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       Cylinders for Low Grashof Numbers"
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(Received November 15, 1969)

   In the present paper is obtained a solution for two-dimensional steady natural convection

of a viscous fiuid between two horizontal concentric cylinders maintained at different uniform

temperatures. The analysis is based on the Boussineeq approximation for buoyancy, the

effects of viscous and compressional heatings being neglected. The solutions are expanded

in power series of Grashof number and the governing equations are integrated by a method

of sucoessive approximation. The complex variable z=x+ty and its cornplex coajugate 2=x-ly

are introduced instead of the usual rectangular coordinates variables x and y, which makes

integration of the governing equations and determination of complementary functions syy

'tematic and easy. The streamlines are calculated taking first two terms in the series solution

for strearn function and they are qualitatively in good agreement with those photographed-

by Bishop and Carley in their experiments. The isotherms are also calculated in the similar

procedure. Both the local and the overall heat transfer rates are obtained in the form of

Nusselt numbers and are compared with those in the case of pure conduction.

-

1. Introduction

   Although natural convection within an enclosed space is an interesting

and important problem, not so many investigations have been done so far.

However, for the particular case of the natural convection between two
horizontal concentric cylinders kept at different uniform temperatures,
photographic and qualitative descriptions of the convective flow were recently

presented by Bishop and Carleyi), and numerical solutions of the governing

equations were given by Crawford and Lemlich2), as well as an analytical

solution to the Stokes approximation. More recently, Mack and Bishop3)

obtained an analytical solution by expanding the temperature and the stream

functions in power series of Rayleigh number.

   The present analysis is undertaken to give a theoretical interpretation to

the photographs of flow pattern by Bishop and Carley, independently of
Mack and Bishop's analysis. It starts with expanding the stream function

and the temperature distribution in power series of Grashof number 1ike Mack

and Bishop's analysis did. In the present analysis, however, the governing

equations are expressed in the complex variables z and 2, which makes
integration of the governing equations and determination of the comple-
mentary functions more systematic and easier than in their analysis.
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   In section 3 are discussed the particular features of the solution which can

be seen in the configuration of streamlines, the temperature distribution and

the distribution of the local heat transfer rates on the surface of the cylinders.

The effects of Grashof and Prandtl numbers and of radius ratio of the two

cylinders upon these are also discussed. The calculated streamline con-

figurations are compared with those photographed by Bishop and Carley.

  2. Mathematical formulation of the problem and method of solution

2.1 Governing equations

   We consider two･-dimensional steady natural convection of a viscous fluid

between two horizontal concentric cylinders which are kept at different
uniform temperatures, say, the inner cylinder being kept hotter. The coordi･-

nates system is taken as shown in Fig. 1. The flow and the temperature
distributions are supposed to be symmetrical with respect to the vertical

plane through the axis of the cylinders.
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                   Eg. 1 Coordinates for this problem.

   The temperature difference of the two cylinders is assumed to be so small

that the terms of work by compression and of viscous dissipation can be

neglected in the energy equation. The Boussinesq approximation will also
hoid good; all physical properties of the fluid are considered to be independent

of temperature except density in buoyancy term in Navier-Stokes equations

and variation of the density is approximated by a linear function ofvariation

of temPerature. Thus, the system of the governifig equations for the present

problem consists of equation of continuity, Navier-Stokes equations and

energy equation which are quite the same in their forms as the usual ones
for an incompressible flow except the additional term of buoyancy in Navier-

Stokes equations.

   Now, we shall express the governing equation in non-dimensional forms.
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The non-dimensional temperature T is defined as

         T = (t'-t'o )/(t'i -t'o ),

where t' is the dimensional temperature, t'i and .t'o being the temperatures

of the inner and the outer cylinders, respectively. All other dimensional

quantities are made non-dimensional as usual by choosing appropnate
reference length and velocity. For the former we can choose the radius r'i

of the inner cylinder, but for the latter no representative velocity is given

in the present problem of natural convection. Combining the parameters
which take part in natural convection under consideration, we can build up

areference velocity, as ･ ,
          U= g6(t'i-t'.) r'i2/v,

where g is the acceleration due to gravity, 6 and v being the coefficient of

thermal expansion and the kinematic viscosity of the fluid, respectively.

Introducing the non-dimensional stream function from which the non-
dimensional velocity components u and v are derived as

          u=-aw/ay and v=O"rlax,

the governing equations are expressed in the following non-dimensional forms;

            '                          '
          Gr(-k'8.'+k'£)Aw-AAw-,O,T, (i)
                                                '

and Gth(-:'± -5ill+ g.'i' -aay)T-AT, (2)
                           a2                                a2where the operator A stands for ax, + by,,x and y are the non-dimensional

coordinates variables, Gr and b being theGrashof and the Prandtl numbers,

respectively, defined as

          Gr = gB(t'i -t'o) r'i 3/v2 and P7 = vlor ,

where or is the thermal diffusivity of the fluid. The boundary conditions for

the present problem are

          -Oilr/by=Oilr/Ox=O at r=1, (3)

          -oip/ay=bwlax=O at r=R, (4)
               '          T=1 at r=1, . (5)                          ttt                    '             '          '
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where R is the non-dimensional radius of the outer cylinder or the radius

ratio of the two cylinders.

   Equation (1) is the vorticity equation obtained by eliminating the pressure

terms from Navier-Stokes equations with the additional buoyancy term. The

equation of continuity is automatically satisfied by using the stream function.

Equation (2) is energy equation in which the terms of viscous dissipation

and of work of compression are neglected. Conditions (3) and (4) are no-slip

conditions on the solid boundaries and conditions (5) and (6) show that the

inner and the outer cylinders are kept at given uniform temperature'
s.

2.2 Method ofsolution
   The governing equations(l) and (2) constitute a set of non-linear equations

coupled with one another, which makes the exact solution of the present
problem impossible. However, when the temperature difference is small and

so the induced convective flow is slow, we can assume that the Grashof
number is so small that ilr and T can be expanded in power series of the

Grashof number, as

   ee.ilr = IE.GriiP) (7)

and T = i;"e.Gri 7> .
(8)

Substituting (7) and (8) into the governing equations(1)and (2) and equating

the coefficients of the same power of Gr, we have an infinite set of uncoupled

linear equations. Introducing the complex variable z=x+ly and its complex

coiijugate 2=x-iy, the differential operators A and AA in equations (1) and

(2) are written in the forms,

          A. 02 + -Ql- =4 a2
                      2 azoi '              ax2                    ay
          AA =-( aox22 + aay22)2=16 oz?gif ,

Then, the above obtained infinite set of linear equations can be written down

in terms ofz and 2'
               ,

          4 g;b7.b- = o, ･ (g)

'6 ab. 2̀'cP}z2'
 =i( ob, - aai)7b･

(1O)

4-
gt;g}-.oTi =2th(C21:-ii>-llll:2&)7b,

(11)
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subject to the boundary conditions,

%=1 at zi =1
     '

(13)

and

%=o

Z=o
Ma .-i
az '- -iE-( tij-iiv )=O

at

at

at

Zi =R2,

zz- = 1,R2, j>. 1,

z2 = l, R2,i>. O,

(14)

(15)

(16)

where ui and vi are the x- and the y-components of the perturbed velocity

of the jth order, respectively.

   Now, we have only to solve these linear equations successively. We shall

present the method of solution for equation (10) in detail, as an example, and

only the results for the others.

   The solution of equation (9) subject to conditions (13) and (14) is given

                  logz7
          %=1-                                                      (17)
                 2 logR'

This solution is the well-known temperature distribution for pure conduction,

that is, the temperature distribution which would occur if the fluid were

immobile. Substituting (l7) into the right hand side of (10) and carrying

out integration with respect to z and 2, we obtain

          'i'o "321ggR ( -li- z2i (logi-1)- Szi2(logz-1) )

                                              '
               +2R(z)+z4(i)+lk(z)+a(i), (18)

where Fi, F2, F3 and jF14 are complementary functions to be determined
by the boundary conditions (16).
   These complementary functions must be subject to the following conL

ditions in addition to the boundary conditions (16).

   Condition (i): iPo must be real, so that the following relations must be
satisfied,

4(i)=a(i) and a(i) = Fb (z-) . (19)
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   Condition (ii): the flow field is symmetrical with the x-axis, so that the

stream function should be subject to the relations,

           ilf (z, i) =-W (i, z). (20)
   Condition (iii): -gtli and NIr must be single-valued functions, so that the

complementary functions must contain some multi-valued logarithmic func-
tions to cancel the multi-valuedness of the principal part of (18).

   Transforming Fi(z) and F3(z) into F(z) and G(z) by the relations,

          Fi(z)= ' F(z) and F,(z)= i G(z), (21)
                                        321ogR                321ogR

and applying the condition (i) to F2(2) and F4(2), we have

          ilro " 32IiogR ( 5 z2i(logi- 1 )- S zi2(logz- 1 ). )

              +zTRz) -zF(i)+G(z)- G(i) ). (22)

Next, the conditions (ii) and (iii) being applied to (22), we obtain

          `l'o = 321iogR ( -ll- z2i(logzi- 2)- S zi(logzi- 2)

              +z7Kz)-zF(z-)+G(z)- G(i)], (23)

where the multi-valuedness of the pricipal part of (22) is eliminated by adding

the appropriate complementary functions.

   Differentiating the equation (23) with respect to z, we have

          {lit}tO= 32iggR(zz-(iogzi- 2) + Szi - S i2 aogzi- 2) ,

                                       '
              - l; 22 + i cidiZlz) - F(z-) + dG,iz/z) ). (24)

The boundary conditions (16) are imposed on (24) and the complementary

functions are finally determined as '

           iclF(z)ldz =Azi+Bilz , (25)
                     tt                                                  '          -F(z-)=-Ai2/2-Blogi, (26)

and dG(z)ldz=-Blogz+C+Dlz2 , (27)
where A,.B, C and D are the real functions of the radius ratio R. The solutions

K

f



                    4 {(1-R2)2 + (1-R`) logR }

and fh(R)-Xtllill-RR,)2,)2.'(i4-Rftli)Oig.:iil2} (33)

These solutions are in perfect agreement with the creeping-flow solution

obtained by Crawford and Lemlich.

  The solutions to the second approximation are

         Ti = b(?glC.OgSRe ),[fls (R)(logr)2-(r2 +]3(R) +A(R) -JL,-)logr

            +fb(R)r2+fb(R)+Ao(R)JIT,] (34)

and NIri= (3r2sSi'o"g2
 ), [r4 (TiT2 (logr)2+Al(R, Pr)logr +fU2(R, Pr)]

                + r2{ fi3(R, b)(}ogr)2 +A4(R, Pr)logr+ As (R, Pr)}

                + A6 (R, Pr)(logr)2+ fi7 (R, Pr)]ogr + fks(R, Pr)

                +flg(R, Pr) il,t +ho(R, b) i, ], (3s)

where f)n (R) and fh(R, Pr) are the real functions of R and of R and P?,

respectively. The detailed expressions for the coefficients in (34) and (35)
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for the other ilfi's and n's'are to be obtained by the similar methods.

2.3 Solutions
  For the sake of convenience of numerical computation, the solutions
obtained above are expressed in the polar coordinates variables (r, e):

         7b.1- 10gr, (2s)
              logR

and Nlro=-lr6S
li
."ge

R [{r2-fi (R )} logr + ]5 (R )r2 +fb (R)+ fU (R )-}7, ],

                                              (29)

              (1-R2) {(1-R`)+4R21ogR} .
        .fl,(R)= . .where                                              (30)
               2 {(1-R2)2 +(1-R`)logR}

   . A(R)=-(i-4R{2()i2-'R2,(),i-.R(2i)iko,g)5.-gft5`(iogR)2 (3i)

        fb(R) (1-R2)(1-R`)+2(1-R2)21ogR-8R`(logR)2 (32)
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are too lengthy to be reproduced here and are omitted to conserve space.

3. Discussion

   Although we considered the inner cylinder to be hotter in the formulation

of the problem, the solution in the case in which the outer cylinder is hotter

can be obtained from our solution merely by use of negative values of
Grashof number.
   In the present analysis it is convenient to use a Grashof number based

on the radius of the inner cylinder, but a Grashof number Gr" based on the

distance a-r; between the cylinders is commonly used in experimental work

and it is related to our Gr by Gr"=(R3-1)Gn

3.1 Range of Grashof number for which solution is reliable

   We postulate that V and T can be expanded in asymptotic power series
of Gr for small values of Gr. However, it seems from the results of numerical

computations that the solution is sufficiently reliable even for Gr=1000 in

the case of R=2 and P7=O.7, where Nlrililr. and Ti/7:o are of order 10'`.

The upper limit of Grashof number within the reliability of solution decreases

with increase of the radius ratio and changes little with Prandtl number.

3.2 Streamlines and isotherms configurations

   The streamlines and isotherms configurations are calculated taking first

two terms in ,ij and 7; and are shown in Fig.2 for Gr=1000,P}･=O.7 (ap-
proximate value for air) and R = 2.
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fig.2 Streamlines and isotherms configurations

    for Gr = 1000, Pr = O.7 and R = 2.00
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   The creeping-fiow stream function iPo has its maximum value at e=900,

and the streamlines configuration in the upper half of the flow region is

a mirror image of that in the lower half; this configuration is independent

of Prandtl number. However, the solution to the second approximation
presents that, as the Grashof number increases, the centre of the eddy rises

(from e=90e) into the upper half of the flow region. A change in the Prandtl

number has very little qualitative effect upon the streamlines. .
   The isotherms configuration in the case of pure conduction is a set of

concentric circles. On the other hand, the solution to the second approxima-

tion presents that the isothermE are not concentric; each of the isothermal

lines is deformed from a right circle and shift upper. Correspondingly, the

isotherms are thicker near the lower side of the inner cylinder and the upper

side of the outer cylinder, and thinner near the upper side of the inner cylinder

and the lower side of the outer cylinder. This tendency becomes more
considerable as the Grashof number and the Prandtl number increase.

3.3 Heat transfer rates

   We express the local

the outer cylinders by means
Altzi(e) and Nti.(e),

          Aibei---(rglTIL),.,

                   Oe
1.5

1.0

O.5

radial heat-flow rates per unit area at the inner and

     of the corresponding local Nusselt numbers
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and Aitzo=-(r -gjtf) ,.R (37)
Similarly, we express the overall heat-flow rate from the inner clinder to the

outer cylinder by means of the overall Nusselt number Nu,

         A'hi------,l-I:(r-gjTf),=,de--}-fg(rg3'L),=.de. (3s)

Fig. 3 shows the NuilNui(O)- and Altz.IZVuo(O) -distributions, IVtii(O) andAhi.(O)

being the Nusselt number for the pure conduction at the inner and the outer

cylinders, respectively. For the inner cylinder, the Nusselt number takes

larger value at the lower side and smaller value at the upper side than that

in the case of pure conduction. The reverse is the case fbr the outer' cylinder.

This is evident from the isotherms configuration. This tendency becomes

more considerable as the Grashof number and the Prandtl number increase.

   Examination of the perturbation equations proves that the influences of

Grashof number and of Prandtl number on the overall Nusselt number are
of higher order and come out of the terms of the third and higher powers

of Grashof number.

4. Conclusion

   The solution of the governing equations for steady convection of a viscous

fluid between the two horizontal concentric cylinders kept at the different

temperatures has been obtained as far as the first two terms both in the series

expansion of temperature and in that of stream function in powers of Grashof

number. The new method of solution is presented, in which the complex
coordinates variables z and 2 are introduced and the analysis of complex
functions is applied. It makes integration of the linearized governing equations

and determination of the complementary functions systematic and easy.
   For the value of Prandtl number corresponding to air, the streamlines

configurations are of the `crescent-eddy' type in accordance with the ex-
perimental evidence given by Bishop and Carley.

   Both the local and the overall heat-flow rates are expressed by means

of the corresponding Nusselt numbers. The variation of the loeal Nusselt

numbers with angular position is compared with that for the pure conduction.

The influences of Grashof number and Prandtl number on the overall heat
transfer is a higher-order effect coming out of the third and the higher

approximations.
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