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Behavior of Traveling Waves at Fault Point -

Masao Kipo* and Yoshio INAGAKI*

(Received June 29, 1963)

In order to discriminate the surge characteristics for a case of breaking fault,
generation phenomena and reflected traveling waves on transmission lines of finite
length must be considered corresponding to various conditions of the transition point.
This report presents the analytical method of reflection and refraction waves propa-
gating along the transmission lines, at a fault point.

I. Introduction

When traveling waves on a multi-conductor system reach a fault point at which there
are abrupt changes of circuit constants, as open or short-circuited, a part of the waves is
reflected back on the lines, and a part may pass on to other sections of the system. The
two waves to which it gives rise at the transition point, such as a fault point, are called
the reflected and transmitted waves, respectively. Such waves are formed in accordance
with Kirchhoff’s law and they satisfy the differential equations of the lines.»

This report shows how the behavicr and reflection of multi-conductor waves at a point

of breaking fault may be calculated.

II. Method of Calculation of Reflection or Refraction
Waves at a Fault Point

Fig. 1 shows a system of # transmission line conductors, parallel each other. Suppose
that the conductors from 1 to %k are broken at a point P, conductors from (m-+2) to &
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Fig. 1. General transition points on ‘multi-conductor system.
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are terminated through series impedances.

When the incident wave V, approaching along the line conductor reaches the transition
point P, it will give rise to a wave V) reflected back on the line; transmitted wave Vj
on the line. Let the transition point P be taken as the origin of coordinates, so that all
the approaching incident waves are traveling in the positive direction. If all lines will be
taken as ideal, or no-loss, the voltage and current waves are related by
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in which [Y] is the admittance matrix, whose elements Y., and Y,. represent the self-
admittance of conductor 7 and mutual-admittance between 7 and s, respectively. Suffices
A and B denote the left-hand and right-hand directions of the point P. Convenient
abbreviated notations used in foregeing analysis?® will be also adopted in cases, where no
confusion can arise.

Hereupon, partitioning [¥] into sixteen submatrices in the same way of our previous
report,® each of the submatrices will be represented by a single symbol.

[Y,] [Y.] [Yi] (Y] |

1Y (Yl (Y] (Y |
V] = e (8)
LY (Y (¥h) [Yid]
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And eliminating the current wave matrices from (1), (2), (3), (4), (5) and (7), we can
readily obtain

[Y5] [VB]1n’1_1+ (¥4 [VB]mTl+ Y7 [Valm:

=[$ YUY (Va2 = VA )20l [Vl o (Y7 (Vi me— (VA meo))

[T v Vi =[] §]iva Vil

9
where
(Y4 =Y+ )]
The equations (1), (2) and (5) give
SAIQ AR ARPEN AT ARSI EPENS AN AT IR A1 BN
+ Y (Ve o+ (Vi) = 0] (10)

Substituting [£4] m: [14] mz of (1) and (2) in (6), and making use of (7), there results

A SO ANENZFPE AN APSF S AR
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On the other hand, from (1)~(7) following simultaneous equations can be derived:
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in which

(Y]] =Y [3 %:l

Noticing that [Y,], [Yi:] and [Y,s] are square and solving these three simultaneous
equations, we can obtain
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Therefore, substituting (13) in (9), (10) and (11) and rewriting them, we get finally
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—(U1=1{Z} [YuD) [VJ]WFZ_{[U] + [Zq] (Y] + 1Y)} [£:]
Since, [vi], [vs] and [vs] are necessarily square and of different order, it follows that

[Vé]ml_ =l =l PR VA DR ARANTARITAD %

(15)
(VA 2= (loa] = loa] [02] 7" L] )t ({e2] = [ps] [02] 7 [o1])

where
lo1] = (i) — (w2l Tvs] 7 wa], (2] = [ws] — [wa] [ws] 7 [
[os] = (w7l — [wsl [vs] 7 wal,  [pa] = [wo] — [ws] [ws]~* [w6]
l61] = [{1] — [v2] [ws) (L], [o2] = [{s] — [vs] [ws} (<]

Using the relations reduced above, the reflected voltage waves at a fault point can be
obtained in matrix form.

From (7) and (14)
(V) g =[5 1] e = {0a) = ) V4] 1 = [v6) (VAL gz} = [Vl m, (16)
According to (13) and (14)
(VA= 182] [ ] €] + (LA = 2] bl 2 D) [ VAL 1
(L) = ] ) 6] [VidD an

It is evident that the order in which the unknown are found is immaterial, but in
the studies of surges the voltage matrix [VZ] is usually the first to be calculated, and
from it the other quantities are readily found if needed. If in a particular instance it is
desired to find only the transmitted waves, it must go through all the calculations outlined
above.

III. Special Cases

By way of illustration of the general equations of reflection and refraction, consider
three phase system, where two incoming lines are broken and one of them is bussed to
the third line. Then

[Z,] = oo]
m=2
\ Yiu Y, Yo
[Y]= Yu Vi Yu |
‘\ Y Y Yy
Neglecting from (m+2) to n and substituting these equations in (9)~(17), there results
Vi, 6= (Y1, Yy3— Y 3Y322) -0
Vi, 57 (Y13Y 0y —Y11Y33) 0
Vi 2= (Y11 Y~ Y1, Y )0
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in which

- 2{(0:=Y3:) Vi 4+ (8:— Y33) Vs, u}
Y31(Y12Y23— Y13 YZZ) -+ YSZ( Y13 YZl— Yll YZS) + (61 +62) ( Yll YZZ_ Y12 YZI)

0

0= Y22+2Y32"‘ Y12( Y+ Y:n)/Yu
2= Y23+2Y33*‘ Yls( Y21+ Yal)/ Y

Thus we can obtain the solutions for a given problem by an ingenious interpretation
of the above solutions. However, it is more convenient to use a following method so as to
avoid complicated mathematical calculations in order to obtain the reflected- and refracted-
waves. ' ‘ '

To show our conventional method, let us start with Fig. 2. Now, two incoming lines
in four conductor system are broken and one of them is bussed to the third line. When
an incident wave e, reaches the transition point, it is reflected and refracted. Throughout
this chapter, unprimed quantity, such as e, will denote incident wave; single-primed
quantity, such as e/, reflected wave; and double-primed quantity, such as e, transmitted

wave.
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Fig. 2. Reflected and transmitted waves on four-conductor system.

Then, in accordance with Kirchhoff’s laws, the voltage waves are related by the surge
admittances of the lines.

Yin(ei—el)+Yi.(e;—es)+Yi(es—eh) +Yi(e,—e,) =0

(Yau+Ys)(e—el) +(You+Yi)(e:—et) - (Ya+ Yi) (es—e5) +( Yo+ YY) (e, —eh)
=Y,el!+ Y +Yel+Y ef

Yi(ei—e)+Y(e,—e)+Y(e;—ef)+ Y,y (e, —eh)
=Y e'+Yel+Y; el +Y, el

YieV+Y.ef/+Y e +Y e/ =0

Yoe/!+YneY+Yyed+-Y,el=0

e,+ej=e,+ei=¢y

e,-e=e/ (18)

The solution of these simultaneous equations gives
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e ={f(Y4Yu— YY) +g(YuYi~Y{: Vi) +h(Y Y, — Y. Yi)}/4
eh=—e,+e;+e
= { (Y3 Y= Y Yo +0( Y0 Yie— Vi Y o) (Y1 Yo — Y0 Y40} /4
={f(Y4 Y=Y Yi) + (Vi Yau—Yu Vi) +h(Yu Yi— Y.YD} /4 (19
in which
Yi;=Yu+ Y, Yua=Yu+Yy
45= Yot YVios+r:1 Yo+ (I+ks) Vi -2Y 55
w=YuteYa+eY+2Yy
Yie=£: Y+ A+£)Y 12+2Y s
(=8 Y 15, Y 15-2Y 4y
A=Y (Y Y= YLYi)+ Y5 (YuYi— YY)+ Yu (Y Yi— Y1, Yis)
f=Yne,+2Y 6+ (Yi3—Y)es+Y,e
g=(Yu+Ys)e,+2( Y+ Yi)e,—~{Yo— Yo+ Y+ (1+8s) Yistes
+(Yu—#:Ys1—£,Ys2)e,
h=Y,e,+2Y e, —{&. Y u+(1+ks) Yistes— (8. Y1+ Y 120y
k1=k(Y1:Y 35— Y13Y55), ke=k(Y 12 Y2 — Y1, Y,)
ks=k( Y13 Y —Y11Y2s), &=6(YuYu—YuYu)
£=1/(Y11Y—Y1:Y2)
Thus, if incident voltage wéves are given at the transition point and all reflected

voltage waves are known, then the transmitted waves can be readily found from above
equations.

Of course, in a case of this kind much time is saved by writing the transition point
equations directly, rather than reducing from the general equations. The derivation of the
general equations is principally of value in serving as a model for procedure. We must
find the most profitable method to solve each case.

IV. Conclusions

The equations in this report hold rigorously only at {=0 or no-loss lines, but under
actual conditions the electrostatic transient is usually over within a fraction of a micro-
second, and thus our method would no doubt be of much use from an engineering point
of view.

The circuit shown in Fig. 1 is a representative of those that simulate many actual
conditions. In performing reductions from the general equations, great care must be taken
in evaluating the order of matrices.

Most of actual faults encountered in transmission system reduce to relatively simple
combinations under surge conditions. For this reason, it is quicker and there is less chance
for error if the results are derived directly from the transition point equations of the actual

case, as described in Chapter III.
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