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A Note on the Longest Path Problem

Eiichi Tanaka* and Tamotsu Kasar*

( Received November 15, 1969 )

The loop-free longest path problem in graph theory is of practical importance in
operations research problems. In this paper an algebraic system fit for the analysis of this
problem is proposed and the analysis is carried out with the aid of this algebra.

The application of the algebra to this problem leads us to various results of significance,
such as, (1) it is able to clarify that, from the mathematical point of view, the loop-free
longest path problem may be regarded as a class of communication system problems, (2)
diakoptical formulae for this problem can be derived, which are extremely effective for the
analysis of large scale systems.

1. Introduction

The loop-free longest paths in graphs play an important role in operations
research problems related to scheduling, critical paths and project networks.
But, as far as authors know, the research on the method of determination of
the loop-free longest path can not be found except that carried out by
Y.C.Chen and O.Wing. Perhaps, such a state must be resulted from the fact
that, on the graph-theoretic basis, the analysis of the loop-free longest paths
could be executed in the similar way that of the shortest paths on which
several methods were proposed by many researchers?®. Formerly, one of the
authers studied an algebraic theory of network-theoretical problems which
arise in communication systems, that is, problem of reliability, maximum
capacity, the shortest paths, the most reliable paths, the maximum capacity
paths, and of connectivity?. Comparing with the graph-theoretic method, the
analysis on algebraic bases has several merits. First, it is suitable for the use of
a digital computer because a digital computer does not always fit for memo-
rizing and treating graphs. Second, it enables us to express all problems by
the same-type formulae. Third, diakoptical formulae for large scale systems
can be derived in refined forms, and these serve for reducing computation
time. In the present situation of the research on the loop-free longest paths,
it should never be worthless to point out the possibility of an algebraic treat-
ment of this problem.

2. The Longest Path Problem and Algebraic System

Let e; bean element of a graph, @ be the physical quantity (distance)
imposed on ¢; and a;=(€ , @) be a composite quantity. An algebra as the
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mathematics for expressing and analysing the longest path problem can be
defined by the following axioms;

(1) Operations v and A satisfying the following postulates are defined
between elements of {a;}

lLa;y a;=2;7a, a; A=A a,

2.3; 7 (a;y ag)=(a;v a;) 7 ag, a n (@ Xag)=(a;x a) N ag,

3.3, v (a;)a))=1, a N (47va)=a,

4.2; 7 (a }ap)=(a;v a) N (a;7 a), & N (37 a)=(a; N a)) v (a; \ &),
5.3, 7 a;=a, a; A a;=a;

6.9 a.,a°, for Va; such that
a;va.=3a;, a;ya'=a’, a;\ a=a;, a;\ a°=2a°

(2) Operations V and A satisfying the following postulates are defined
between elements of {a;} .
1.aiVa=aVa, ai A aj =a; A g,
22iV@Var)=@Va)Vag, a;i A (@ Aap)=( aiAag ) A a,
3.a;V (g Aap)=(g Va)A@;Vay), aiA (@ Va)=(a; A aj) vV (a; A ag),
4, : ai A a; = a;,
5. aih(4;V a)= a; V g,
6. 4a°, a, for V a; such that
a4 Va,=a;,q;Vd'=a®, aqjAa.= a;, a;Aa° = a°

(3) There exist following relations between a°, a,, e, e.,a°, anda, .

1. (e,a;=a")=23" (¢;, aj=a.)=a,
2. ( & = eoaai) = aoa (e‘i = €o, ai) = Ao

Axioms (1) are these of a distributive lattice. Let 4 and B be nxn
matrices over a distributive lattice. We define '

LD AYyB=lajlyibsjl=[c;];cy=a;rby
AXB=[a;]N[bs]=[cy];cij=a;rby
(L2) A2B=[az;ha[by] =lc;1;ci =2 @@k v by)

The following properties, most of which will be useful in the sequel, are
derived immediately from the definitions:
(L3) Operations 7 and \ on matrices satisfy commutative, associative,
absorptive, distributive and idempotent laws similar to (1) 1. ~ 5.
(L4) Operation ~ on matrices satisfies an associative law.
(L5) A2BrAO=(A2B)A(A20),
(AAB)2C=(A2C)rA(B2C)
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We call the algebra satisfying axioms (2) “Algebra 8,” tentatively. Let 4
and B be nxn matrices over Algebra 8,. We define
(A1) AVB=[ajlVIbil=[cjl;aj=ajV bi
AAB=[aj AL bij1=[ci];ci=ajAbi
(A2) A2B=[aj|5(bi]1=[ail;ci= A @V bk
k=1

The following properties are derived from above definitions.
(A3) Operations V and A on matrices satisfy commutative, associative,
and distributive laws. A A(AVB)=A
(A4) Operation a on matrices satisfies an associative law.
(ASY A2 (BACY=(A2BYA(AA(C),
(AABY2C=(A2CYAB2O)

Definition 1. A polynomial f is said to be the canonical form if it is
written in the following form;

f=(’§)a7ri)7\('i7rapi)7\---7\('{611-1-)
1 1

Definition 2. a;is said to be the norm of a;and denoted by ai= || a;ll. The
norm of a polynomial f is defined as follows. .

IlflI"Il('yaa )7\(73:3,)?\ ?\('ya,x)ll
-(Vaaz)A(Vaﬁ, A - A( Vas ).

Here, it is assumed that ( 7‘5 ), -, ( 7 as; ) are irreducible.
i i

From the definition of norm Lemma 1 is easily derived.

Lemma 1. £ Af, X Afpll=11; WAIf, 1A Alf,l.

In the case that all the diagonal elements of matrix A(A) are a. ( aa),
A (A) is denoted by .A(.A4 ) or [.az]([.a5]). Let a polynomial f; have its
element a; replaced by «; andtheoperations 7 and N by V and A ,
respectively, and let f;; denote the resulting polinomial.
As it is well known, there is the following theorem with regards to a matrix
over a distributive lattice. _

Theorem 2'V.[. aj ]"°=[. ay (™2
where [.a;;] is an nxn matrix and m is an integer not larger than n-1.

Lemma 3. If Ify; h=f7 ,then I[. £ 1™ N =[ IlL.f5 1 ]"=[ f; 1™

Proof. | [. £ij ]mA" = || 7\k ‘ (fpk1 vk ky, ¥ 7fkm 14 )
m-1
kh/,\km (foky Vieyky VoV fkms @)
[ fl ]pq

After this, we put 4 Vag=a+qg g Agg=mx(g,a)=4Tqg,

a4, =0, and as=
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3. Analysis of the Loop-Free Longest Path

Let dj; denote the distance assigned to an element ¢; in a graph, and d;
its respective composite quantity. Then the terminal loop-free longest distance
matrix [ Dj; ] can be obtained by the following theorem.

ma ma

Theorem4. [D; 1= di] 0I=[1I d7 i
|

Proof. Forl. d,-]-rimtype operations the norm is defined in the form of
irreducible path expressionsl .Therefore, we can obtain the maximal sum of
the distances of the elements which form a loop-free path.

Let dj "2 be i5j entry of [ dj ]mA.If a graph is loop-free directed, d;; ™* is
always loop-free without applying absorptive laws. Therefore, the relation
I dj; I =d; holds. Hence, by Lemma 3 we get N

Lemma 5. If a graph is loop-free directed, then [ D; 1 =[. dj 12

We define the determinants I.dy I (1. dy; 1) of [.dy ] ([. d; 1) by

Ldy #=0XCdyn, v dyn, ¥ = vdpn, ) |
Vdy I= A(Cdir, Vdry, Vo Vg, )

where the operations A and A are taken over all permutations (k,, h,, - ,hn)
of( 1, 2, ... , n ). In order to find desired results by using determinants, we
employ the following formula.

Theorem 6. D;; = I«Djy; Il
where %Dy is the cofactor of dj in I.dy I.

Lemma 7. In the case of a loop-free directed graph, Dy = «Dj; .
where xDj; is the cofactor of dj; in I g I.

Network-theoretical problems of communication systems have n variables
polynomial representations similar to a boolean function in switching circuit
theory, and also have the problem in this paper its polynomial representation.

Theorem 8. Dy (dy, dy, -, dy )

={d +Dj (0,dy, =, dy )T Dij (o= dy, ~, dy ).
Lemma9. Dy (dy, dy, ~,dn)
=T {Dij ( Yer, Yez, = » Yen ) + ( = dkek )}

where diex = d for Y =0 ,and dyep =0 for yg =<0,

The loop-free longest paths can be found effectively by calculating the
path expression of dj™* by means of diakoptical analysis!® and then obtaining
their norms. By Lemma 5, it is possible to carry out diakoptical method merely

by operating on coefficients ( distances ) when a graph is loop-free directed.
Theorem 10 In the case of a loop-free directed graph,

[Di 1= [ (T[.574)T [.A]]"m"
[Di 1= (8)65 & (mgm)a(3)scT].3 ]
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where the equations are metric expressions of corresponding equations in .
reference 10 and operations are carried out in accordance with Algebra g8, .

Moreover, the subscript d attached to M is to indicate that the matrix is

written in metric form.

Finding partial solutions by means of diakoptical analysis is similar to
finding the entire solutions. In particular, when a graph is loop-free directed,
itis possible to find partial solutions merely through operations on coefficients.

Theorem 11 In the case of a loop-free directed graph,

— - ~wm ~ My~~~ ~~v ~
[ Diilz.z,=( 6u™ b, a(md ™5, & (8 )%gv
I T m ~m ~ N —
[Dij 12,2,= (bx  Jgun, > (md™™ Jyo,w, 5 (8, Ju,8, T (5,782,
where the equations are metric expressions of corresponding equations in
reference 10 and the operations are carried out in accordance with Algebra 8, .

4. Conclusions

It is clear that, from mathematical points of view, the longest path problem
may be regarded as a class of network-theoretical problems of communication
systems ( or combinatorial network problems ). But, on the contrary to
expectations, the longest path problem and the shortest path problem are
neither dual nor isomorphic, mathematically. For instance, the applicable
range of Lemma 5, Lemma 7, Theorem 10 and Theorem 11 is narrower than
that of the corresponding formulae for the shortest path problem.
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