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A Trial Production on the Integral II
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(Received November 30, 1962)

In this paper, we define the DC-integral and Dy«C-integral by para ‘absolutely con-
tinuous functions (ACP functions and ACPy functions) and study properties of the DC-
integral and the D4C-integral. If a function f(x) is DC (o7 D, C)-integrable, the value
of the DC (or D4«C)-integral of f(x) is unique. If a function f(%) is Dy4C-integrable on
an interval I’ then f(x) is DC-integrable on I, and (DC){ f(x)dx=(DyC) | reas.
But there is a function which is DC-integrable and is not DyC-integrable. If almost every-
where f(x)=g(x) in an interval I, and if f(x) is DC (or DxC)-integrable on I, then
g(x) is also DC (or DyC)-integrable on 7, and (DC) SI F(x)dx=(DC) SI g(x)dx (or

(D*C)SI f(x)dx:(D*C)SI g(x)dx). If both £(x) and g(x) are DC-integrable on 7, then,
for any pair («, 8) of constants, af(x)+Bg(x) is DC-integrable on I, and

DO (@f(a)+8g(x))dx=ar DO fx)dz-+8-DC) gCma.

The same proposition with DC in place of DC in the above holds good, too. If JSlx) is
DC (or D4C)-integrable on an interval I, then f(x) is DC (or Dy C)-integrable on the
interval [a, 5] for any @, b e(I—A), where A is a enumerable** set. If f(x) is DC-in-
tegrable on each of two intervals [a, ¢] and [c, 4], then f(x) is DC-integrable on [a, b]
and (DC)SZ f(x)=(DC)SZ flx)dx+- (DC)S: S(x)dx. The same proposition with DsC in
place of DC in the avobe holds good, too. A function f(x) which is ® (or Oy -integra-
ble#** on I is DC (o7 DyC)-integrable on I and we have (DC)SI f(x)dx:(@)gl Ffx)dx

{or (D*C)SI f(x)dx:(@*)gl flx)dx)., If Sf(x) has the principal value on DC-integral
on an interval [, b7, —ie. if there exists Eg((DC)S _sf(x)dx—i—(DC)S . f(x)dx> for a

¢ b
point c(a<c<b), then f(x) is DC-integrable on [a, 4] and
@0’ Fdz=lim((DC)| “Ef<x)dx+(Dc>S f(x)dz.

¢ b
a o+

‘The same proposition with D4C in place of DC in the above holds good, too.

Throughout this paper, all functions are 1-valued, real valued, and real variable fun-
ctions, and, open sets and closed sets meen open sets and closed sets in the space consist-
ing of all real numbers respectively unless otherwise specified. The closed interval {x]
a<x<b} and the open interval {#]a<x <5} are represented by [a, b] and (g, b) respectively.

* Department of Mathematics, College of Gencral Education.
** enumeable or finite.
*** P -integrable =Denjoy integrable in the wide sense.
D y-integrable =Denjoy integrable in the restricted sense.
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4. DC-integral and D.C-integral
Theorem 4.1. A function F(x) which is ACP* on [a, b) almast everywhere ap-
proximately derivable®* in [a, b].
[Proof] Let Ao ‘be the non-valued domain of F(x) and G;(i=1, 2, 3, ---) be open sets
such that G:C(a, b) & GiDAv & mG;—0 (i—). Since F(x) is ACP on [e, b), there
is a function Fi(x) which is ACG on {e, 8] such that Fi(x)=F(x) for every xela, b]
—G;. Set E;=[ab]—G;, then almost all the points of E; are points of density for E;.
Since F(x)=Fi(x) for every xeE;, F(x) is apploximately derivable at almost all xekE;.
Hence F(x) is approximately derivable at almost all xe UE;. As m(la, bl —UE)=0,
F(%) is approximately derivable at almost all x€ (e, b]. ' '
Theorem 4.2. Let F(x) and G(x) be two functions which are ACP on [a, b], and
set 0(x)=F(x)+G(x)**, then almost everywhere @ sp(x)=F'ap(%)+G'ap(%) in [a, b].
[Proof] Each of F(x) and G(x) is almost everywhere approximately derivable in (e, b).
Set A={x|F(x) is approximately derivable at ¥} and B={x|G(x) is apploximately
derivable at x}, then m([a, 8] —(ANB))=0. And 0(x) is approximately derivable and
O op (%) =F"ap(£)+Gap(x) at each xe(ANB).
Theorem 4.2. Let F(x) and G(x) be two functions which are ACPy on [a, b],
and set 0(x)=F(x)+G (%), then almost everywhere &' (x)=F'(x)+G'(x) in [a, b].
Definition 4.1. A function f(x) is termed DC-integrable on an interval I if there is a
function F(x) which is ACP on I and which has almost everywhere F’ap(x)=/f(x).
Definition 4.1. A function f(%) is termed DyC-integrable on an interval I if there isa
function F(x) which is ACPx on I and which has almost everywhere F/(x)=s(x).
Definition 4.2. F(x) in Definition 4.1 is called indefinite DC-integral of f(x) on L
Definition 4.2’. F(x) in Definition 4.1’ is called indefinite DyC-integral of f(x) on I

Theorem 4.3. Let f(x) be a function which is DC-integrable on [a, bl. If both
F(x) and O(x) are indefinite DC-integrals of f(x) on [a, b], then we have

Fb)—F(a)=0(b)—0(a).
[Proof] Set
T(x)=F(x)—0(x),

then #(x) is ACP on [, b]®F*  And, for almost all xe {a, 8],

* Cf. [2].
#k Let f(x) be a measurable function defined on a measurable set £ and let xo be a point of
density for E. If %o is a point of density for {x|1-6<F(x)—F(x0) x—%0 <Il+&, x€E} for
a number [ and any &0, then [ is called the approximatly derivatiue of f(x) at x, and
we denote it by fép(x)=1.
% 4 A is the measur of A.
##0k Cf, [2], Definition 2.4.
ekt Cf, [2], Theorem 3.5.
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¥ ap(X) =Fap(2) ~ @ op(2)%
And, from the assumption,
Flo(x)=f(x) ae. in [a, 8],
Ow(x)=f(x) a.. in [a, b].
Hence we have
'p(x)=0 ae. in [a b].
Hence #(x) is a constant.** Hence we have
7(b)—7w(a)=0
Hence
(F(0)—0(b))— (F(a)—0(a))=0.
Hence we have
F()~F(a)=00)—0(a). Q.E.D.
By a similar argument, we have the following theorem.

Theorem 4.3. Let f(x) be a function which is DyC-integrable on [a, b]. If both
F(x) and 0(x) are indefinite DyC-integrals of f(x), then

F)—F(a)=0(0)—0(a).

Difinition 4.3. Let f(x) be a function which is DC-integrable on I=[a, 5] and F(x)
be a indefinite DC-integral of f(x) on I. Then, F(b)—F(a) is termed definite DC- mtegral
of f(x) over I and is denoted by

(DC)SI f(x)dx or (DC)S: flx)dz.

Definition 4.3’. Let f(x) be a function which is DyC-integrable on I=[a, 5] and F(x)
be a indefinite DyC-integrals of (%) on I. Then, F(b)—F(a) is termed definite DsC-
integral of f(x) over I and is denoted by

(D*C)SI f(x)ydx or (D*C)S: f(x)dx.

Theorem 4.4. If f(x) {is D*C integrable fon [a, b], then f(x) is DC-integrable on
[a, B] and

@O F1)=DuC)] F(wrax.

[Proof] From definitions.

Theorem 4.5. Let f(x) and g(x) be two functions each of which is defined almost
everywhere in an interval 1. If almost everywhere f(x)=g(x) in I and if f(x) is

* Cf. Theorem 4.1
*t Cf, [2] Theorem 3.12.
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‘DC-integrable on I, then g(x) is also DC-integrable on I and

(DC)SI f(x)dx=(DC)SI g(x)dx.

The same proposition with D«C in place of DC holds good, too.

“Theorem 4.6. If two functions f(x) and g(x) are DC-integrable on an interval I,
then any linear combination af(x)-+bg(x) of these functions is DC-integrable on I
.and we have

(DC)SI (af(x)+bg(x))dx=a(DC)SI f(x)dx+b(DC)SI g(x)dx.

The same proposition with DxC in place of DC holds good, too.
[Proof] Let F(x) and G(x) be indefinite DC-integrals of f(x) and g(x) on I respective-
ly. Then, 0(x)=aF(x)+bG(x) is ACP on I and we have

ap(X)=aF ' op(2)+bG'sp(x) a.e. in L
And,

aF’ () + G sp(x)=af(x)+bg(x) ae. in L
Hence

(DC}SI (af (%) +bg(x))dx=a- (DC)SI F(x)dx+be (DC)SI g(x)dx.

By a similar argument, we have a proof of the same proposition with D4«C in place
.of DC.

Theorem 4.7. If f(x) is DC-integrable on I=a, b], then f(x) is DC-integrable on
le, d] for any pair (¢, d) (c,de(I—A)) where A is an enumerable set,
The same proposition with D«C in place of DC holds good, too.

[Proof] The non-valued domain* of indefinite DC-integral of f(x) on [, 4] is an
-enumerable (or finite) set.

‘Theorem 4.8. If f(x) is DC-integrable on each of [a, b] and [b, c], then f(x) is
DC-integrable on [a, c] and ‘ '

@O\ fxmdz—D0)] f)dx+ DO f(x)dx.
The same proposition with DyC in place of DC holds good, too.
'Theorem 4.9. If both f(x) and g(x) are DC-integrable on [a, b] and if f(x)>=g(x)

.almost everywhere in la, D], then
‘ b . b .
@O fx)dx=DO) g(x)dx.

The same proposition with DyC in place of DC holds good, too.
[Proof] Since f(x) is DC-integrable on [a, b], there is a function F (%) which is ACP
on [a, b] such that F’/sp(x)=f(x) almost everywhere in [a, b]. And, since g(x) is DC-

* Cf. [2], Definition 2.3.
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integrable on [, b] there is a function G(x) which is ACP on [a, 8] such that G/ap(x)
=g(x) almost everywhere in [@, b]. Set O(x)=F(x)—G(x) and o(x)=f(x)—g(x),
then @(x) is ACP on [a, ] and @sp(x)=¢(x) almost everywhere in [a, B]. ¢(x) is.
non-negative almost everywhere in [a, 8]. Hence, by Theorem 3.11 in [2], O#(x) is

monotone non-decreasing. Hence

ng(b)—w(a):(DC)S: o(x)dx= (DC)S: f(x)dx—(DC)S: g(x)dx,

Hence we have
@O far=mO gtndx.

By a similar argument, we have a proof of the same proposition with DsC in place:
of DC. ‘
Theorem 4.10. If a function (x) defined almost everywhere in [a, b] has f(x)=0
almost everywhere in (a, b], f(x) is DyC-integrable—and hence ﬁC-integmble——and

(D*C)S: f(x)dx:(DC)S: F(x)dx=0.

[Proof] A function F(x) having F(x)=0 for all xe¢[a, 8] is a indefinite D4C-integral. v
of f(x). And F(b)—F(a)=0. '
Theorem 4.11. Let f(x) be a function defined almost everywhere in |a, b].

i) If A is a set which is dence in an open interval (a, a’) (a<a’<b) and if
f(x) is DC-integrable on each [s, b] (SeA) and if there is

lim* (DC)S: f(x)dx (zo0),

(s,5€A)>a

then f(x) is DC-integrable on [a, b] and
@O’ faydz = 1im @O s,
a {sIs€A)>a 8

i) If B is a set which is dence in an open interval (¥,b) (a<¥ <b) and if f(x)
is DC-integrable on each [a, t] (teB) and if there is

im (DO f(x) (o0,

(t | tEBY>b

then f(x) is DC-integrable on [a, b] and

(DC)S: f(x)dx = lim S” f(x)dx.

(tl1 1€B)>b Ja
iii) If A and B are sets which are dence in open intervals (a, ') and (¥, b)
(a<a’' <l <b) respectively and if f(x) is DC-integrable on each [s, t1 (seA, teB)y

and if there is ‘

* Cf. [2], Definition 2.1.



122 Y. Havasus

lim (DC)S” F(R)dx (%),
(s) S€A)>a 8
(t14€B)>b

then f(x) is DC-integrable on [, b] and

(DC)S" f(x)dx= lim (DC)Sz f(x)dx.
a (s[s€A)>a 8

Ct1£€BY->b
The same proposition with DsC in place of DC holds good, too.
TProof] i) Let {a.} be a sequence such that @i>a:>-—a & a,eAln=1, 2, ).
Since f(x) is DC-integrable on [@,, 81 (n=1, 2, --), there is a function F,(x) which is
= ACP on [@, b] such that
(Fo)lap(x)=Ff(%) ae. in [as, b].
We may assume that Fu(@n-1)=Fn-1(@n-1). As there is m{DC)S:” f(x)dx, hence there
is 7E)rar‘}(l"n(b)—Fq.(an)). As Fi(b)=F:(b)="-, hence there is }g{lo Folaw).
Set y
F(a)=lim Fo(an), ‘
F(x)=Fi(x) for xe(the domain of definition of Fi(%)),
F(x)=F,(x) for xe((the domain of difinition of F.(x))
—(the domain of definition of Fy-1(x))) (#=2, 3, --).
We shall paove that F(x) is ACP on [e, 5.
The non-valued domain Do of F(x) is equal to U (the non-valued domain of Fr(x)),
hence Do is a scattered set. "
We shall prove that F(x) is continuous on the domain D=la, b1—D, of the defini-
tion. It is obvious that F(x) is continuous at each x(xeD & x%a). We shall prove
that F(x) is continuous at x=a. By the assumption,(xl}ierg_f(x)=F(a). Hence, for any

£>>0, there is a number 8>0 such that [F(x)——F(a)I<——%— for all x(x—a<d & xeAND).
We may assume 6<a’—a. For any peD—A0<p—a<d), there is an integer # such
that pe (@, b). Since Fo(x)=F(x) for every %€ (the domain D, of definition of F,(%x)),
+we have ]F(x)—F(a)]<—%— for all x(x—a<d & xeAND,). Since F,(x) is continuous

on D,, we have [Fn(p)—F(a)Ig——;—Qs.

Hence F(x) is contiunous at @. Hence F(x) is continuous on D. From the fact that
F(x) is continuous on D and the definition of F(x), we can easily conclued that F(x) is
para contiunous on [, b].

Secondly, we shall prove that F(x) is ACP on [a, 6].

Let G be an open set which contains the non-valued domain of F(x). Then. G' =G
—((Ua,)UaUb) is also an open set which containts the non-valued domain of F(x).
And,nG’ N[a., b] is an open set which contatins the non-valued domain of F,(x). Since
F,(x) is ACP [a,,b], there is a function @,(x) which is ACG on [a,,%] such that
0,(x)=F,(x) for each xe([as, b]—G’). Represent the open set G'N[a,, b] by the
union igl(c,-,cé)((c,-, D N(es, €))=0; if i27) of an enumerable of open intervals, and set
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Ta(X)=0n(x) for xe([an, b]—g(ce, c)),

On(c})—0(c;

Fa@) =0a(e) +LAD=TED 50y for xe(e, o),

(1=1,2, --),
then #,(x) is ACG on [a,, b]. And, 7.(x)=",(x) for each xe[Max(@n, @), b]. Set
v(@)=F(a) (=lim Fu(a.)),
v(2)=0,(%) for xelan, bl.
"Then, we can prove that #(x) is continuous on [@, b] by a fact that F(x) is continuous
on D. Hence #(x) is ACG on [, b]. And, #(x)=F(x) for each xe([a, b1—G’). As

G'CG, v(x)=F(x) for each x¢([a, b]—G). Hence F(x) is ACP on [, b]. Hence
J(x) is DC-integrable on [a, &) and

(DC) S: f(x)dx=F()—F(a)=F() ~§2°Fn(dn5 =E2°(Fn(b) —Fyu(an))
=1im(DC)S: Flaydx= llilg}l)(DC)S: Flx)dx.

We can prove ii) and iii) by similar arguments.

By similer arguments, we have proof of the same proposition with D«C in place of
DC.
Theorem 4.12. A function f(x) which is DC-integrable on [a, b] is necessarily
measurable and almost everywhere finite in [a, b).
[Proof] Since f(x) is DC-integrable, there is a function F(x) which is ACP on [a, 5]
such that almost everywhere F/5,(x)=f(x) in [a, b]. Let A be the non-valued domain
and let {Gs|n=1, 2, -~} be a sequence of open sets such that G,DA(n=1, 2, --) &
G,C(a, b) (n=1, 2, ---) & mG,—~0. For each G,, there is a function F,(x) which is
ACG on [a, &) such that F,(x)=F(x) for each xe[a, b]—G,. Set H,=[a, b]1—G,,
then almost everywhere (F,) ap(2)=F’sp(x)=f(x) in H%. Hence fizn(X)** is measurable
and almost everywhere finite in H,. Hence f(k; z.,(%) is measurable and almost every-
where finite in LJH,',,. As m([a, b]—gH@):O, f(x) is measurable and almost everywhere

finite in {a, b].

5. Relations with Denjoy integral and principal value of integral

Theorem 5.1. If a function f(x) is D-integrable on (a,b], then f(x) is DC-integrable
on {a, b] and

(DC)S: f(x)dx=(i®)S: f(x)dx.

[Proof] Any function which is ACG on [a, 61 is ACP on (e, 5.

* Cf. The proof of Theorem 4.1.
** Let ¢(x) be a function defined on a set X and let X’CX. We denote the following
function ¥(x) defined on X’ by ¢x/)(x): ¥(x)=0¢(x) for each x¢ X".
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Theorem 5.1'. If a function f(x) is Dy-integrable on [a, b, then f(x) is DyC-in-
etgrable on [a, b) and

DO, fax=@0\ fwax.

Theorem 5.2. A function f(x) which is DC-integrable and is non-negative almost
everywhere in I=[a, b) is necessarily L-integrable* on I,

[Proof] Let F(x) be an indefinite DC-integral, then F(x) is approximately derivable
almost everywhere in I and

Flop(x)=f(x) ae.in L

Since f(x)>>0 a.e. in I, by Theorem 3.9 in [2], F(x) can be extended to a function
@(x) which is ACG on [a, b]. Since

@ op(X)=F'pp(x)=f(x) a.e. in [,
we have

@, F)dz=0(6)—0(a)=F(5) ~F(@)=(DC) f(x)dx.

Theorem 5.3. There is @ function which is DC (or D«C)-integrable and in not D
(or Dy)-integrable on [a, b].

[Proof] There are many examples.
(Remark) Example 1. f(0)=0,

f(x):-}c— for 0<|z|<1.
O, Fwas=mO | fmdz=o.
f(x) is not D-integrable on [—1, 1].
Example 2.

: 1 -3 -1 -2
f(x)= 2ing 2 for 2%n <z o%n & x=¢ om 0.

—1 —3 —~2 3 1
JF(x)=0 for W<x<§m or x=42—2n— or —Z—m<x<—ﬁ~
or x=72§;— or 'x=0,
1 1 3 2
f(x)=2mx__2 for Hon x< in & oz
(n=1, 2, 3, --*).

3/

(D*C)S :/4f(x)dx=(DC)Sﬁ_/:M F(x)dx=0.

f(x) is not D-integrable and also has not the principal value* on ®-integral.

Theorem 5.4. If a function f(x) has the principal value on DC-integral on [a, b];

* Q-integrable = Lebesgue integrable.
b
<

# 1im()] rwar+ @) a0,



A Trial Production on the Integral IT 125

t.e. if there is
b c—& b
@Y rear=tim(@0| " +@Of  fenany
for a number c(a<<c<b), then f(x) is DC-integrable on [a, b] and
@O\’ rwdz=@)| rwaz.

The same proposition with D«C in place of DC holds good, too.
[Proof] Set

F(x):(DC)S: Jf(®)dt for each x(e<<x<c) & f(¢) is DC-integrable on [%, c]),

F(x)::(lj’)S: f(x)dx—(DC)S: JF(&)dt for each x(c<x<b) & f(¢) is DC-integrable
on [x, b]).

Tnen, F(x) is continuous on (a,0) —A where A is a scattered set** And

m ) o (F(c+e)—F(c—e))
(Ejc+E& c¢—-EE(the domain of definition of F(x))>0
. b b c—-E&
=1é§g((g>ga f(t)dt—(DC)SH&f(t)dt——(DC)Sa fHat=o.
Hence F'(x) is para continuous on [a, 8]. We can easily iprove that F(x) is ACP on
[e, b]. And

Flow(x)=f(x) a.e. in [a, b].
Hence f(x) is DC-integrable on [a, #] and

@O fmar=F&)~F@=@) fimas—mo| rwat—mo) | rwar

b
=@\ roax.
c a
We have a proof of the same proposition on D«C by a similar argument.
Theorem 5.5. Given a non-decreasing sequence {f,(x)} of functions which are DC-
integrable on an interval I and whose definite DC-integrals over I constitute a sequence:
bounded above, the function f(x)=1lim f,(x) is DC-integrable on I and

(DC)SI f(x)dx:li;n(DC)SI ful®)dx.

The same proposition with DxC in place of DC holds good, too.
[Proof ] falx)—f1 () (n=2, 3, =)
is DC-integrable on 7, and f.(x)—/f1(x¥)>0. Hence, by Theorem 5.2, fo(x)—fi(x) is D-
integrable on I. Since DC-integrals over I of {f.(x)|n=1,2, ---} constitute a sequence.

bounded above, there is a number G such that

¢c—-& b
* Now we write (&] There are both (DC)S fdx and (DC)S 6_fdx)-—>0 by &—0.
a c+

¥ A3,
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6>@O) famrax (=1, 2,%.
‘Hence

D (fal®)=fi(2))dx= DO (fulm)~fi(x))dx

=(DC)S: f,.<x>dx—<Dc>S: fl(x)dx<G—(DC)S: filx)dz.
Hence

{(‘,D)S:(fn(x)—fl(x))dxln=1, 2, } is bounded above, hence

D (£l —A@)dr=lim (D) (Fu@) ~Fi()d.
Hence

@O (£ () —fi(@)dz=DO)] lim (fu(®)—fi(x))dx
=m0 (a0 £ (#)dz=lim@DC) " fulm)dz—DO, fia)ds.
Hence we have
@O’ firyar=tim@O|’ fam)dx.

We have a proof of the same proposition on D4«C by a similar argument.

Theorem 5.6. If a function f(x) is DC-integrable on [a, b], then, for any pair
(@, ¥) (a<a/ <¥/<b), there are &’ and V' (a'<a' <b"<V) such that f(x) is L-in-
tegrable on {a, V''].

[Proof] Let F(x) be an indefinite DC-integral on [a, b]. Since the non-valued domain
A of F(x) is scattered, A is nowhere dence. Hence, for ' and ¥, there are a{ and &
(& <d<Bi<V) such that F(x) is ACG on [af, bi]. Hence f(x) is D-integrable on [af,
1]. Hence there are @ and &’ (@i<a”’ <6< b!) such that f(x) is L-integrable on [a”,
o).

The integration by parts, Stieltjes integral, and constructive definition of DC-integral
shall be studied in Part IIL

References
1) 'S. Saks: Theory of the integral, Warszawa (1937).

2) Y. Hayashi: A trial production on the integral I. Bull. Univ. Osaka Pref. Ser. A. vol. 11
N.o 1 (1962) 121-131.

Corrections to “A taial Production on the Integral 1”. Page 130, line 27, “Hence” should read
“Because”. Page 129, line 3, “null and” should be eliminate.



