parts I and II are given, respectively, by

Pd

— 1

= opa (1)
1 (a2

7, = ESO P(x)dx (2)

where  E=Young’s modulus
A =net cross sectional area of the flanged strip
If P(x) can be found the mean strain of the flanged strip, denoted by &, is
given by

5 - Am,+a,) 3
P (3)

and then the tensile rigidity can be evaluated.

We consider the state of stress in the part III to determine P(x). The part III is
treated as a case of plane stress, loaded only by shear stresses imposed on it by the part II.
A stress function F'is introduced into part III, represented by
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F = i F, = if,,(y)cos Wyt (4)*
n=1 f=al
where
w, = @2n—D=
p—d
Here f,(y) is a function of y only, of such form as to satisfy the differential equation
82 82 )2
—+—)F=0 5
<ax2 8y* (3)

The y-function which meets the requirement is
Jo) = (Aa+ Cow,y)cosh w,y + (B, + Dyw,y)sinh w,y (6)

The unknown .constants 4,, B,, C, and D, are determined from the boundary con-
ditions. )

The boundary conditions in this case are:

fory =0,
Tey =0, v=20 (7)
fory = dj2,
0, =0
where o is the displacement in y-direction.
To satisfy these conditions, we take
B,=C,=0
D,= —— (8)

w._w”d tanh z_v”_d

Consequently the expression for the stress function contains only 4,, as unknown constant,
From statics the condition of equilibrium of the norma! stresses over any cross section
is given by
s
P(x)+2t$o o, dy = P, (9)
where ¢ is thickness of part III.
Hence the equation for P(x) becomes

a2
P(x) = PO—Zt[a—F] |
ay 0

w,,d_ 2 h Wud
2 " w,d %" 2

= P,— 2t§] Wy {sinh

=1

* The conditions which can be satisfied at the end x = (p—d)/2 by this assumed form of stress

function are:
6,=0, o,=0and r,,+0.
Thus the stress function F' cannot satisfy completely the condition of a plate with free edge.
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w,d

— cosh? %% Zd}A,, COS W, (10)

in which the unknown constant A4,, is contained.

To determine the constant A4, we assume the condition that the longitudinal dis-
placements of Parts IT and III must be equal at their intersection. If u, is used to indicate
the longitudinal displacement of the part II and u, of the part III, this condition is ex-
pressed as follow:

u, = [Ug]y—ar (1)

From Eq. (10) the longitudinal strain in part II is derived and by integration the
longitudinal displacement «, can be found as follow:

u, = Q_£Y2<sinh wid 2 cosh #»% nd —cosh? ¥»%
EA E4A&= 2 wd 2

2‘1) A, sinwx  (12)

On the other hand the longitudinal strain along the side y=d/2 in part III is given

as follow:
2
(%) = _]; (Gx_Vay) = i(@_F)
Ox /y=drz E y=d/2 E\08y?/ y=are

By integration we obtain

[ua‘]y:d/2 = l?a; gl cosh? Td cosech Z#% A,, sin e,% (13)

The first term on the right hand of Eq. (12) can be expanded in the series

Py _ Py 2( )”+1—-4—sinw,,x, for—g—_—ilgxgu 14
EA EA®= (p—dw,’ 2 2
Substituting Eqs. (12), (13) and (14) into Eq. (11), we can determine the constant 4,
2P (— 1y tanh wad sech wad
4, = L S . (15)
Hp—d) ws tanh? wd 2 tanh wad _ (—2-—49— 1)
w,d 2 td
From Egs. (12) and (15), #, is represented by the following expression:
P(p—d) = 8 ]
g, =0 1> - _.T, 16
? 2EA = (2n—1yz? (16)
where
1+ _l tanh z_o,,‘—— tanh® w,,
T, = Wy
1 . - 2 — 2
—-tanh @, —tanh’ w, —1 + —~—
Dy '
-7 (17)
0
®, = w,x & = @r—1r
i
d
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From Eq. (3) we find
= Bl ]
§=-9]1—-8(1—— — T, 18
EA P "le (2n—1)x* (18)

The effective cross sectional area of the flanged strip containing one row of holes

under tension A4 is therefore given by

~ A
A:

8/, dye T, 19

1_?< _Z>n=1(2n—1)2 o)



