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   The tensile rigidity of flanged strips containing holes was evaluated experimentally

and theoretically, and it was confirmed that theoretical results nearly coincided with ex-

perimental results. From the results it was fbund that the tensile rigidity of flanged strips

containing holes was mainly affected by the net cross sectional area and the pitch of

holes, but hardly by the shape of the cross section.

                               1. Introduction

    The authors previously carf'iea"-but"the'investigation,on -tefi's'{le rigidity of perforated

stripsi), and determined the･ effect ofl size. and'pitch of holes on the tensile rigidity of the

                   tt .t t tt                      'perforated strips. '

    In the present study, the tensile rigidity of flanged strips containing holes is evaluated

                     t / tttt                        'and the effect of flange on tl e tgpsilg rigidity of flanged $tripsils determined.

                      tttt                        1t                                1tt                                                 /t                   ttt t /               2. Test specimeh and experimental procedute
    Specimens used in this gtudy were steel H-beam and flat bar with one row of circular

                        'holes (diameter d, pitchp) astsh6Wn iri Fig. 1. The flat bar specimens were made to cover

the shortage of the previous resultsi). / The results fbr fiat bar specimens will be compared

                        'with the H-beam specimeng, in Qrdef to'determine the effect of fiange on the tensile

rigidity of flanged strips contalning riolgs･ , .

    Tension test of specimens were carried out by using Amsler type universal testing

machine. For the purpose of evaluation of the tensile rigidity the measurements of

displacement for gage length (100 mm or 150 mm) of the test specimens were performed

                                         'byusingopticalextensometer. ' '' ' '' ' '''' ' '

                3. Experimental results and discussions

    We define the effective cross sectional area of flanged strip containing holes A, using

the mean strain per pitch of holes e- produced by the tensile load P,, by -

                                  e- -- Po ,,, .
                     ･ ･･EA ･' ' -
where E is Young's modulus. Then the value of AIA,, where A,'is the gross cross sectional

area, shows the effect of the holes on the tensile rigidity of flanged striP containing'holes.

                                                        '                                                      '                                                               '                tt t tt t t /t                                                             '
ee DepartmentofNavalArchitecture,CollegeofEngineering. ･' ･' ･' '



200 Y. OKAMURA, K. KITAURA and Y. FuKuMoTo

le so H

,d

p

ts

m

s
g
r
-
t
I
t
r
a
s
a

d=5

p

-e---
T,$
 ll
eq

-SL

3

d(mm) dlB. AIAo pld

3.23

2.15
23.25 O.2S O.9

1.61

1.08

H-beam 3.23

46.5 '
O
.
5

e.s L6!
1.08

2.00

75 O.81 O.67 1.33

1.00

4.00

Flatbar 5 O.1 O.9 2.00

1.00

                  Ao = gross cross sectional area of specimen

                  A =netcrosssectionalareaofspecimen

                    Fig. 1. Shapes and dimensions of specimens.

    The experimental values of Z/A, is plotted against p/d in Fig. 2, where AIA, is taken

as parameter (A is net cross sectional area). For the purpose of the comparison the

experimental results for the perforated strips, which have been obtained both in the

previous andpresent study, are also shown in Fig. 2. For given values of AIA, and

pld, the value of AIA, fbr H-beam specimen seems to be about the same as the flat

bar specimen. This means that the tensjle rigidity of fianged stiip containing holes

is mainlty affected by the net cross sectional area and the pitch of holes, but hardly

by the shape of the cross section.

    The approximate formula of the evaluation of the tensile rigidity of flanged strips

containing holes is given as fo11ow (see Appendix):
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1-
8

T2

(1 - S)X-i   Tn
(2n-1)2

where

i.l
   Wn
tanh den"tanh2it.

The numerical

lines in Fig. 2.

     n
           1 tanh mb.-tanh2 bo.-1+ 2

           mbn 1rm A/Ao
     - (2n-1)z
     Wn = 2(.li.T1)

values which have been computed fbr n up to 6 are shown by full

The theoretical results nearly coincide with the experimental results.

                               4. Conclusions

    The tensile rigidity of flanged strips containing holes was evaluated experimentally

and theoretically, and it was confirmed that theoretical results nearly coincided with ex-

perimentalresults. From the results it was found th?t the tensile rigidity of fianged

strips containing holes was mainly affected by the net cross sectional area and the pitch

of holes, but hardly by the shape ot the cross section.
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Appendix

                          Approximate Calculation

    We derive an approximate formula for tensile rigidity of flanged

beam) containing one row of square holes (sides d, pitch p) as shown in

circular holes for the convenience of calculation.
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  Fig. 3. Flanged strip containing one row of square holes.

    Cartesian co･-ordinates (x, y) has its origin mid-way between the holes and the x-axis

lies on the center line of the holes.

    Because of the symmetry of the stress system, the analysis will be developed only for

the shaded region such as I, II and III (Fig. 3). We assume that the partsIand II are

submitted to the action of normal stress o., uniformly distributed at the cross section.

    Denoting by P-20 andPSX) the longitudinal forces in parts I and II respectively,

extensions of parts I and II are given, respectively, by

where

If P(x)

given by

can

ti, = P6d

    2EA

ti2 = EIAIiP-d)/,

E=Young's modulus

P(x)du

A = net cross sectional area of the flanged strip

 be found the mean strain of the fianged strip, denoted

(1)

(2)

by E, is

e- -- 2(ili+ti2)

p
(3)

and then the tensile rigidity can be evaluated. '
    We consider the state of stress in the part III to determine P(x). The part III is

treated as a case of plane stress, loaded only by shear stresses imposed on it by the part II.

A stress function F is introduced into part III, represented by



                  Tensile Rigidity of Flanged Strips Containing Elbles 203

                            ee ee                       F= 2] Fn =Zf;t(Y)COS Wnoo (4)*
                           n=nl n=1
   l
where

                              w. = (2n-1)n

                                     p-d

HerejF],(or) is a function ofy only, of such form as to satisfy the differential equation

                            (oOx2,+oay2,)2F=o (s)

The y-function which meets the requirement is

             .Li(Y) == (An+CnWnY)COSh WnY+(B#+Dnwny)sinh wny (6)

                          '                                                           '                                      'The unknown ,constants A., B., C. and D. are determined from the boundary con-

                                             '

                                                     '    The boundary conditions in this case are: '

                          fbry == O,

                            Txy =O, V=O
                                                                      (7)
                           fory =: d12,

                                        oy =O
                  '
where v is the displacement in y-direction.

To satisfy these conditions, we take

                         Bn =' Cn =O

       . D" == new.dtlil."i w.d' . , (8)

                                  22 ･
Consequently the expression fbr the stress function contains only A. as unknown constant.

    From statics the condition of equilibrium of the norma! stresses over any cross section

is given by ,
                         P(x)+2tSgza o. cly=P, '(9)

where t is thickness of part III.

Hence the equation for P(x) becomes

              .(.) .. p,-2t[sF]g( ,

                   = Po-2t]I.), w.(sinh W2"d-w2,,d cgsh W2"d

ee The conditions which can be satisfied at the end x= (p-d)12 by this assumed form of stress

  function are:

                    ox == O, oy =O and Txy =k O.
  Thus the stress function F cannot satisfy completely the condition of a plate with free edge.
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                       -cosh2 W2"d cosech Wsd]A. cos w.t (10)

in which the unknown constant A. is contained.

    To determine the constant A. we assume the condition that the longitudinal dis-

placements of Parts II and III must be equal at their intersection. If u, is used to indicate

the longitudinal displacement of the part II and u, of the part III, this condition is ex-

pressed as fo11ow:

                               U2=[U3]y-d12 (11)
From Eq. (10) the longitudinal strain in part II is derived and by integration the

longitudinal displacement u, can be found as fo11ow:

u2 = i/ill!loo-E2At }:.l,(sinh W2"d-w2.dcosh W2"d-cosh2 W2"dcosech W2"d) A. sin w.x (12)

On the other hand the longitudinal strain along the side y==d/2 in part III is given

                 (OaUx3)...di, = -k (o.-vapt)pt=di, = -i5(aa2yF,)y=di,

By integration we obtain

               [U3]...d/, = -Eny4d #., cosh2 W2"d cosech W2"d.A. sin w.x (13)

The first term on the right hand of Eq. (12) can be expanded in the series

       ilijli = EPi ]I:.l,(-1)"'i(p-4d).., sin wnx, for -PEd -<xsPlld (14)

Substituting Eqs. (12), (13) and (14) into Eq. (11), we can determine the constant A.

                                        tanh W"d sech W"d

                  2P, (- 1)n+i 2 2              == ' ' o.1) (15)          An
                t(p-d)

    From Eqs. (12)

                    ti2 ==

where

                   Tn =

        W"2 tanh2 W2"d-,,Zd tanh Z"sd- (2tAd

and (15), ti, is represented by the fo11owing expression

                      '        POIPE-Ad)[1 - ;;.l, (2n il)2.2' T"]

           1 + l-.tanh tz.-tanh2 tu.

              Wn

:

     -!- . tanh bo. - tanh2 it..

     een

ee.
 - w"×-g- == i2(l,iiM-",Z)

       2-1 +
     IA
        Ao

(16)

(17)
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From Eq. (3) we find

                  E -- ft-[1 - 8(1 -f)#n (2. -11)2.2 T"]

   The effective cross sectional area of the fianged strip containing

under tension A is therefore given by

                       -A                      A=
                           i - #,(i - LS')III.), ,,.T-" i)2

                                               ..

one row
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   (18)

of holes

   (19)


