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          Tension Problem of a Perforated .Strip Stiffened

               with Flanges along the Stra ght Edges

          Yoichiro OKAMuRA'*, Choztiburo YAMABE* and Ygshio' FukuMoTo* '/

                              (Received June 30, 1962)

                                                            '

        The'tension problem of the perforated strip, which is stiffened with flanges along

     both edges,' is studied. The calculation is executed for typical three cases and results

     of numerical calculation for box-shaped beam are shown.

                          '                        '
                                 1. Introduction .
                                                                    '
                                          '    The stress analysis of a perforated strip under tension has been studied by many

investigators, with iruitful results. But the effects of the flanges, when they 'are at-

tached to the straight edges of the perforated strip, on the stress distribution are left.

unclarified, while this problem is one of theoretical interest as well as practical impor-

tance.

    In the present paper, the tension problem of the perforated strip, which has one

circular hole mid-way between the edges and is stiffened symmetrically with the fianges

along both edges, is studied. It is dealt as a two-dimensional problem and its solution

is sought by successive method for typical three cases. This process is analogous to

that used by Howlandi) for the unflanged strip.
                                                   '                                               '                                          '                                   tt

                               2. Theory

    We consider the perforated strip with the fianges on both edges, of isotropic, elastic

material, infinitely extended in longitudinal direction and loaded by uniform tension

                                                                 x-           -

                       . . ,-.rptv
.e･M,.

y
'Flange

-. rde=-Xca(r)

e
P･ -

Perforated .
s
t
r
l
p

x
o

-rf

-'--------'-pt---Mpt-'fiiEiE
"--lb

Fig. 1
.

* Department of Naval Architecture,

Perforated

   College

strip

of Engineering.



100 Y. OKAMuRA, C. YAMABE and Y. FvKuMoTo

applied at infinity.

                                               '    As shown in Fig. 1, Cartesian co-ordinates (x, y) has its origin at the center of the

circular hole (its radius is equal to Z) and the x-axis lies on the center line of the

perforated strip. As the stress systern is symmetrical both about the axes of the co-

ordinates, the analysis will be developed only for the positive region of x and y. Co-

ordinates x, y and the radiusZare measured in a unit equal to .half the width of the

perforated strip.

    Both the perforated strip and the flanges are regarded as thin plates (the thicknesses

of which are equal to tw and ti, respectively) and the normal stresses perpendicular to

the plane of the plate are ignored.

    Separating the fianges from the perforated strip, each of them is supposed to be in

a state of generalised plane stress. The flanges and the perforated strip are subjected

to shearing stresses at the lines of connection between them and these shearing stresses

are determined from the condition of continuity of normal strains at their intersection.

2-1 Stress Function of the Perforated Strip (Successive Approximation)

    Polar co-ordinates (p, e) will also be used, and it wi11 be convenient to take the in-

itial line along the y-axis and the positive direction of e clockwise. Then the relation

between the two systems of co-ordinates is

                     x=psine, y=pcose (1)
where p is co-ordinate measured in a unit equal to half the width of the penforated strip.

    Denoting the stress function, X, X must satisfy the following conditions (a), (b), (c)

and (d):

(a) At all points within the material ,
            oO.`: +2o.a,`bl,+X4 ==o;･' ' (2)

(b) When x-->oo, the stresses are

                02X                             62x                                           02x           Ola==-ay2 ="7; by= ox2 `=O, rnv=mr6traTy :O; . (3)

                                                                            '
(c) On the straight edge,y==1, ,
   op=O and the normal strain in the x-direction must be equal to that occuring in the

flange at the line of connection between the flange and the perforated strip. (4)

(d) On the edge of the hole,p=R,

                  op = 'b'2" -'Ooliil- +- }- -3-X,-- ==o                                            l

                                              .- (5)                  r,e==--aO-p(} -g'oX'-)=o i

                                               '
    To satisty these conditions, we write

           X==X6+Z,+X,+X,+･･-･, (6)
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where the terms of the series are each, separately, solution of the biharmonic equation

(2) and have, in addition, the following properties.

    x6 gives the stresses at infinity.

    z6+xo satisfies the conditions on the edge of the hole and at'infinity, but not on the

straight edge, i.e., it is the solution for an infinite plate with a hole.

    xi cancels the stresses due to xo on the edge y==1 and satisfies the condition of the

oCnOntthineUi
e'

tdYggfotfhtehenOhroeea.1 Strain tO the flange on the edge y =1, but introduces stresses

    x2 cancels these, but again does not satisfy the boundary conditions on the straight

edge.

    More generally, X2r+x2r+i satisfies the boundary conditions on y =1, while X2r-i+Z2r

gives zero stresses over p= 1.

    Now we derive equations from which x2r+i and z2r+2 may be calculated. The value

of X2r will be assumed to be given in the form

                                                              '
           x2r=-Dsr) logp+ .xe7e, (-l il'il-) + fl,ii', )cos 2no, . ' (7)

where D6", DS;), ES;) are coeMcients, to be determined later.

    For simplicity of writing, it will be convenient to omit the suthx (r) in all the co-

eficients until it becomes necessary to di.stinguish them from those of the x2r+2 series.

Making this temporary simplification of notation, we have for the stresses due to X2r,

           o. - -i,- -0,X-r+ -bi- ,- %'Ssr

              =- 9,O---2 #,{ n(2np+,..i,)D2va + (n+i)(p2,Z-i)E2n }cos2no '' (s)

           rpe=-roO-,(,1m05bt)

             .,-2S{ n(2ni..i,)D2n + n(2ni.i)E2n }sin2ne, (g)

               02z2.
           0e =-p2

             = e,e +2 .i.e.,{ n(2np+,..i,)D2n +,(n-i)(p2,Z-i)E2n"]cos2ne. qo)

    The stresses relative to the Cartesian axes are given bY the equations

   ole..,Do7,2E2cos2e+2;,{(2n+1)(pn,?,2,n-E2n+2)+n(2np'-,.1)E2n}cos(2n+2)e (n)

   op..,-Do;,2E2cos2e-2.z"nte,{(2n+1)(pn,e.2,n+E2n+2)+n(2np'-,.i)E2n}cos(2n+2)o, (12)

   rrw==-[eS sin2e+2.=bte,{n(2np+,..i,)D2n+n(2np"','-.i)E2n}'sin(2n+2)e]. (i3)
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  'We have now'to construct X2r+'i so that it produces on the edge of the strip, the

stresses cancelling the value of du in (12), and making the value of shearing stress to

be --9(x) after addition of the value of r.y in (13),,where -W(x) is to be determined

from the condition of the continuity of the normal strain; i.6., X2r+i satisfies

    ･ dy=¢(X), r,,y==W(X)dcb-('x) on y=-1, " '
where ,(x,Z,--.,-,-[a,#Sn,.(iza;,-J-:,sv.e,n,f,u.n.C:,i;.n.･. f . ('4)

   Let X2r+i be the biharmonic function which is resolved as follows:

            X2r+IFxt+xn, .
where Z' is a function satisfying the boundary condition

            obu =¢(x), T.y=O on y==1, (15)
X't is a function satistying the boundary condition

             obu==O, Tbe, =P(x)-W(x) on y=1.

Consider the function

           x'= S,Oe(Adeay sinh ay+Bd cosh uy)cos ux du, (16)

llla¥ilsrfieesA//AejZZuaatrieonarbitrary constants･ Equation (i6) is even in both x and y and

                           V4X,=O.

It will satisfy the condition for zero shear on the edge y==1 if

           Ba =- Sinh Us+in: uCOsh U Ad' ',

Representing Bh in (16) by AE,
                                                         '
where X' =S:[(Sin)(Uu :C-OISh!s.:iOuSh. UY-UYSinhUsinhUy]Aaf(u)cos uxdu,l (17)

           ¢(x)=:･---}S,eeu2(sirph2u+2u)Aaf(u)cds'uxdu. , , ..･ ' (18)

Inverse sine transformation of this equation is ' ･ .

           'A4'f(")==4''nu2(sinf2u+2u) S:¢(ptl.)COS "ZV dZ"L . 1' ', ' . (19)

S.",b.i`j'`"ti"gi･,i=9///'Ili/i ;i,7,'g-W-.;,.,O+I:liYc. E.g'h.4e.s:,l'lr)..,uwdw:.. ' ', ...(2o'

                               '
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 , s=sinhu, S==sinhay, c=:qoshu, C=coshuy, X==sinh2u+2u. . (21) ･

Let X't be the function, which has precisely the same form as X'. - ' i
                                                                 '
          X" = j:( A 'u' ay sinh uy + B '.' cosh uy)cos ux du, ', . , (22)

                  '
where AtN', Ba' are arbitrary constants. It will satisfy the condition for zero normal

stress on the edge y=l if .
                                                                    '                                              '                Ba'==-"' ".S.i,hh." A'u'.

                                  '
Representing BU in (22) by A'.',

                                            '
                                                           '          x" =S,ee(sinh u cosh uy -y cosh u sinh uy)A'.'f'(u)cos ux du,

where fl (u) ,,. -u/cosh u. J (23)
                                 '                                                         '                                                '
Using (15),

                                                              '          V(x) -- {l7(x)=-- -ill-!:u(sinh 2u+2u)A"f'(u)sin ux du. (24)

Then, A"f'(u) is given by ' ,･
          Ah'f'(u)=--il-S,"e .th((,l.iii2e+( :i) sin uadw･ (2s)

Substituting (25) into (23), , ,
          z"= -II-S: YCuS.-2-: SC cos uxduS,Oe [V(w)-IP-(w)]sin uwdw, <26)

                                               /t                                                 '
where 9(w) is undetermined at this stage., ' . '
     In order that X2r+i may be the required solution, we must give ¢(x) and 9(x) the.

following values, derived from (12) and (13) by putting p2==1+x2; .

   ¢(x) = 217t+xD, o cos2e+2.zes", {(2n+l()i(l{l;n).+.,E2n+2)+n((2in+-xi,))l?ko}co . '7･J, --2 ･t

   "(x)=ID+Ox,sin2e+2S{n((2in++xl-)).4in,+2!S(!i2(inixi,))-E.2n--}sin(2n-+-2) '

                                                                 '                                                             'ebeing the acute angle defined by the equation. . '･
                                                                '                   tane==x.
                                                                        tt                                                               '
In order to determine the value of {P(x), it is necessary to evaluate the strain at the

line of connection with fiange. By considering the condition, 'clv==O on y=1, the unit

elongation in the x-direction is written by ., , .
                                                                    tt                                         '
           [e.]v.i :-l}-[obe]v=i==-Ll}-[-Oby2X;r + Oby'X,' + Oby'Xi'],... ' ' . . (2s)
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The terms on the 'right-hand side of (28) may be written as follows. Denoting

[O-ai),X:r],.., by ¢-(x) and･ using (11), we have ,

   6'(x)==[-Oby!t,2-r],-, ' '' )
.h.,, =D;'-+2xfl2CO

eS

.eet.+.2-n,X.i.{(2"+i()i(+"e;)ni.iE2n'2)+"((2in+-.i,))E.2n],.,(2.+2)e,;f

                                                                   (29)

Let f(u) be the Fourier cosine transform of ¢(x), [¢(x): even function], i.e.,

          ¢-(x) == S: T(u)cos uxdu. (3o)
                                               '
Then, f(u) is written by

                                         '
          7(u) == -2i S: ¢-(zv)cos zawdav. (3o

Substituting (31) into (30),

                                                    '
          [Oa'yX,2r ],-,= -ll- S:cos ux duS,OP o-(zv)cos uw dw. (32)

Using (20),

          [Oa'yZ,' ],.,=-il-S,ee SC2-:U cosuxdui,"e¢(w)cosuzvdw. (,33)

Using (26), , ,
          [t-a- y2-X,CC],.,=: -i4i-S,eO -2S! cos ux duS,Oe [g (w) - ll7( tu)] sin uw dw. (34)

Thus, the value of [e.]v"i is given aS follows: ' '

    [e.],ti = ISIi-S:[2 SCsU S:¢(w)c.,uopd.+-flij'-!-i,eO{"(.)

    ' -Il7(w )} sin uw dw+S:6(w)cos uap dw] cos ux du, (35)

                                                                 '                         tt t tt
where ¢(w) and cb(tv),are given by (27), ¢'(w) is given by (29) and Il7(w) is not

determined yet.

   On the other hand, the unit elongation of the flange on the line of connection, e-. is

given by the equation in such a form as

                                                   '                                      '          e-tsi ]Ellti¥, S:g(u)cos ux duS,ee -v(w)sin utv dw, . (36)

where g(u) isafunction of u only and depends on the boundary condition. [The cal-

culation of g(u) is given at 2-3 for typiqal cases.] ,

   Equating (35) to (36), / ')
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                                                             '     s,"e -"(w)si.uwdw.,-bl,1.-R r2(sc-u)S,ee¢(w)cosuwdw ' ' ' '

     , +4c2S,oe g(w)sin uwdtv+.xS,eeto- (w)cos uw dw],

                                                                    (37)
where

           R == e-2U[ ttrW g(u) 2E +4c2 ] .

Substituting (27) and (29) into (37), and considering

    S: CO(SiCifltC,O)S."Wdw :S,Oe Sin(21n+6i;lp).Uw d...-2z'(ei£u.2nf)i! N

                                                               , (38)*
    S,ee cos(2(ni++2w),e)c.osuw dtv..S: sin(2(ni++22Z)s.inuw dw..ne-uu(22vaii)(!u--n) 1 ,

we attain･to the expression

                                                       '
    S,co w-(w)sinuwdw =ZLe ?e:L"[Do(1+e-2en)+.2.;, D2n(2nUtvao ! (1+e-2U)

      -.;, E2va+2 (22Ui)n -! {(n+1)(1 +e-2") +2ue-2"} +.S E2. (22nU!n-2i)! (1 +e"2u)]. (3g)

Then x" in (26), subsequently X2r+i in (15) is determined; i,e.,

          Z2r+i =4S,"'O YSg&SUX (S¢+CT)dza-4S,co CCOxSUX [S+uza!e+ST}dU, ･(40)

where

          o= .iu S:¢(w)cosuwdw .
                   oo ' (41)          V= .lu S, ["(w)-IPM(w)]sinutvdw

   Now we will determine the stresses produced by this function at the circumierende'

of the hole, and for this purpose it is convenient to express X2r"i as a series in ascending

powers of p. Considering

          yscosux==-}[,;o2n(Ui#M)'!P2" +.;g ZSnn'tPi")'i ]cos2no 1 .

          Ccosux==je{e}=, ((a2Pn))2?/ cos2no' I' (42)

we may now express X2r+i in the iorm

                X2r+i= I;i(LS:)+Mli(.')p2)p2ncos2nO, (43)
                     nsO                                              '

    LS;'== (2Z)! S,"O[eti{(nLu)(¢+er)-¢}-e-t`{(n+u)(¢-T)-¢}] "2.2'r-i du

                                                      . . (44)
   asnr)== (2nli)! S,ee [eu(¢+er)+e-u(T-¢)] u2x"i du

   '
    * See pp. 56 and 57, Reference 1).
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Restoring the suthx (r) to the coeracients of X2r, we find

                        ee 'x          LS:) =vaafoD6')+,;l,{na.DS;)+np.EEp')}

                                                '
                        oo          ta(.r) =nroD8r)+ x {nr.DE5)+n6.ES;)}

                       psl ;
    "tto= (2£)! [(2n'1)hn-i'2kn+kva-i

           .-2S,ee 1+Re-2U {n(1+e-2tb)-.u(1-e-2u)} U2x'-i du]

                '
    nap= (2n) ! (12p-1) ! [(2n-1)hn+2p-! -- 2hn+2p+J2va+2p-i

    '           --2S,ee 1+Re-2U {n(1+e-,.)-u(ILe-2.)} u2n'.x2P-' du]

    "Bp == (2n) ! (22p-- 2) ! [2(n+P'1)I2n+2p-2-(2nP-n-P+1)hn+2p-3

                        -2hn+2p-i-(n+P'1)hn+2p-3
                                                  '      +2S,eO P(i+e-2")R-u(i-e-2U) {n(i+e-,.).u(i-e-,.)} u2nS2P-3

    nyo==(2nl+1)![h..,--S,e" (1+id2")r u2s+idu]

    ny'=: (2n+1)!1(2p.1)! [hn+2p+i-S,co (1+ft-2")2 u2"S2P"idu]

                                          '   ."6p = ' (2n+1) !1(2p-2)! [(2P"1)hn+2p--2hva+2p+hn+2p-i

    tt.
             oo 2p(1+e'2u)2--2u(1-e-`") u2""2P-i du]          -S,

where

          k== S

          A-S

The terrns of the

when the

   The
the cycle,. we

The stresses due

   d, ==2[M6r)

          co   rpe==2 ]Z
         n=plL

du]

                 RX
                       '       ee uS                          l           du
       oX
                           c       ee uS           e-2tidu
       o.X .,
       integrals in (46) represent the effeets of the fiange and

 perforated strip has no flange.

coefucients in X2r+i are thus determined in terms of those of X2r

    have now to determine the coethcients in X2r+2 in terms of

       to X2r+i are given immediately by the differentiation of

                      '     r .¥Oe,{ n(2n- 1) LS;) + (n-1) (2n + 1) MS;)p2 }p2n-2 cos 2ne]

                      tt                                     .t
   In(2n-1)LS:,' +n(2n+1) A4, S;'p2}p2"'2 sin 2ne

Ssg20 have been obtained by Howland [See

(45)

, (46)

  *
1)].

The values of h and k for

        (47)*

vanish (R.co)

. To complete

 those of X2r+i.

(43) as

    ) (48)

     [

p. 67, Reference
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               nZ{ ' '"' } '1    6e=2[M8"+ z n(2n-1)LS:)+(n+1)(2n+l)MS:)pi p2n-2 cos2ne] )

                                                      '                          '                            '                                                              '    The first two of these must be cancelied at the edge of the hole by the stresses due

to X2r+2. If we express X2r+2 in such a form as Z2r;

           x2.+2 =-D8'"')logp+ .=ese,{. ?Spii) + i,2(i;,i) Jcbs2ne, .(4g)

the corresponding stresses will be given by adding the suthx (r+1),to the coeMcients

in equations (8) and (9). Putting p==2 and equating the coethclepts to the negatives of

those in (48), ･we obtain the. following equatiQns: ,
                   tt
                                        '     , D8r+i)..2utr)z2

                                                      tt           IZIIrrlll:.f'X.(i2"{ntL'#,l:.' ."i211)Ii,ill'4rs.r), I' . (50)

From (45), (46) and (50), we can determine the coeMcients in terms of those at the

stage of the preceding approximation.

2-2 Determinati6n of the Stresses

   To determine the strecms function of the perforated strip under the uniform terisile

stress 71, we start with the stress function, X6, of thg perfect strip under tension.

                  X6 =T)o2(1+cos2e)/4 (51)
                                                         '
satisfies the definition. And the stress function Xo which prpduces on the edge of the

hole stresses cancelling the values of d, and r,e due to X6 are obtained by replacing the

coerncients in (7) by the following values:

                                                 '           e.S&':,1'ii22'.9,iOiz.ZZth/ei..ejek',g.1,lg2,･.l (s2)

Substituting (52) into (45), the coethcients in Xi are given by

                                   '
           lii'iR't--.7.il',{f(n.",o,z".P,i3!!2,+.va,,a,;,Zjl/,4}} ].･ '- (s3)

From these it is easy to calculate the values of the coefficients, D8'), DS:) and ES;), of

X2 by using (50). Proceeding in this way, we find LE;-i) and ag:-i) from DS'-'), DS;-i)

and EE.'-i) by using (45), and further D8", DS'.) and E6.r) from LS:"i) and M5;-i) by us-

    The final value of X is given by

                           '           X = 7)o2(1+cos20)14+ T[-do logp+mop2

                                                               '                  +.;,{ f;"ri +Ti2kr"-'i+(l2n+m2np2)p2n} cos2no], ' (s4)

where
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           do==ny DS"17; d2n=;>l; PS;'!7; e2n= ]ES:'!T . ., l2n=lll] LS;'IZ mo=::}] ME"! Zl, m2n== :I] MIS;'!T･ l

   '

The stresses are

    op==T[-ll-(i-cos2e)+2mo--!ill:--2i.".,{rZ!1(lllZnip.,+-..i,)d2pa.+r(n+1)(p2,2-i)e2n

           +n(2n-1)l2.p2n-2+(n---1)(2n+1)m2np2n}cos2ne]

    ae = T [S-(1+ cos2e) +2mo+-dp:- +2 .zete ,{ 4(2np, T;1,,) d2n+ (n '-" 1) (p2, .n -1)e2n

           +n(2n-1)l2np2va-2+(n+1)(2n+1)m2.p2"} cos 2ne ''

                                                '    rpe = T ['li-sin 20+2.;, {n(2n-1)(l2np2"-2- S;.n )

 : +n(2n+1)(m2np2n- $i.", )}sin2ne]

The circumferential stress on the edge of the hole is obtained, by putting p=Z

second of equations (56),

                           oe                   oe =2T Z P2n cos 2nO
                          npO

             Po==1!4+mo+do1(2Z2)

             P,=tl14+3d,IZ4+l,+6m,Z2

             P4=10d4126+3e41Z4+61412+15m4Z4 '

             P6=21d6/R8+10e6/Z6+1516Z4+28m6Z6

             A=36ds/ZiO+21esla8+281sa6+45msR8

             -------------------------------.----------

2-3 Calculation of g(u) and R

    We will determine g(u) and .R for the typical cases as shown in Fig. 2.

    The stress function of the flange, N, which satisfies

                                                             '
            g;'X', +2 o.O,`o-X,, + oO`,¥ =o,

is given by .

           7=S,eO [(A"., +-c.t u2)cos hu2+ (Ba+ D'., u2)sinhu2] cos uxdu,

where A-.' ,B-.t ,C-.t andD-.' are arbitrary constants, to be determined from the

dary cgnditions.

[Case-I] H-Beam

    Boundary condition:

(55)

(56)

in the

(57)

(58)

(59)

boun-
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      '           '      rcase.i) Fiange V; YT SN't'ft:C)' ･,`- , ･ ''or' d}t=e, r.,=o "

       H'Beam Wetb.o -. i , litigil.i. :}sl.c,) t./! TI 1 g';h==O'-xp'`"(x)'z-t/ ;Ec')(xlllr

             gub ip,(x)=.iwr1-(x) -' (mange) -
             (Cross section)                          (Stresses 2t cennection)'
                                                '                                                        a
                 S " - ' a.= o. r.=i}Q'C')(x)=) !?'LQ("'(x)
  box･si;e:'is"L-, :t,,ii.iti[i. i'" 'l : o "==O'in=o .ir

             up Q' (x) =: e. o(x) (Fiange)
             (Cross section) (Stresses at connection)

                                         -- -p.                                   sdi?1ny
                                         -- --  DouZCieaSg:Y-, ' .,'Lliil'i7i'lllllt"'TZ'. o -xiT

                                         ---- --------------,--.------p------- "                             Qt(X)=t/' ip(X) " -- ' -
            Fm2----¢-g
             (Cross $ection) (Stresses at connection) (Flange)
               Fig. 2. Typical structures and these"boundary conditions

           v= e, Ttsz=: -" {i7' (x) == '-- iitWr lfi(x) on 2=O, ' '

                                                                      (60)        - ale=O, rava==O on 2=b'
wherevis the displacement in the 2-direction. '

                                             '   From the conditionv :O on z=:O,

            BE 1-u .           Zi,i,l, = 1+v-E7' (V: Poisson's ratio).

   From the condition oj==O, Tnt=O on z==b, (61)
           oa==-Xbb,++S-ii-,A-t., D-'==za,bi',++C'72･s,-A.'.

where g=:sinhub, i=coshub. .
Substituting (61) into (59), we obtain the stress function containing A-H .' alone.

   7-S:

where

   From

2

-

-
"
･

---------P--- - -- ---------
v==O.r.=zo'(')(x)=r

V=O,T.t==O

7w'

2tr

--
L'pc

r

[(u2b2+i-s2)U--i-(u2CH+7'-S)+(1'+b2)u2S]A-'.

  O== cosh uz, S =sinh uz, 7== sinh 2ub + 2ub

                      1           f7(u)==
                  u2b2 +1's2

the condition [rapt]t-o='[ o6x2i ].s,=:nt ttW-f

ft(u) cos ux du,

    tt

Il7(x), it follows that

(62)



       t.

           '

1'1'O'- 7'i,,' ･'･ /.1-' / ･ ' .', . 'Y:'OKAMvkA, C. YAMABE'and.'Y.-FtsK'uMdTo

     ･ ?IZLT'(")=.(12tW7')t,S: Vi2W-x) Si""WdW'

          -x----- .(i2iw7.)t, g,"e[("2b2i,iillS2)O-r} uzCi i's

                     + ( 7' +.cexl!) zS ]c.s.xduS,"e " (w)si. uw dw.

Subsequently, g(u) in (36) and R in (37) are

          g(U)== a+17.)x- [(u2b2+1's'2)(1+v)+2(7'+72)],

          R= gtWf Xi e-2u[(1+v)2u2b2+(1+V)-4(3--V) (e2ub+e-2ub)

             . +5-22V+V2 ]+a+e-2u)2.

[Case-II] Box-shaped Beam

    Boundary condition:

           V=O. Txz=O on 2=O, )
          th==O, r.=:gFT'(x)== f,W -V(x) on 2=b. I

   From the condition v==O on z=O,

                   Ba!ca-i.

   'From the condition Tbe==O on 2LO,

                   ca= o.

   From the condition ola=O on z=b,

          Da==--ii-i'bTl･FA-ut･ ･･

Substituting (68) into (59), we obtain .

          I== S,eO [ubsO- uzc-Sl A-.' f-t(u)cos ux du,

where 7t(u)== uibs- ･

   From the condition [rne]z-b==-[ro'Ox2o"X'i2-],s, =!i':--W(X),

          t.t fT7(.)=m 4.tt: s,"e "'Q.(,ws-)r ,i.uw dw.

          -x---- 4ztt: s;o bg-Cu-x-zbS cosuxduS:ifi(tv)sin uwdw

Subsequently,

x

J

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)
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                   g(u)=4 S.2. ･ (za)
                              tw .X
           R= e'2U(iab)(1+e'p2mo)2 trx +(1+e'2U)2. (73)

[Case-III] Double Bottom
                                                '
    Boundary condition:

           ;:,OIT:i.IOv-,(.)=,s,.-,if(.) O.:i-:.Obl 1 (7`)

                                                              '
    FromthecB.ao:id-llitio-.ni.,"2ti,O.L.Holapt=9 0"g==O' l' '(7s)

    From the-D.c, ndli.i.i:ITnubc-v:-=A9.. On 2=b' i ' -

Substituting (75) into (59), we obtain

           'z-'IS,PO [( 1's-ubb)T+uzs-S] ZE7' (u)cos ux du, 1

                                                                       (76)where 7i(u)= ji-.lubb-･ i

    From the condition [T'bca]x-"b== ny LoOx2ownXz ].-,=: StWrr l]7(X), .

           AH.' f-'(u) = .(i+W]･)ty S,Oe ptWi,lg.,)- sin uw dw. (77)

Substituting (77) into (76),

                                                    'f           nyX-- .at+Wl･)tr S,co (7'S'-izbuC2)sC-2+UZSS cos uxduS,"O i'Pr(w)sinuwdw. (78)

Subsequently,

                   1 (3-y)S'nyc-(1+v)ub           g(U)= 2(71 +1･) g2 , (79)
           R== 2tf't(Wlei2i-X,.,), [(1+V)2(3-Y)(1-e-4ub)-2(1+v)2ube-2enb]+(1"e-2v)2.

                                                                       (80)

                                                        '

                          3. Numerical calCulation
                                                                 '           '
   Numerical calculation is performed for the case-II. The value of stregs concentra･

tion factor oema../T is shown against a, together with the one of the perforated strip

without fiange. (Fig. 3)

                                  i

-,



112. .. '.-..' ･.,,' /･ .,Yi･OwaM,vRA,'C- Y,:AMApE'and,'.Y.'.FpK.uMoTo･,"･ -.1,. /, .-,

                                                      -t
'

   ,s;i 4･5

           4,O

       ttt-ts

           3,5

           3.0

             O O.1 O.2 -O.3 O.4 O.5
                 Fig. 3. The sitress concentration factors for'the case-II '

                               '                                                              '
    The value of oerm.IT increases with Z in both cases, but the ratio of the increment

is smaller in the case-II. While the ratio of the increment depends on the scantling of

the fiange, the effects of the flange seem to be considerable. (The numerical calculation

is now being continued.)

                                 4.' Conclusion

    The formulae for the stresses on the edge of the hole in the fianged strip under

tension are obtained for the typical three cases. And the results of the numerical calcula-

tion for the box-shaped beam are shown to illustrate the effects of the flange on the

decrement of' the stress concentration. (The numerical calculation is now being continued.)
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