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The Stress Distribution around a Hole in the
Web of a Beam Subjected to Pure Bending

Yoichiro Okamura*, Hiroo Oxapa* and Yoshio Fukumoro*

(Received June 15, 1967)

The stress analysis of perforated beam with flanges subjected to pure bending is
studied. The calculation is executed for three typical cases and results of numerical
calculation are shown. Moreover, the theory is verified by experiments.

1. Introduction

The holes in a loaded beam will affect the stress distribution in the beam, especially
in the neighbourhood of the holes.

While many studies on the stress distribution in a perforated strip have been executed,
the effect of the flanges attached to both sides of the perforated strip on the stress dis-
tribution is not systematically evaluated.

In general, the beams are simultaneously submitted to the action of tensile or com-
pressive force, bending moment and shearing force. In such case, the stresses in the
beam can be obtained by superposing the stresses produced by each of these loads. The
solution of tension problem was already reported by the authors?,

In this paper the stress analysis of the perforated beam under pure bending is studied,
by using the same method as in the tension problem and the effect of flange of the beam
on the stress distribution are clarified. Moreover, the theoretical results are compared
with the experimental.

It may be added that when hole is small the maximum stress in the beam under
pure bending occurs at the extreme fiber. And the maximum value of the stress in this
case is inferred to be equal to the value of nominal bending stress at the extreme fiber
in the minimum section, from the published data® regarding the perforated strip with no

flange. Therefore numerical calculation here is mainly executed for the stresses around
the hole.

2. Theory

We consider the perforated strip which has one circular hole mid-way between the
edges and is stiffened symmetrically with the flanges along both edges. (Fig. 1) The width
and the thickness of the perforated strip and of the flange are 2, £,, and 2B, 1/, respectively;
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the radius of the circular hole is 2. This perforated strip with the flanges is submitted
to the action of the pure bending moment which produces the bending stress T at the

junction of the perforated strip and the flanges at infinity. Both the perforated strip and

Flange
il - I
——-
T = Ty T
A
. X p 1
Perforated strip 0] x
1
T ,— Flange Ty A
T T

Fig. 1.

the flanges are regarded as thin plates and the normal stresses perpendicular to the plane of

the flange are ignored.

2-1. Stress Function of the Perforated Strip (Successive Approximation)

As shown in Fig. 1, Cartesian co-ordinates (¥, y, z) and polar co-ordinates (p, )
will be used. It will be convenient to take the initial line along the y-axis and the positive
direction of @ clockwise.

Denoting the stress function y, ¥ must satisfy the equation

g;’f+2£g—y—z+gfyé:0 (1)
and the following condition (a), (b) and (c):
(a) At infinity x=- oo,
S T . T
(b) On the straight edges y=-1,
06,=0 and €, = ¢,

where ¢, is the normal strain in the x-direction and ¢, is the normal strain occuring in

the flange at the line of connection between the flanges and the perforated strip.

(c) On the edge of the hole p=2,

_ 19 18y _a<1 81)_
R T AL
We write
X = 2ottt ittt Xt Haria Lapaat o (2)

where each term of the series satisfies the equation (1) separately, and has, in zddition,
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following properties:
x& gives the stresses at infinity. xg-+x, satisfies the condition on the edge of the
hole and at infinity, but not on the straight edges, i.e., it is the solution for an infinite
plate with a hole. x, cancels the stresses due to x, on the edges y==+1 and satisfies
the condition of the continuity of the normal strain to the flanges on the edges y=+-1,
but introduces stresses on the edge of the hole. x, cancels these, but again does not
satisfy the boundary conditions on the straight edges. More generally, x,,+ 1,1,
satisfies the boundary conditions on y=-+1, while x,,.,+ %,,,, gives zero stresses over
p=2A.

Now we derive equations from which x,,,, and ¥,,,, may be calculated. The value

of x,, will be assumed to be given in the form

Zy [Dswr | Esy
Loy = E {pziﬂl pfn_ll} cos (2n-+1)0 (3)

where D$).1 and E§,, are coeflicients, to be determined later. The stresses due to x,,

are given as follows

1 6)(2,,"_1 8%x,,

T 5 e 2 06
3 {(n+1)(?;)nzt DD n(?-n—;fz?éﬁll} cos 2n+1)0  (4)
e l2%)
T o\ p 06
zg {(n—i—l)(anz;tg)Déﬁ.Ll +n(2n+22{€§211} sin(2u+-1)0 (5)
00 = T2
— 2 5% (D@ DDE | DB o5 ntye (6)

The stresses relative to the Cartesian axes are given by the equations.

oo o [ ¥ 1) ()
— 2 Z [(n i 1){(271"— ]l;))zi)fgﬁl 2E2'n+3 + n(zni_z}'_)HE‘anl] cos (2n+3)0 ( v )

hod (r 7 7
22 [(nH) {(2n+;)2£2:’+1_1_ 2Bz + ”(2"':;1?5")“] cos (2n+3)0  (8)
€2} )
oy = —2 53 D EEDDR | et DB | sin (2n-3)0 (9)

We have now to construct x,,,, so that it produces on the edges of the strip, the
stresses cancelling the value of o, in (8), and making the value of shearing stress to be
—1(x) after addition of the value of 7, in (9), where —(x) is to be determined from
the condition of the continuity of the normal strain.

Let x,,., be the biharmonic function which is resolved as follows:
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7

Xorr = X'+

7 = A Sm &cC‘:g(f_,—iisﬁ cos uxdu jw o(w) cos uwdw
b 0 U P 0
° i (10)
x" L S LC_TCE cos uxdu S [vr(w)—r(w)] sin uwdw
7 Jo uz 0

where

s=sinhu, S=sinhuy, ¢=coshu, C=coshuy, Z' = sinh2u—2ua (11)

= 1) {(2n+1) D571 +2E5), 2n+1) E)
¢(x) =2 E [(ﬂ + ){( (?ixZ)(25+:)]}2_'_ 2n+3 + n((l j—jc—z)()znfl)—/l—zl] cos (2n+ 3)0

z 1)(2n+-1)Dgy, 2n+1)E@T . 12
’:b'(x)z 2 'Z=0 [(n_lillfxf)—(";n-{—)ﬁ)/z 2 n((l :__;2)()271—31)/21] s (2n—|—3)0 ( )
¥(¥)= unknown function, 6 = tan"'x.

In order to determine the value of v(x), it is necessary to evaluate the strain at the
line of connection with flange. By considering the condtion, d,=0 on y=1, the unit
elongation in the x-direction is written by

1 . L/azzzr azz ’

B 62)’”>
2y = 5 (9a)s= F{ 8y T8y T By )y

2 (= < 4% (=
=% So [2 sc—;:,g SO o(w) cos uwdw—+ Es’ So {¥(w)

— yr(w)} sin uwdw+ Sw #(w) cos uwdw] cos uxdu  (13)

where E=Young’s modulus

_ o [+ 1) {@n+ DDSr—2B50s} | n(@nt 1) G
3w = 2 33 [ DA (';ix)z)(§,+3§,2 s +”((1J’::2)()2n | cos 230 (1)

On the other hand, the unit elongation of the flange on the line of connection, ¢, is

given by the equation in such a form as

. _ 2,

Sm g(u) cos uxdu Sw F(w) sin uzwda (15)

0

x

where g(u) is a function of « only and depends on the boundary conditions in the flanges.
The value of g(u) is given at 2-3 for typical cases.
Equating (13) to (15), ¥~(«) is given in the form

1
R

sw ¥ (w) sin uwdw = [2(sc—|—u) Sw #(w) cos uwdw

+ 4s? S: Yr(w) sin uwdw—+ 3 S: #(w) cos uwdw] (16)

where

e
1y
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Substituting (16) into (10), and considering

S‘” cos (2n+3)0 cos uw ; S“’ sin (2n+3)0 sinww , me “u"t?

0 (1+w2)(zn+3)/2 - 0 (1__|_w2)(2n+3)/2 2(211—!—2)'

S"" cos (2n+3)0 cosuw , J"" sin (2n+3)0 sinuw ;. ze ““u(2u—2n—1)
0 (1+w2)(2n+1)/2 - 0 (1__|_w2)(2n+1)/2 - 2(2n+1)'

2n 2n+1l 2n+2 2#+3

yC cos ux = ; [,o cos 6+Z {” (2€z)l +14(2n:2)! } cos (2n+1)0]

S cosux = nz_o Egpf—l)' cos (Zn+1)0

We may NOW eXpress ¥,,., in the form
Xopt1 = 2 [L2n+1+M2(:n)+1:0 ] 4 cos (Zﬂ—l—l)a (17)*

o 2m+1 <2} 2741 )
Ly = g { ’Czp+1sz+1+ ﬂgp+1E2p+1} n>1

(18)
M2(:l)+l_ 2 {2n+1 zp+1D2p+1+2"+1Q’2p+1Eé;)+1} n>0

where

2n+1 1

Bop+1 — (—ZW [2n12,n+2p+1_21én+2p+2_]£n+2p+1

—(2n+ DK} iap11+2H p5p45)]

n 1
P g = 1)1 (2p—1)! 4D s 2p— 4 oms2p i —(np+ 115005

+2(n+p)J£n+2ﬁ—1+(2p+1)(2n+1)K;n+2p 1 2(2”+2P+2)H2n+2p

+4F 5541

" 1

? +1Vzp+1 = m [I£n+2p+3—Kén+2ﬁ+3]

" 1

2+1C‘)2p+1:m}[ 2n+2p+2 2P12n+2p+1+]2n+2p+1+(zp+1)K2n+217+1
_2H2,n+2p+2]

(19)
1;=S°°’—2-«,du, J;:ZS:l;—,/e_zudu )
AL g, = [T e, = [P0
Fi= So Ry W, Hi= | Spmmowde, Ko=) S pmwds

F%, H{ and K] represent the effects of the flange and vanish when the perforated strip has
no flange.

The coefficients in x,,,, are thus determined in terms of those of x,,. To com-

* As the term containing L{" is without effect on the stresses, it is trivial and will be supposed
omitted.
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plete the cycle, we have now to determine the coefficients in x,,,, in terms of those of

Xor+1:

Tog = 2 'g [n(2n+1)Lé;)+1

6, = —2 g[n(2n+1)Lg:“+(n+1)(zn )M, 107 6™ cos (2n+1)0 |

+(n+1)(2n+-1) M52 1 070" sin (2n+1)0

The stresses due to z,,., are given immediately by the differentiation of (17) as

(21)

- 22 (12 1)L 1 (- 1) 2+ M, 1070 cos (2n-+1)8

The first two of these must be cancelled at the edge of the hole by the stresses due to

X2re- 1 We express 7,,., in such a form as y,,;

— 2 Déﬁill) Eé;11 cos (Zn—l-l)ﬂ
Xoriz = = 2AT1 P

> (22)

the corresponding stresses will be given by the equations (4) and (5), replacing the suffix
(r) in the coefficients by (r+1).
of those in (21), we obtain the following equations:

Putting po=21 and equating the coefficients the negative

(r+1) ___
D2n+l -

[20L0s1 +(2n4-1)MER 227
E(T-l—l) _— (23)
2n+l —

— (@ DL+ 20+ 1M, 22
Substituting (18) into (23),

oo

2n+1 2n+1 r)
= 1’_20 SRR Rt A 5 R

(r+1)
D2'n,+1

(r+l) ___ 28+1 2n41 )
EniY = ;) { “2p+1D2p+1+ vzp+1E2p+l}

2”-HSZP'H - 14"+2{2n2”+1l62p+1—}—(2n—|—1)222”4'1,;21’_,_1} (24)

= B2 (20 1) @,

2n+1t

2p+1
. 2n+1u2p+1 — _Z4n{(2n+1)2”+1,C2p+1_’_2(n+1)222n+1 2p+1}
2”—{--17)2p+1 _Im{(zn_’_1)2n+1ﬂ2p+1+2(n+1)222n+1 2p+1}

By using (24), the coeflicients in x,,., are determined in terms of those of ,,.

2-2 Determination of the Stresses

To determine the stress function of the perforated strip under pure bending, we

start with the stress function x¢, of the unperforated strip under pure bending.

2= % 0*(cos 3043 cos 6) (25)

satisfies the definition. And the stress function x,, which produces on the edge of the
hole stresses cancelling the values of ¢, and 7, due to x§, are obtained by replacing

the coefficients in (3) by the following values:
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T T T
D = ». po_ L e Eo_ 1
8 ’ 3 12 s 8 3 } (26)
and all the other coefficients are zero.
Considering (3), (17) and (25), the final value of 7 is given by
x= ,0 *(cos 30+3 cos 6)—;——— a 2 {iiﬂ‘l ?2”:11 +1pp 0™
+ mz,,+1,02"+3} cos (2n+1)6 27
where
2 ” 24 -
dzn+1 = _Ti,l" Z Dén)-kl s Capry = ”ﬁ Z Eé'ﬂ)+1
(28)

[ (r)

lopin = TX“ 2 Livi1 s Mopi= T/T‘ E My

The coefficients d,,., and e,,., in (28) are obtained by using (24) and starting with (26).

The coeflicients L,,,, and m,, ., are given by equation

o g2ni1 241
lypsy = 1)20 " "2p+1dzp+1+ ﬂ2p+132p+1}

(29)
Myyyy == 2 {2n+ V2p+1 2p+1+ w2p+1ezp+1}
The equation (29) being obtained by (18) and.(28).
The stresses due to x are
T T (D) (2n+-1)d,,, n(2n-+3)e,,,.
% =7 p(cos §— cos 30)— 1> 2 ?;_0 {( )(p2”+3 M, 1+ ( p2”212 o
+n(2n+1)12,.+1p2"'1+(n+1><2n—1>m2,,+1p2"+1} cos (2n-+1)6
Tog = ,o(s1n3 0—+sin 8)— 2 {(TH 1)(2:ﬂ_31)d2"+1 +n(2ntn1+)1e2"+l
0 0
(30)
—n(2n+l)lz,,+1p2”“—(n+1)(2n+1)m2,,+1p2”+’} sin (2n+1)6
oy = % o(cos 30+ 3cos 8)+ % 2 go {(n—l_l)(zz;tl)dz”“ et n(2n 2,12:?2"“

+-n(2n+ D, 07 - (n+ 1)(2n—|—3)m2,,+1,02”“} cos (2n+1)0

The circumferential stress on the edge of the hole is obtained, by putting p=2 in
the third of the equations (30),

_ Zzi] ety €08 (211+1)0 ]
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where
S, = {(9+4d,)+3m,a%}
Sy = 6d,/24(3+¢,)A+31,2°4+10m, 2"
Sy = 15d,/A°46e,/2+101.2"4-21m 2° 31
S, = 284,/2°+15e,/2°+211,2°4 36m, 2"
Sy = 45d,/A7+28e,/°+ 361,47+ 55m 2"

)

-

The value of o, is the maximum at #=0° and zero at 6=90°,

2-3 The values of g(u) and R
We will determine g(x) and R for the three typical cases as shown in F ig. 2. TItis
seen that the boundary conditions in the flange are same as in the previous tension prob-

lem». Therefore the values of g(x) are the same as these obatined in tension problem.

z
Vlange ¥ - T -
[Case-1] ; R [ or=0r,=0
H-Becam Vich ¥ . - 'y 0=0, T"=_2rJ'(n(x)=— 25';2 ) ™
e T .- -+ i T
0] 0 Pl
By o] fom \1 - - - —_—
T -— -
fom b efe— b} - o - {Flange) o the displacement
¢ (x)=27¢(x) in the z-direction
4
(Cross section) (Stress at connection) N
. . y - — -
[Case-11* flazAge S @e=0,|Try= Z’: P (x)= g :—";{n(") -
3ox-S haped Bea.. \ } \,Zl‘\,‘ o - - o) Tee, 'y
. Lal ¥ () e L e, -7
¥ bos : == - < —
s o L F l k “(x) N
—etl i -
= 0 ¥ (Flange)
(PRSI Fe=de
(Cross section) (Stress at connection) z L
-— —
[Case-111, > e T it R hwirdad ettt
Double Bottom ~ F'20%¢ =0, Tar= BP0 =52 D)
Y 'bl - - iy —_
[ o 0=0, 74, =0
Web ' T T T - K hid -7
—] - x
¥ & T, e o -
a0 wAr T
- i" ST - -
¥ -
R z)-= $(x) -
D v e (Flange)
(Craoss section) (Stress at connection)

Fig. 2. Typical structures and these boundary condition.

The values of R are easily obtained by substituting the values of g(x) into the equ-

ation (16). The values of g(x) and R are written as follows.

[Case-I] H-Beam

g(u) = [ 451+ )+-2(j+2%)]

(1+J)2
R —_ ;w % _2"[(1+y) u2b2 (1+V)(3 y) (ezub+ —zub)_l_s 2V+V ]_I_(l_e—zu)z
(32)
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j= =1+

¢ == cosh ub

where

} (33)

v = Poisson’s ratio,

3 = sinh 2ub+2ub, §=sinhub,

[Case-II] Box-Shaped Beam
2 ,
bt g(u) = 4._;: , R= %% e—zu(l—b)(l_}'_e*zub)z_{__(l_e—zu)z (34)
[Case-III] Double Bottom
1 B—v)se—(14+v)ub
=2
(35)

W=g1
R — twe—""‘z" [(1+V)2’(3—V) (l_e_,mb)__ 2(1—|—V)2ube"2“b]+(1——e—2“)2

= 2t (1—e ™y

3. The numerical values of the stresses
As an example, the

The numerical calculation has been carried out for v=0.3.
stress distribution around the hole for the H-beam of 6=0.5 and t,/t,=1 are shown

graphically in Fig. 3, and are compared with those in a perforated strip.

==0°
o0/ T=6.42 (§=0°)
¢
A=0.9
115°
1
]
0.7 :
20~ 0
07~ ]
SR b 2=09
A = A=0
0.7 a H
a \ !
!
a ‘\ !
i ! H Theoretical values
1.0 \J}S AN H-beam
< (b=0.5, t7/t,=1)
N N L, T Perforated strip
T 0.3 N S
a
L ’l\ Experimental values
! for H-beam (h==0.5, t s/ty=1)
o . X A=0.3
o o 0.5
] > s 07
/ [ a 0.9
! /
o /]
Y/ '
T\ \
B BN
=
10 ‘\,,g' DY AN 75
~7 T : 2
4=-90°




168

Y. Oxamura, H. Okapa and Y. Fukumord

The maximum stresses around the hole g4, for three typical types of beams, such
as H-beam, box-shaped beam and double bottom, in which the flanges of the same size

are attached to one web, are plotted in Fig. 4 versus the value of 2.

Gomaxl T,0 maxl T’

-~

w

8]

Solid lines shows

T=M/1, T'=M\[I'

M=npure bending moment g
L I==moment of inertia of solid section 2.0,'
I’=moment of inertia of minimum section & !
&y
T 8§
L !
£
¥
f?' )
- &/
>
< ! i
a / Box beam (b=1)
L © / H-beam (b=0.5)
&/ 2 Double bottom (5=0.5)
, R ~—Box beam (3=1)
Tomarl T R H-heam (5=05) |
__f = Double bottom (5=0.5)

Perforated strip
without flanges

Fig. 4.

the values of 04,,,,/T. From these, it is seen that the effect of the differences between

types of beams on the value of gy,,,, is quite minor.

Comparing these a4/ T-values with

the value for perforated strip (broken line), it is found that the presence of flange makes
the value of o4y, decrease, and this effect is remarkable when hole is very large. On

the other hand, from comparison between the chain lines in Fig. 4 which show the value

7r
AL T
6 — Tamax
=N TR /
Na ¥/
N
5 : T T
4+
3r &xm 4205
) } A=09
3
2 P—— b=0.5
1 } A=07
3
] $=0.5~3 =05
b=0.5~3, A=03
0 15 2

telty

Fig. 5.
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of 0o/ T (T’ =the nominal bending stress at the edge of the hole in the minimum section),
it may be said that the effect of the flange on the value of Ogmay 1 smaller than the effect
of the flange on the nominal bending stress at the edge of the hole in the minimum section.

To show the effect of flange size on the maximum stress around the hole, the values
of Ogay/T versus the values of ,ft, for H-beam are shown in Fig. 5. The values of
Opmax/ T decrease as the values of #,/t, increase. The rate of decrcase is large in large
values of 2 and small values of ¢//t,, and zero in small values of 4 or large values of
tefty.

The effect of b on 0y, /T, being similar to the effect of #//t, mentioned above, is
large in large values of 2 and small values of 5. The values of Ggmax/T rapidly decrease
to the asymptotic value as the values of & increase.

4. Experiment

We made tests with welded steel model of H section. The model is shown in Fig.
6. For the diameter of the hole 30 mm was originally provided; successive machining
operations enlarged it in steps of 20 mm to 90 mm. As the depth of web, the distance
center to center of flange was used. The Young’s modulus and Poisson’s ratio of steel
were 2.08x 10* Kg/mm? and 0.3, respectively. The strains were measured with electric
resistance strain gage with the length of 2 mm.

The experimental values of o,/T were plotted in Fig. 3, where 7 is the nominal
bending stress at the mid plane of the flange for the uncut beam. The diagrams offer

the close agreement between theory and experiments when hole is small, while when hole

- 2 bed ‘
- @-_-_-_-_-_-_-_-_-::-.-.-.-.—:%:—.-.: - =_—_~_-_—_-_-_—_-_-_-_-j.:ﬁ
- t
%‘ 81 1,220 . ? {
L ! il L | il
—{[m _ oo 7 < ZNE . _ Tio
j_ | oy 4 | Stiffener Stiffener
! 300 i 300 0 - + 300 i
jo b 318 s
5=0.50 ey
tj'/tuI:l'O ":T "
d=30, 50, 70, 90 — R
— 4981
Stiffener
3 1o

™ Fillet weld
L—:—“—-———J—T«i

(A-section) (B-section)

Fig. 6.
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is large the experimental values are somewhat smaller than the theoretical, probably due
to the effect of weld area.

5. Conclusions

The formulae for the stresses around the hole in the web of the beam subjected to
pure bending were theoretically derived for the typical three cases. By the results of
numerical calculation, the effects of the flange on the stresses around the hole were illu-
strated. Moreover, the theoretical results were compared with the experimental.

The conclusions drawn are such as follows:

1) The effect of the flange on the stresses around the hole is remarkable in very
large hole and the stresses around the hole are made to decrease by the presence of flange,
but the effect of the flange on the maximum stress around the hole is smaller than the
effect of the flange on the nominal bending stress at the edge of the hole in the minimum
section. The rate of decrease of maximum stress around the hole for the increase of
flange size is large in the small size of flange and zero in the large.

2) When the flanges of the same size are attached to one web, the maximum stresses
around the hole for three typical types of beams are close.

3) The experimental values agree with the theoretical for small hole, but the experi-
mental values are smaller than the theoretical for the large hole, probably due to the

effect of the weld area.
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