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The Stress Distribution around a Hole in the

 Web of a Beam Subjected to Pure Bending
                                    L

     Yoichiro OKAMuRA*, Hiroo OKADA* and Yeshio FuKuMoTo*

                      (Received June 15, 1967)

       The stress analysis of perfbrated beam with flanges subiected to pure bending is

    studied. The calculation is executed for three typical cases and results of numerical

    calculation are shown. Moreover, the theory is verified by experiments.

                               1. Introduction

    The holes in 'a loaded beam will affect the stress distribution in the beam, especially

in the neighbourhood of the holes.

    While many studies on the stress distribution in a perforated strip have been executed,

the efTect of the fianges attached to both sides of the perfbrated strip on the stress dis-

tribution is not systematically evaluated.

    In general, the beams are simultaneously submitted to the action of tensile or com-

pressive force, bending moment and shearing force. In such case, the stresses in the

beam can be obtained by superposing the stresses produced by each of these loads. The

solution of tension problem was already reported by the authorsi).

  , In this paper the stress analysis of the perforated beam under pure bending is studied,

by using the same method as in the tension problem and the effect of flange of the beam

on the stress distribution are clarified. Mdreover, the theoretical results are compared

with the experimental.

    It may be added that when hole is small the maximum stress in the beam under

pure bending occurs at the extreme fiber. And the maximum value of the stress in this

case is inferred to be equal to the value of nominal bending stress at the extreme fiber

in the minimum section, from the published data2) regarding the perforated strip with no

flange. Therefore numerical calculation here is mainly executed fbr the stresses around

the hole.

                                 2. Theory

    We consider the perforated strip which has one circular hole mid-way between the

edges and is stiffened symmetrica!ly with the flanges along both edges. (Fig. 1) The width

and the thickness of the perforated strip and of the fiange are 2, t. and 2b, tf, respectively;

    * Department of Naval Architecture, Co]lege of Engineering.
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the radius of the circular hole is 2. This perforated strip with the flanges is submitted

to the action of the pure bending moment which produces the bending stress T at the

junction of the perfbrated strip and the flanges at infinity. Both the perfbrated strip and
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the flanges are regarded as thin plates and the normal stresses perpendicular to the plane of

the flange are ignored.

            '2-1. Stress Function of the Perforated Strip (Successive Approximation)

    As shown in Fig. 1, Cartesian co-ordinates (x, y, krv) and polar co-ordinates (p, e)

will be used. It will be convenient to take the initial line along they-axis and the positive

direction of e clockwise.

    Denoting the stress function x, z must satisfy the equation

                              o`x                                      o4z                                             6`x
                                  +2                                                 -O (1)                                          2+
                              Ox4                                     ox2ay                                             oj74

and the fo11owing condition (a), (b) and (c):

(a) At infinity x=±oo,

                      o2z                                       o2z                                                          o2z
                 o. = 6f.y, == 71y , apt = ox2 = O, Try =`' - 6x6y == O

(b) On the straight edges y=±1,

                 ay=O and e.=E.

where e. is the normal straiq in the x-direction and e- . is the normal strain occuring in

the flange at the line of connection between the flanges and the perforated strip.

(c) On the edge of the hole p=a,

                 op= 2}, g2oZ, +-IJ- il:li -- o, Tpe == -zilpT (-l; [l÷/)= o

We write

                 X=Z6+Zo+Xi+Z2+'''+Z2r+X2r+i+Z2r+2+"' (2)

where each term of the series satisfies the equation (1) separately, and has, in addition,
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fo11owing properties:

x6 gives the stresses at infinity. x6+-z, satisfies the condition on the edge of the

hole and at infinity, but not on the straight edges, i.e., it is the solution fbr an infinite

plate with a hole. z, cancels the stresses due to z, on the edges y=±1 and satisfies

the condition of the continuity of the normal strain to the fianges on the edges y=±1,

but introduces stresses on the edge of the hole. x, cancels these, but again does not

satisfy the boundary conditions on the straight edges. More generally, x2.+z2r+i

satisfies the boundary conditions on y=±1, while z,.+,+z,.+, gives zero stresses over

p==1.

    Now we derive equations from which z,.+, and x,.+, may be calculated. The value

of x,. will be assumed to be given in the fbrm

                      z,.=:O=e,,(B,S."n.'xi+.E,S.r-l+,i]cos(2n+i)e (3)

                                                '         '
where DY.).i and ESr.)n are coeMcients, to be determined later. The stresses due to z,.

are given as fbllows

                         1 a2z2r                1 Ox,.
          ap == i ap +T2 oe2

             = -2tep., (("+1)(2p",;l/I.,1)DYn'+i+ "(2"f,.3.),E, S"n'+i] ,., (2.+1)e (4)

          Tpe ==. - zlls(-l;- OoZe2')

             .,. .-2 tep., ((n+i)(2pn,;;.; ,i)DYn'+i+ n(2nl;,2FS'n'+il sin (2n+, i)e (s)

               02X2r '          Oe ==                6p2 ,
             =2tf.II, (("+i)(2p",.+.,i)DYn'+i+"(2";,2gS'n'+i] cos (2n+i)e (6)

                                   '
The stresses relative to the Cartesian axes are given by the equations.

    .. .,, 2.ze=O, [(n+ 1) {(2"+ lp),D. .2` 'n, '+i- 2Eirn'+ 3} + "(2"li,2f!Srn'+ iJ] ,., (2.+3)e (7)

    .. = ne2.2e=O,[(n+1){(2n+;),D..2`,'n'+i+2EE'n'+3}+n(2n ,1.).FS'n'+i],.,(2.+3)e (s)

    r.. = .2 .ze=e,[("+i)(2p",.+. ,i )DYn'+i+ "(2" i,i.).gS'n'+i] sln (2n+3)e (g)

    We have now to construct z,.+, so that it produces on the edges of the strip, the

stresses cancelling the value of opt in (8), and making the value of shearing stress to be

-V(x) after addition of the value of T.. in (9), where -V(x) is to be determined from

the conditlon of the continuity of the normal strain.

    Let x,.+, be the biharmonic function which is resolved as follows:
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                           Z2r+1 = Zt+Zii

           x, i= "III- I,e" aycC},(.xtlltus)-S cos u.du S,Oe ¢(w) co, uwdw

           z" = -II- l,Oe YSiis,cS cos uxdu S,oo [v(zv)-i-b(w)] ,. ..dn (iO)

where

  s= sinh u, S === sinh ay , c= coshu, C == cosh ay , X' = sinh 2u-2u (11)

  ¢(x) = 2 tW., [(" +i) {(?:l:l)2,S.':,},+2ES'n'+3} + "((i211;,l,),.E.Slnii] cos (2n+3)e

  v(x)-2.]:eEe]=,[("{i+)(2.",)2,.i.),?/l'n'+i+"((i+"f,l,),.E.S,rn,'+i,i]sin(2n+3)e. (i2)

  V(x) = unknown function, e = tan-ix .

    In order to determine the value of V-(x), it is necessary to evaluate the strain at the

line of connection with fiange. By considering the condtion, oy=O on y=1, the unit

elongation in the x-direction is written by

          (ex)y--i = -Ii (ax)s-i = -ilr(OSizr +. Oa2yXi + Oo2i,")..,,

                .= :l} s,ee [2 sc.,+,u j,ee ,(.) ,., ..dn+ t.s2, s,"e {,b･(.)

                          -J(w)} sinuwdw+S,co ¢-(w) cosuwdn] cos uxdu (13)

where E==Young'smodulus

     6(x)..2t9.,[(n+i){(2("i++i.),D),,2`.'nl+,i,iE2ES"n'+3}+"((i2+"lt,l,),.E.ii,'+/,i]cos(2n+3)e (i4)

    On the other hand, the unit elongation of the flange on the line of connection, e-. is

given by the equation in such a form as

                  E. .., .2Etff s,ee g(.) .., ..du s,oe N-th(.) ,i. .,,do (ls)

where g(u) is a function of u only and depends on the boundary conditions in the flanges.

    The value ofg(u) is given at 2-3 for typical cases.

    Equating (13) to (15), 3b(x) is given in the form

       j,ee v-(w) sin uzvdw = ,,i.R [2(sc+u)S,Oe ¢(w) cos uwdn

                     +4,2 j,ee eo.(.) ,i. ..dn+.s, j,ee ¢-(w) cos uwdzv] (16)

where

                    R == e"2" [l: s(u)X'+ 4s2]
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Substituting (16) into (10), and considering

    S,oocos((12+n+.,3)),,e..c,oiuwd.=j,Oesin((i+n+.,3)),,e..s,i,n/,uwd.=2z(ei.":ft2"2ii

    S,eecos((12+n+.,3)),,e..co,,,uwd.=j,Oesin((12+n+.,3)),,e..sl,ni,uwd.=.ne-"u22("2(.2+ui]i3!n-1)

    yc cos ux == S [p cos e+t/.li, (u2("2pi"."' + ui"n"ipS"i! 3] cos (2n+i)o]

    s cos ux = #., $nP+)2"ii! cos (2n+i)e

we may now express x,.+, in the form

                     co              x2r+i =Z [LS'n'+i+MX'+ip2] p2""i cos (2za+1)e (17)*
                    ""=2

             LY.'.i = Z {2""irc,p.,DSr.).i+2"+'pt,p.,EX).i} n }i) 1

                    p=o
                                                                 (18)
                     co             Miza).1= Z {2n+iv,p+,DSr.).1+2n+ito,p.,ESr.).1} n20
                    P=.TO

where

                1  2"+irc2p+i == (2n+1)!(2p)! [2nl6n+2p+im2Iln+2p+2-JTIIn+2p+i

                                        -(2n+1)K5n+2p+i+2HEn+2p+2]

  2""ipt2p+i == (2.+1)!1(zp-1)! [4(n+P)4n+2p-4IEn+2p+i-(4mp+1)I2'n+2p-i

             +2(n+P)JI6n+2p-i+(ZP+1)(2n+1)KEn+2p-im2(2n+ZP+2)HEn+2p

                                                       +4F5n+2p+i]

                1  2"+iv2p+i == (2n+2)!(zp)! [4n+2p+3'K2'n+2p+3]

                  1  2"'ito2p+i == (2n+2) ! (zp-1)! [24n+2p+2-Zll'ISn+2p+i+JTIIn+2p+i+(ZP+1)KSn+2p -i

                                                      -2H;n+2p+2]

                                                                  (19)

 Ig ma- !,ee rS,, du, 1･g = j,ee ux-S,,-2udu

                                                                  (20)
 Fg = j,ee (i +Rex-2,")2 .sd. , Hg m- S,Oe (iR-2ey-,`") .sdu , Kg -N S,ee (i-Re.x-2,")2 .sdu

Fg, H,' and K,' represent the effects of the flange and vanish when the perforated strip has

no flange.

    The coeficients in x,.+, are thus determined in terms of those of z,.. To com-

    * As the term containing L(i') i$ without effect on the stresses, it is trivial and will be supposed

omitted.
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plete the cycle, we have now to determine the coeMcients in z,.+, in terms of those of

z2r+i･ , The stresses due to x,.+i are given immediately by the differentiation of (17) as

               ee      a, == -2= [n(2n+1)LSr.'.i+(n+1)(2n-1)MX'.,p2] p2"-i cos (2n+1)e
             ee nMo

      rpe =2.Z.h, [n(2n+1)LSr.'+i+(n+1)(2n+1)M{za'.ip2]p2"-i sin (2n+1)e (21)

             co ,      ae =' 2 2 [n(2n+1)LS'.'.i+(n+1)(2n+3)M{za'.,p2]p2"-' cos (2n+1)e
             n=O

    The first two of these must be cancelled at the edge of the hole by the stresses due to

z2.+2. If we express z2.+2 in such a form as x2.;

                    z,..,=.ze=e,(Dp2(,'niii,'+Ep2(,n'i-ii,']cos(2n+i)e (22)

the corresponding stresses will be given by the equations (4) and (5), replacing the sufix

(r) in the coethcients by (r+1). Putting p=2 and equating the coeMcients the negative

of those in (21), we obtain the fbllowing equations:

                 .Di.rnt'",l'j.:'!27(`,i".'"',')8,..",.#),"(.iir"iX4,i.;,222]24n] (23)

Substituting (18) into (23),

                      co             DSr.+.ii) .. Z {2"+'s,p.,DSr.).,i+2""t,p+,EX)+i}

                      P=L'O

                      oo             ESaV,) = ]Z {2n+iu,p.,DSr.).,+2n+iv,p.,ESr.).,}

                      p=o
            2n+ls2p+1 == 24n+2{2n2n+1rc2p+1+(2n+1)z22n+lv2p+1} (24)

                                                                          .            2n+lt2p+1 = a4n+2{2n2n+1pt2p+1+(2n+1)Z22"+1to2p+1}

            2n+lu2p+1 == -z4n{(2n+1)2n+1rc2p+1+2(n+1)a22n+lv2p+1}

            2n+lv2p+1 = -R4n{(2n+1)2n+IJec2p+1+2(n+1)a22n+!(v2p+1}

By using (24), the coeMcients in z,.+, are determined in terms of those of z,..

2-2 Determination of the Stresses

    To determine the stress function of the perfbrated strip under pure bending, we

start with the stress function z6, of the unperforated strip under pure bending.

                          z6=£t p3(cos 3e+3 cos e) (2s)

satisfies the definition. And the stress function z,, which produces on the edge of the

hole stresses cancelling the values of op and Tpe due to z6, are obtained by replacing

the coeficients in (3) by the fo11owing values:
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                Dil'n:.flt:1'.,3,iel.:tT/,,i6,L,f.S]1,:.M--ga'l (26'

   Considering (3), (17) and (25), the final value of z is given by

         z = fi i}3(cos 36+3 cos e)+Sltl R` t/;.), (dp2,".'.} + ep2,ni.i, +l,..,p2"'i

                                        + m,.+,p2"+3) cos (2n+1)e (27)

where
                                 '                   '                                            24                       24                d2n+i == TA4Z DS"n)", e2n+i =:: Tz4 >l] ESrn)a ･

                                                                    (28)
                                            24                       24                l2n+i = TR4¥LS'n)n , M2n+i= T24¥ MX)+i

    The coedicients d,.+, and e,.., in (28) are obtained by using (24) and starting with (26).

The coeMcients l,.+, and m,.+, are given..by equation

                         co                  l2n+i = Z {2n+irc2p+id2p+i+2n+ipt2p+ie2p+i}

                         p=o                                                                    (29)
                         co                  m2n+i =- Z {2n+iv2p+id2p+!+2"+ito2p+ie2p+!}

                         p==o

The equation (29) being obtained by (18) and,(28).

  The stresses due to x are

op == f p(cos e- cos 3e)- 1-T2 2` .2e.e., ((n+1)(;?.+.,1)d2n+i + n(2ni,i)f2n+i

              +n(2n+1)l,.+,p2"-'+(n+1)(2n-1)m,.+,p2"+'] cos (2n+1)e

rpe == f p(sin3 e+sin e)- 1-T2 A`::..i, ((n+1)(p2n,.l ;,1)d2n+i + e(2np+,i),e2n+i

                                                                     (30)
              -n(2n+1)l,.+,p2"-i-(n+1)(2n+1)m,.+,p2"+i] sin (2n+1)e

a, = f p(cos 3e+3cos e)+ {ltl 2` .zO=e, (("+i)(p2,".+.,i)d2filth.."..(;"i,X/,e2n+i

              +n(2n+1)l,.+,p2"-i+(n+1)(2n+3)m,.+,p2"+') cos (2n+1)e

    The circumferential stress on the edge of the hole is obtained, by putting p=R in

the third of the equations (30),

                   ae =: ilt #.,S2.+i cos (2n+1)e l
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where

                   S, == 2{(9+d,)+3m,2`}

                   S3 = 6d31Z+(3+e,)Z+31,R5+10m,R7

                   S,=15dl,la3+6e,!Z+101,2'+21m,R9 (31)
                   S7 = 28tZ,IZ5+15e,!Z3+211,a9+36m,ait

                   S, = 45d,la7+28e,!A5+361,Zii+ssm,Ai3

                           ---------------------l--------

The value of oe is the maximum at e=OO and zero at e=900.

2-3 The values of g(u) and R

    VSie will determine g(u) and R fbr the three typical cases as shown in Fig. 2. It is

seen that the boundary cond{tions in the flange are same as in the previous tension prob-

lemi>. Therefore the values ofg(u) are the same as these obatined in tension problem.

         T･langey '"" 'g[Casc-1]
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               Fig. 2. Typical structures and these boundary condition.

                                '    The values of R are easily obtained by substituting the values of g(u) into the equ-

                                                       'ation (16). The values ofg(u) and R are written as foIlows.

[Case-I] H-Beam

          1
 g(") = (1+].).x- [(u2b2-ij52)(1+y)+2(i+i2)]

 R = trlt;.lf g.' e- 2" [(1+ v)2u2b2 +(1+")4(3-Y)t (e2"b + e-2"b)+ 5-22V +V2] +(1-,-2et)2

                                                                    (32)
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                                           '            - .t,-, ,, ,, .                               t.                           'where

 E ' yx-:-==.8i/ihssg.nb's+r:/ibO', /;==(,li.-hY.)b!(,1+zYZ.,.,h.bl' (33)

[Case-II] Box-ShapedBeam

"'" ' ' g(u)=4S? , R=t' .s' e'2"C'-b'(1+e-2"b)2+(1-e-2")2 (34)

[Case-III] DoubleBottom
                                                     '                                            '                                                      '         1 (3-v)s-c--(1+v)ub 'g(u)=2(1+1･) -,2 '                                                                  (35)
  R == 2tft(Wlei2ii,£,), [(1+Y)2(3-") (1-e'`"b)-2(1+v)2ube-2"b]+(1-e-2u)2

                 3. The numericai values of the stresses

   The numerical calculation has been carried out for v==O.3. As an example, the

stress distribution around the hole for the H-beam of b==O.5 and tflt.==1 are shown

graphically in Fig. 3, and are compared with those in a perforated strip.
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    The maximum stresses around the hole ae... for

as H-beam, box-shaped beam and double bottom, in

are attached to one web, are plotted in Fig. 4 versus
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of ae!T' (T'==the nominal bending stress at the edge of the hole in the minimum section),

it may be said that the effect of the flange on the value of oe... is smaller than the effect

of the flange on the nominal bending stress at the edge of the hole in the minimum section.

    To show the effect of flange size on the maximum stress around the hole, the values

of ae.../T versus the values of tflt. for H-beam are shown in Fig. 5. The values of

ae...IT decrease as the values of tflt. increase. The rate of decrcase is large in large

values of A and small values of tf!t., and zero in small values of a or large values of

tfltw'

    The effect of b on oe...IT, being similar to the effect of tf/t. mentioned above, is

large in large values of A and small values of b. The values of ae...IT rapidly decrease

to the asymptotic value as the values of b increase.

                                             i

                              4. Experiment

    We made tests with welded steel model of H section. The model is shown in Fig.

6. For the diameter of the hole 30 mm was originally provided; successive machining

operations enlarged it in steps of 20 mm to 90 mm. As the depth of web, the distance

center to center of flange was used. The Young's modulus and Poisson's ratio of steel

were 2.08× 10` Kglmm2 and O.3, respectively. The strains"were measured with electric

resistance strain gage with the length of 2 mm.

    The experimental values of ae!T were plotted in Fig. 3, where T is the nominal

bending stress at the mid plane of the flange for the uncut beam. The diagrams offer

the close agreement between theory and experiments when hole is small, while when hole
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is large the experimental values are somewhat smaller than the theoretical, probably due

to the effect of weld area.

                               5. Conclusions

    The formulae fdr the stresses around the hole in the web of the beam subjected to

pure bending were theoretically derived for the typical three cases, By the results of

numerical calculation, the effects of the flange on the stresses around the hole were illu-

strated. Moreover, the theoretical results were compared with the experimental.

    The conclusions drawn are such as fbllows:

  1) The effect ofthe flange on the stresses around the hole is remarkable in very

large hole and the stresses around the hole are made to decrease by the presence of flange,

but the effect of the flange on the maximum stress around the hole is smaller than the

effect of the flange on the nominal bending stress at the edge of the hole in the minimum

s,ection. The rate of decrease of maximum stress around the hole fdr the increase of

fiange size is large in the small size of flange and zero in the large.

  2) When the flanges of the same size are attached to one web, the maximum stresses

around the hole for three typical types of beams are close.

  3) The experimental values agree with the theoretical for small hole, but the experi-

mental values are smaller than the theoretical fbr the large hole, probably due to the

effect of the weld area.
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