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Foundations for the Boundary Problems$ of the
Polyphase Transmission Lines Considering
the Initial Conditions-1I .

- Masao Kimpo*

(Received November 30, 1963)

This report presents the theoretical analyses for the transient problems of the poly-
phase transmission system, considering both initial conditions and boundary conditions.

I Introduction

The transient problems of the polyphase transmission system have been studied
theoretically by several authors, ignoring either the initial conditions or boundary condi-
tions(1X®, Tt was not possible to estimate the line potentials by previous methods taking
into account of these conditions simultaneously. '

The present report deals with such boundary problems by a newly-established analyt-
ical method. The essential point of the new method are summarized as : diagonal
transformations of the “Line Equations” reduce the multi-conductor system to the group
of independent lines whose mutual effects due to traveling waves along the other lines
may be neglected ; Green functions which are used satisfy the boundary conditions of
these independent lines. ‘

For the purpose of explaining the foundations of this method, it is most convenient
to assume that the system is grounded through electrical sources at both ends of the
transmission lines. In more general cases, for example lines closed by impedances or
admittances, the difficulty and complexity of solutions will increase considerably. Never-

theless the results for such cases will be reported in this paper.

II Analytical Method for a Multi-conductor
System in Matrix Forms

If the matrices [E] and [I] denote the voltages and currents of the point x along
the transmission lines, respectively, the differential equations®X(® of n-phase system are,

as is well-known, expressed by the following matrix forms

~OE 5 m [1]+R] (1)

@

6[” = €12 B+ (G [E]
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where

[E] ={Ey B, » Ea-1,En}
[I1={ 1, Iyroeeeer A A
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[R], [L1, [C] and [G] denote nth degree square matrices whose elements are composed
of resistances, inductances, capacitances and leakances of the lines per unit length, with
the effect of the ground return taken into account simultaneously.

Substituting the Heaviside operator s=8/0¢ for the time derivative, (1) becomes

—4 ["] = {s [L)+ [R1} [i] =5 [L] [s=o]

@
~4 [’] Al 101+ 161} e =5 [C] [Eom]

Now consider the case, in which the lines are closed by general impedances consisting
of any inductances, capacitances and resistances, through the electrical sources. One of
the most general types of this kind has line terminals at which there are shunt admit-
tances [Yol, [Y.] to ground ; and » lines joined to e.m.f.s through series impedances
[Zs], [Z.], respectively. Such a system is shown in Fig. 1.

s N A

Polyphase transmission lines —_—

Fig. 1 Simplified equivalent circuit ofZpolyphase transmissionfsystem.

Suppose that [I§] and [I{’] represent currents flowing in the series impedances [Z,]
and shunt admittances [Y,] at the sending end x==0, respectively. Then the boundary
conditions at =0 are given by
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U =(Damet ], 1= 1Y) (EDams | e
(Eio] = [Z6] [4] + (LD ama /

where

[I(’)] ={16,1’ 16’27 """"" ’ Iém,}’ [I‘S,] ={16C19 16{27 """"" )I(/):W:}
[Eio] ={Ei0; 1, Ei032’ """ > El'O’n}

{Z,] and [Y,] must be square and of order 7.

Furthermore, assuming that [E;=.] and [I;-,] denote the initial distributions of volt-
ages and currents along the lines respectively, and making use of (3), we can readily
obtain the relations, in operational form,

[Zamo] = [sLo-+Ro] '1{ leio] +s [L] [{6’]0} +£[Co] [Ea?-=8]

—{[sLo+Ro] '+ [sCo+Gol } [es=o] @

in which [sLo+Ro] and [sCo+Gy] mean the s-functions of [Z,] and [Y,], respectively.
Substituting the first equality of (2) in (4) and using the transformation of

[e/) = [e] ~ [e:]
fe = (1= W W1 + Lo+ Ro] Co+Gel | Tewd l -
2 U]+ oLt R [5Cer- G | Tead J
the boundary conditions at =0 reduce to
(L) +1@ @D =l e = [ef ®
where
lal == [sL -+ RI{ [sLo + Rol 4 [5Co+Gl } @
Terl={ (L] Uyog) = LRI Lot Ra) = (L) (1 1G] (Ea] )} ®

~1 -1
(o) ={ (U1 + [sLo+ R [sCortGil | len] ~H [U] + Lot R Ce-Ga | T
€)
The relations of the same type with (6) also hold good for the boundary conditions

of receiving end x==[. There are
dle
(A1) (1) = et + el =[] (10)
where

(6] =[sL +R] { [sLetRe] ™+ [sc,+c,1} an
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leo) =sf (L] Upug] ~ (oL +RY ([sLe R L) 11 = (€ [Byeg] )} BT

in which [sL.-+-R,] and [sC,+G.] are the operational forms of [Z,] and [Y.], respectively.

Differentiating the first equality of (2) with respect to z, substituting the second
equality in it and making use of the transformation of (5), the operational equations to
determine the line voltages are simplified to

dz [el]

o — (112 1e) = ]2 ed] + Q] 13)

in which
=s{ 11 -L e —

Q) =5{ 1] (i) = L+R) [C] [Esmol } ”
[£}?=[sL+R] [sC+G]

(13) are the general equations, whose solutions; subject to the boundary conditions,
for example (6) and (10) yield the explicit equations of the transmission line transients.
In order to get the solutions of (13), the matrices involved in it must be transformed
into diagonal matrices®. We start with the existence of the transformation matrix [4]

and the diagonal matrix [q]? which is related by

Lud-t (k12 [u] =(q]2 (15)
Then, putting
[p1t =[] (16)

(6), (10) and (13) become, upon postmultiplying by [#]-?

—“d:ziez’ 1o (g1l =11 { (112 0ed + [Q]} v

(L) tan(ten) =ta1ten, (E23) +(1e) =114, a8

where

la1=[p]"{a] (4], [¥]=1[u]"[0] 4]

A very interesting observation can be made at the point of a diagonal matrix [g]? in
above expressions : (17) shows an equivalent n-phase lines, that are electrically independ-
ent of each other, with the both ends terminated through impedances. This is certainly
desired considering the large degree of simplification that will result from the fact that
no coupling exists between n-phase.

On the other hand, according to (15).
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(] [g?[a) 1= [Z]?

Therefore, the elements of [gl% i.e. g&s, must satisfy the following characteristic
q

equation :
det{g?[U] — [£]2}=0 19)

in which [U] denotes the unit matrix of order n. In other words, ¢¥s (=1, 2,--+-- ,7)
should be the latent roots of {%]2.

Now, to have complete solutions, it is necessary to find solutions which satisfy the
differential equations of (17) and boundary conditions of (18). One can readily check that
the solutions of (17) are

sinh [gr] x+ [A’] +cosh[grlz [B'] + [Gr (2,8) 1 [C']
in which [Gr(x, &) [ is, in the form of Green function,

1

[Gr(2)1=%+1-[g ] sinhlg,] (z—8), 2%

Hence, the solutions for the multi-conductor system are immediately obtained, if [A’],[B’]
and [C’] can be determined so that the terminal conditions of the lines desire.()
Thus, the complete solutions may be written

[e] =Lei] + 1K (g 1| sinh goe{ [a] 1141 = (2] a1 | { Lt 1

=) Tef) = 51§ (Bsinhg 4101 — coshélal  — (] ] ) LK (gD 11 ¢

I
r=1J0

+ coshgra{ (£ [al =[] ¥ 1| { U1~ [ef) = L] 4]

I
— 5 5§, (Greinhad1a) ——eosh g (U1 =[x [»] ) K ()1 141
1

50 |, sinhiq, (e—8) 91 +{ sinbg, (6~ [y ] 20)
in which
m=1,2,.,n
T (g UI—%1%
[K(g) =t 1)

(gh—q?

magr

[12]= 3} (grsinhg[U] +coshgL[6]) [K (gB)] 1

n (22)
(2] = ;-31 (grcoshq,Z[U] +sinhg,l[5]) [K(g?)]
[(Yl=qile: O]+ Q& ]
1 . (23)
{v] =71—smh gr(I—8&) [b] +coshg-(I—&) [U]
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Hereupon, putting [Zs]=[Z,]=1[0], [Ye]=1{Y.]=[0] in above expressions, we have
the operational solutions in the case that the both terminals are grounded to the earth,
through electrical sources.

e =(1 =) Lew] +-% el — 5 (K (@1 {1~

__sinhg(U—2) ], . x _ sinhgx].
sinhgr{ } [éso] +{T sinhg,/ }[e,,]

sinhg, (I—2)(* . sinhgrx
grsinhgyr/ So sinhg-£1Q(€) 1€ -+ grsinhgyl

I
[ sinbg.-010@128) 20
The potentials along the lines will be easily estimated by utilizing the inverse Laplace
transformations for (20) or (24). , »
The operational expressions for the line currents may be derived by combining the
second equality of (2) with (20) or (24).

Although there is no limit to the complexity of the impedance networks at both ends
on the multi-conductor circuit, yet for most practical cases that shown in Fig. 1 is
sufficiently general. Indeed, the procedure followed in setting up and solving the equations
for the waves, as well as for the currents and voltages in all branches of any transition
point network, is the same, so that the method of solution which was given can be applied

generally.

III Method of Numerical Calculations Considering
the Line Losses in Dissymmetrical System

The conventional treatment of transmission-line transients must be based on considera-
tion of no-loss lines and symmetrical system. However, there are many important prob-
lems, in which line losses can not be ignored, such as in the theory of “Long Trans-
mission Lines”. Sometimes their influence is so vital as to- change the characteristics of
the phenomena, and erronous results are obtained if they are not considered. I we do
not mind the trouble of complexity in calculations, mathematical solutions can be found
from (20), taking into account of loss factors of conductors in dissymmetrical system.

But, it is more convenient to use a following method so as to avoid complicated
mathematical calculations in order to get the numerical solutions.

(1) As an example of (20), let it be required to find line parameters, that is self-
inductances, mutual-inductances, self-capacitances and etc., initial distributions, i.e.
{E¢-0], [It=0], terminated impedances and admittances. ’

In the neighbourhood of the wave front, we can assume that s should become
infinitely great. Then, substituting the line parameters in (19), ¢» of the characteris-

tic equation takes the form

Qr=wrs+ﬁr
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in which «» and B, should be constants.
Herefrom, [K(¢?] will be readily founded, by using (21) and (14),
(2) From the values of the terminated impedances and admittances, the matrices [e:],
[€/1,[a] and [b] will be determined from (5), (9), (7) and (11), respectively.
(3) The matrices [er], [e,] and [Q] will be decided from (8), (12) and (14).
(4) Thus, we can find the forms of [%], [x.], [{] and [v] by substituting gr, le:], [&]
and [Q] in Equations (22) and (23).
(5) Now, insert gr [K(@®]1, [es], lef], [, [ef], [x], [x:], [¥], [¥] and [Q] in (20),
noticing the relations of (6) and (10), and integrate with respect to §.
(6) Then the line potentials at any time may be readily calculated by inverse transforma-
tion of (20). ‘
(7) Line currents are also founded if needed, from the first equality of (2).
Of course, in a &ase: “of this kindmuch “time is saVed by substltutmg the numerical
values of line constants directly, rather than reducing the gener‘al equations,
The method in this chapter holds rigorously only }\Qtr small “values of # but under
actual conditions electrostatic transients are usually over within a fraction of a millisecond.
In above method, it should be only required to evaluate the coefficients of operator “s”

with different orders. Thus, this method would no doubt be of much use from an

engineering point of view.

IV Numerical Examples

Theoretical analysis given in previous chapter is based on consideration of # line wire.
For simplicity, this chapter will deal with numerical calculations of two-conductor system.

The case to which this theory will be applied is induced lightning surges or free
oscillations of the lines. When a charged cloud approaches transmission lines, charges
appear on the line conductors as bound charges. Now, if the cloud charge is suddenly
removed by lightning discharge, the bound charges on the lines can not be fixed and the
released bound charges become traveling waves. As an approximate analytical method in
such a case, suppose that the initial voltage E¢-o is uniformally distributed and there can

be no current initially for each line wire.

Then, provided that the conductors are of the 1
different shape and dissymmetrically arranged, as : ®
shown in Fig. 2, take the following: : . 2
. le—8m

Lu=170 mH/km, Cy,=000666 uF/km

L2z =152 mH/km, C1,==0.00746 uF/km
Liz=L=0.232 mH/km,

C1,=C,=-—0.00102 uF/km

Ri1=Rn=R1:=Rs =10 Q/km Ground surface

(ground return resistance) ! ’

Curves of (24) have been plotted in Fig. 3.

for overhead lines 30km long, short-circuited to

25m 15m

Fig. 2 Group of conductors ot
radii 1 cm and 1.5 cm.
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Fig. 3 Potentials of the lines, grounded to the

earth, as functions of time.
Solid curves: Waves on line wire 1.

Dashed curves: Waves on line wire 2.
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Fig. 4 Potentials of the lines, closed by resistances,
as functions of time.
Solid curves: Waves on line wire 1.
Dashed curves: Waves on line wire 2.



30 o M. _Kn)o

the earth. In Fig. 4 are illustrated the potentials of the lines, 30km long, grounded through

the resistances at both ends. For this particular example the constants were :

Ro,1u=R,1=335
Ryy0= Re,22=30-0 O
Ry 1:=Ry,21=Re12=Re,01=0 Q

There is one aspect of Fig. 3 and Fig. 4 worth pointing out. Each of curves varies
with the amplitude of 2//g (g=light velocity). This reason is in the fact that it requires
2l/g to go and return for a wave traveling along the line having length . It should be
also remarked that the fast velocity g: coincides with the slow velocity g, although
theoretically the waves moving along the lines have two different velocities and residues

will appear in the drived multi-velocity components(D.

¥ Conclusion

From the foregoing analyses, there appear to be no plausible explanations of the
phenomena, although the general solutions of n-conductor system are derived, considering
the initial and boundary conditions. By way of illustration of physical concept, the
conditions must be simplified, noticing that the conventional traveling wave theory have
been based on symmetrical no-loss lines. Physical considerations of Equations (20) for

no-loss lines, will be clarified in next report. TS
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