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Tadakazu Katayama** and Ippei SuciMoro**¥*

(Received November 15, 1969)

The deformation of the parallelogram plate clamped along all edges and subjected to
uniform radiant heating on one surface was dealt experimentally and theoretically. The
temperature rise, the deflection and the strains on the surface of the plate were measured
continuously. The thermal buckling phenomenon was observed clearly. The fundamental
differential equations for the thermal deformation of the parallelogram plate were solved by
the difference method, using the measured temperature distribution and considering the
effect of the deformation of the clamping frame. The stress distribution, the critical temper-
ature for buckling and its mode were obtained theoretically and compared with experimental
results.

1. Introduction

Not to speak of the sudden temperature rise on the surface of the super-
sonic aircraft in acceleration, with the remarkable development in various fields
of industry, it is becoming more important to appreciate the thermal stresses
and deformations in structural elements caused by heating.

Many studies have already been done for the thermoelastic problems of
plate which occurred in the field of supersonic aircraft and other industry ™9,
In Japan, many reports have been published, which dealt with the thermal
deformations of plates analytically and experimentally, but those were
restricted to the problems of the rectangular plates®~¥,

On the other hand Anderson!® has treated the problem of continuous
parallelogram plate, which may be the panels of the sweptback wing, subjected
to the compressive stresses. For the problem of a parallelogram plate clamped
along all edges and subjected to uniform edge stresses, Guest'® has given the
solution using Lagrangian multiplier and Wittrick'” using Rayleigh-Ritz
method. However, it seems that any report has not yet been found for the
thermal deformation of a parallelogram plate.

Here one surface of the parallelogram plate with all edges clamped was
heated by the infrared radiant heating apparatus and the behavior of its
thermal deformation was observed. At the same time the numerical analysis
was carried out on the basis of the measured temperature or strains. The dis-

* Published on the Journal of the Japan Society for Aeronautical and Space Science,
Vol. 16, No. 176, ( 1968 ) (in Japanese )
** Department 0. Aeronautical Engineering, College of Engineering.
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placements, the stress distribution, the critical temperature for buckling and
its mode were obtained and compared with the experimental results.

The rigid frame was used to satisfy the boundary conditions for clamped
edges, but the clamping was unsatisfactory in practice and the deformation of
the frame including the effect of the temperature rise had to be considered in

the theoretical analysis.
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Nomenclature
oblique coordinates (see Fig. 1)
thickness of parallelogram plate
angle ¢ O n (see Fig. 1)
components of displacement in ¢- n-and§-
directions in middle plane
Young’s modulus
Poisson’s ratio
flexural rigidity of plate
contravariant components of stress tensor in oblique
system in middle plane of plate
coefficients in Eqgs. (8) and (11)
term defined by temperature in Eq. (7)
node interval in finite-difference method
temperature rise at point (¢ , n , ¢ )
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Subscripts ¢ and » mean the partial differentiation with respect to ¢

and 7, respectively.

i) Radiant heating unit

Fig. 1 Parallelogram plate

2. Experimental apparatus

The heating unit used in this experiment is constructed from the strip
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heater 5305-25A* ( 25 in. in length ) which has the parabolic section to
concentrate radiant heat energy and the infrared lamps of quartz-tube
(2.5 KW, 480 V). Eight units were set tightly side by side, as shown in Fig. 2.

Fig. 2 Radiant heating unit

ii) Test plate and clamping frame

The test plate as shown in Fig. 3 was cut out from the polished mild steel
plate. The clamping frame was machined from the steel plate of 45 mm
thickness to the shape as shown in Fig. 4. As it was expected that the de-
formation of the frame would be caused by its temperature rise to some
extent, the section as shown in Fig. 4 was taken so as to increase the rigidity
and furthermore the frame was covered with heat-insulator made by glassfibre
to prevent its temperature rise caused by direct heating.
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Fig. 3 Test plate . Fig. 4 Section of clamping frame

iii) Temperature, deflection and strain measurements

The temperature on the both surfaces of the plate were measured by the
0.3 mm C-C thermocouples covered with glasswool. The transient temperature
variation was recorded continuously by multi-pen recorders. For the deflection
measurement unbonded strain gages and differential transformers which could
be connected directly to dynamic strain-meter were used. The measurement
was carried out on the opposite side with the heated surface.

As shown later ( Fig. 6 ) the buckling phenomenon was observed when
the maximum temperature rise was about 120°C on the plate. In this extent
of temperature rise it is possible to use the self-compensated strain gages.
After mounting them on the test plate, they were subjected to a number of

temperature cycles for curing and the zero point shifts of gages under stress-

* This is a Trademark of Reseach. Inc.
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free condition were measured. Then, the plate was used for the experiment
and the thermal strains over the plate were obtained. In this measurement the
three lead wire system was adopted.

3. Experimental results

i} Temperature

For the thickness of the plate used here, e. g. 2.60 mm, the difference of
temperature between the surfaces of plate was slight. Then the average
value of the temperature on both surfaces was used for the theoretical analysis.
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Fig.6 Variation of deflection with temperature rise of center of plate, Tmax
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The temperature distribution seemed to be symmetrical with respect to the
center of the plate. An example of the temperature distribution along the
longitudinal center line is shown in Fig. 5.
ii) Deflection

The results of the deflection measurements are shown in Fig. 6. Itis
clearly observed that the buckling phenomenon occurs when the maximum
temperature Tmax at the center of the plate attains to about 120°C.
ili) Strains

The stresses may be obtained from the measured strains and the results
will be shown later (Fig. 12 and 13) with those obtained by the theoretical
analysis. ,

4. Theoretical analysis

i) Fundamental equations

The displacements caused by the temperature rise of a plate must satisfy
the following equations :® »%
1

5% {u,+ 7W52 + (cos?@ + ysin®0)(w,+ —l—w 2)— cosf(u, +v, + w, w,)}
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As it is very complicated to solve these equations directly, they are linearized.

First, the covariant components of displacement u and v in the middle
plane must satisfy

Up— 2C080 Uyt %(1 +c0s%0 — vsin®6)u,,~ cOs6T,,— cOSfTny
+ l(1 +3cos? + vsin®0),,= a(1+v)sin8 (T, — T,cosb) 4
— cosé u55+ (l +3cos?0 + vsin®9) u,,— cosd Unst %(1 +cos? — vsin®0)o,,

~ 2¢080v,+0,,= ol(1+v)sin?0 (T, — Tcose) ©))

and the deflection w must satisfy

4, = 11 12 -2
DV*w = dcosec§ (" wyt 20wyt 02w,,)

(6)

Transforming these equations to the finite-difference equations for the nodal
points shown in Fig. 7, the following relations are obtained:

ji(ﬂiui +050) = K;o(i = 1,2)

N

Fig. 7 Representative nodal point arrangement for Eq. (7)

where

Pio =Q2 =— (3 +cos?0 —psin0 )

Py, =P =0y =0 = (1 + cos?9 —p sin?g)

P u=P;3=00n=0,=1

—Pis = Pis= —Piy= Pig= —0p5= Q= —0y7= st— 5 cosé
20= Q10=4 cos@ (8)

Py= Py =Py3=Pyy=01,= Q1= Q3= Q1= —cos¥

P _—P26_P27__P28 QIS__Q16 Ql7__Q18

= -g(l + 3cos? 9 +vsin? ) J
Kio= % ah(l +v)sin®6 {T,—T3—cos0(T,— T, )}
K20= ':'12— (1 +V) Sln2 {Tz— T4_COS 0( Tl_ T3 )}
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Therefore two difference equations (7) are obtained for each nodal point
of network shown in Fig. 7. If the temperature distribution is symmetrical
with respect to the center of the parallelogram plate, the displacement vector
has the same symmetrical character with respect to the center and there is no
displacement at the center. Then, we have only to solve the equations (7) for
nodal points 1, 2, ..... , 10 in Fig. 8. Obtaining the covariant components of

z/a 1/b 2/c 3/d 4/e 5/f 6/g 7/h i/i
Vo] vf o] o] o] o]

Fig . 8 Nodal point arrangement on plate

the displacement, the contravariant components of the stress tensor are
calculated numerically from the following relation ‘

ot 1 cos?0 +vp sin?@ —cosf
o2 = Lc;)ch;Q_ cos?9 +vsin?0 1 —cosf
o - —cosf —cosf %(l + cos?§ —vsin?8)
ut cosec 0
X| o ____E_:“_T_.. cosec 0 : ®)
untvs] 77 |—cot o

Substituting these stresses into Eq. (6) and transforming the equation to the
finite-difference equation for the nodal points shown in Fig. 9. the following
relations are obtained :

20 - 10
Fig.9 Representative nodal point arrangement for Eq. (10)
where
Ry=40 (1 +%cos2 8) + 2a(or1+022)
R,= R,=— {16 (1+cos?0 ) +ag1} (an

R3= R4= R7=R8=2
R,= R;=— {16 (1 +cos?6 ) — \G22}
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Ry, =R, =4(1 +2cos0+2cos’0)—%)\612
R,;=Ry2=4(1—2cos8 +2cos’0)+—%)\?il2

—Ris= —Ry,= Rys= R16="‘R17=—R18= Ris= Ryp=2cos @
= i_ 2 ain3
D 2dh*sin>6

Considering the case of all edges clamped, the relation

o= W | (12)

is available for the inner point i and the outer point o near the boundary as
shown in Fig. 10. Therefore, adding the outer nodal points outside the domain

o0 outer point

boundary
i inner point
Fig. 10 Nodal points adjoining boundary

of Fig. 8 and eliminating w of these outer points using Eq. (12), the simul-
taneous linear equations about w at the inner nodal points are obtained. When
the determinant of the coefficients of the above equations becomes zero, the

measured
deformation . .
of frame displacement with frame
0‘ Eq. (4)|deformation only
temperature = . ! .
Zhpetature = U Eq. (5) ;gfna;‘gggm Fig. 12, Fig. 13
stress distribution
numerical determinant of
& E . .
@ Gitorontiation [T1E% ) Eq (10)=0 [ Fig- 14

buckling condition
strain stress

i Eq. (6) l> Fig. 15
of frame = 0 buckling mode
of frame=0 | |
measured Eq. (4) [displacement without Measured
__temperature | Eq. (5) |frame deformation ~ temperature

numerical
differentiation

determinant of Fig. 14
Eq. (10)=0 buckling condition

strain stress

Eq. (6) > Fig. 16, Fig. 17
and Fig. 18
buckling mode

Fig. 11 Procedure diagram of analysis



Thermal Deformation of Parallelogram Plates under Radiant Heating 319

thermal buckling will occur. Then, drawing the curve by taking the tempera-
ture rise at the central point of the plate for the abscissa and the value of the
above-mentioned determinant for the ordinate, the critical temperature for
the thermal buckling will be obtained at the point where the curve crosses the
abscissa.

ii) Numerical calculation

Covariant components ( u, v ) of the displacement at each nodal point are
obtained by substituting the temperature rise obtained by the actual measure-
ment ( section 3 ()))into Eq. (8) and solving the difference equations (7). For
the arrangement of the nodal points shown in Fig. 8, these become the
simultaneous linear equations with 20 unknowns and the calculation was
carried out by the digital computer for several temperature distribution after
the beginning of heating.

On the above calculation, it was first assumed that the plate was clamped
rigidly and there was no deflection of the clamping frame, but the frame
slightly deformed on heating. Therefore, Eqs. (7) were solved under the
measured boundary displacements ( u, v ) and zero temperature rise. These
results were superposed on the former solution to take the effect of deforma-
tion of the frame into consideration. The procedure of these analysis is shown
in Fig. 11.
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(T 572 51
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Tmax = @ 72°C, 090°C

Fig. 12 Comparison of theoretical and experimental stress
distribution
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Substituting the measured temperature rise and the displacements calculat-
ed as above into Eq. (9), the plane stresses may be determined. These results
and those obtained by strain measurements are shown in Figs. 12 and 13.
They seems to show good agreement in spite of the difficulty of strain
measurement at high temperature. Substituting these stresses into Eqgs. (10),
we are able to calculate the determinant of the coefficient of w’s. The value
of determinant is shown in Fig. 14 for two cases with and without the deforma-
tion of the frame. It is shown in Fig. 14 that the thermal buckling occurs
rather early in the case with no deformation of the frame. Figs. 6 and 14
show that the temperature 7T'max,cr obtained by the theoretical analysis with
consideration for the deformation of the frame, agrees approximately with
the temperature at which the measured deflection begins to increase. Fig.
15 shows the correlation between theoretical and experimental results of the
buckling mode for the case with the deformation of the frame. Both results
are thought to conform to each other on the whole considering that a few
error are unavoidable from the influence of initial deflection of the plate,etc.
On the other hand Fig. 16 through Fig. 18 show the modes analyzed for
three buckling temperatures, at which the curve of Fig. 14, for the frame
without deformation, crosses the abscissa.
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Fig. 13 Comparison of theoretical and experimental stress
distribution
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Fig. 18 Buckling mode (deflection surface) for T3, cr (see Fig. 14)

5. Conclusion

This work treated experimentally and theoretically the thermal deformation
of the parallelogram plate clamped along all edges under the uniform radiant
heating

In the experiment the parallelogram plate was heated on one surface with
the infrared radiant heating apparatus and the temperature rise, the deflection
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and the strain distribution on the plate were obtained. The buckling phe-
nomenon was clearly observed and the critical temperature rise for buckling
at the center of the plate was about 120°C. In this range of temperature rise,
it was possible to use the self tempeature-compensated strain gages and thermal
strains on the plate were measured. Next the fundamental differential equa-
tions of displacements in nonlinear form were derived. As it was very complica-
ted to solve these equations directly, they were linearized and using
such equations, the deflection and stress distribution caused by the measured
temperature distribution were obtained. Thé comparison of the theoretical
stress distribution with the experimental ones showed rather good agreement.
Furthermore, the critical temperature for buckling and buckling modes were
obtained and compared with the experimental results.
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