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Tension Problem of a Perforated Strip Stiffened
with Flanges along the Stra ght Edges

Yoichiro OkAMURA¥*, Chozaburo YAMABE* and Yoshio FukumoTo*

(Received June 30, 1962)

The ‘tension problem of the perforated strip, which is stiffened with flanges along
both edges, is studied. The calculation is executed for typical three cases and results
of numerical calculation for box-shaped beam are shown.

1. Introduction

The stress analysis of a perforated strip under tension has been studied by many
investigators, with fruitful results. But the effects of the flanges, when they are at-
tached to the straight edges of the perforated strip, on the stress distribution are left
unclarified, while this problem is one of theoretical interest as well as practical impor-
tance. '

In the present paper, the tension problem of the perforated strip, which has one
circular hole mid-way between the edges and is stiffened symmetrically with the flanges
along both edges, is studied. It is dealt as a two-dimensional problem and its solution
is sought by successive method for typical three cases. This process is analogous to
that used by Howland? for the unflanged strip.

2. Theory

We consider the perforated strip with the flanges on both edges, of isotropic, elastic
material, infinitely extended in longitudinal direction and loaded by uniform tension
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Fig. 1. Perforated strip
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applied at infinity.

As shown in Fig. 1, Cartesian co-ordinates (x, jl) has its origin at the center of the
circular hole (its radius is equal to 1) and the x-axis lies on the center line of the
perforated strip. As the stress system is symmetrical both about the axes of the co-
ordinates, the analysis will be developed only for the positive region of x and y. Co-
ordinates x, ¥ and the radius 2 are measured in a unit equal to half the width of the
perforated strip.

Both the perforated strip and the flanges are regarded as thin plates (the thicknesses
of which are equal to f, and I, respectively) and the normal stresses perpendicular to
the plane of the plate are ignored.

Separating the flanges from the perforated strip, each of them is supposed to be in
a state of generalised plane stress. The flanges and the perforated strip are subjected
to shearing stresses at the lines of connection between them and these shearing stresses
are determined from the condition of continuity of normal strains at their intersection.

2-1 Stress Function of the Perforated Strip (Successive Approximation)

Polar co-ordinates (p, #) will also be used, and it will be convenient to take the in-
itial line along the y-axis and the positive direction of § clockwise. Then the relation
between the two systems of co-ordinates is

x=psinf, y=pcosf (1)

where p is co-ordinate measured in a unit equal to half the width of the perforated strip.
Denoting the stress function, %, ¥ must satisfy the following conditions (a), (b), (¢)

and (d):

(a) At all points within the material

2;’5 +2064x L 0

220y% 0yt =0; (2)
(b) When x—oo, the stresses are

_ 0% _ . 0 o .
O'm"—_ay_z"“ T: Oy= axz —O: Tuy™ axay ""0; (3)

(c) On the straight edge, y=1,
, 6y=0 and the normal strain in the x-direction must be equal to that occuring in the
flange at the line of connection between the flange and the perforated strip. (4)
(d) On the edge of the hole, p=21,

1 ox 1 ox _
0,= 0 60 + o op =() }

cw==55{ 5 97)=0 | |

To satisfy these conditions, we write

(5)

Y= +Ao-+ Ty +Xatoeoee, (6)
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where the terms of the series are each, separately, solution of the biharmonic equation
(2) and have, in addition, the following properties.

%6 gives the stresses at infinity.

A6+%0 satisfies the conditions on the edge of the hole and at infinity, but not on the
straight edge, i.e., it is the solution for an infinite plate with a hole.

%1 cancels the stresses due to Xo on the edge y=1 and satisfies the condition of the
continuity of the normal strain to the flange on the edge y=1, but introduces stresses
on the edge of the hole.

%z cancels these, but again does not satisfy the boundary conditions on the straight
edge.

More generally, X2+ %2-+1 satisfies the boundary conditions on y=1, while Xz,—1+X2-
gives zero stresses over p=124.

Now we derive equations from which X2:+1 and Xz..: may be calculated. The value
of Xs will be assumed to be given in the form

(r) (r)

Yo~ DPlog ot 5 (72,T+ 28 >cos 208, (7)

where D§”’, D5, E{ are coefficients, to be determined later. ;

For simplicity of writing, it will be convenient to omit the suffix (#) in all the co-
efficients until it becomes necessary to distinguish them from those of the X2... series.
Making this temporary simplification of notation, we have for the stresses due to %Xz,

1 0 1 0"
T T80 T op

__ Dy { n(2n+1)Dzn (n+12n—1)E:,
= 2 = o ‘ o7 }cosZnﬂ (8)
0 (1 om
oo™ p( o 00 >
=25 (HZEDDw 2@ DEw oo, (9)
n=1 4 14
p ﬁ?hr
[ 6’92
Do D, 2“’1{ n(27:);l;ilz)Dzn + (n— 1)(02n DE: ]coszw (10)

The stresses relative to the Cartesian axes are given by the equations

o.=P= P cosap -z 5 [ Brnet) 10D B0l cosant2)0 (1)
oy D°+2E2c0520 221{(2n+1)(;¢z£22n+E2n+2) n(2np DEZ"}cos(Zn-l-Z)”’ 12)

o= [zz sm20+221{"(Z’ZZEZ)DZM”(Z”" DEzlgin2n+20). a3
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We have now to construct ¥:,.1 so that it produces on the edge of the strip, the
stresses cancelling the value of ¢, in (12), and making the value of shearing stress to

be —{(x) after addition of the value of z, in (13), where —{y (%) is to be determined
from the condition of the continuity of the normal strain; i.e., X:..1 satisfies

6/ =¢(%), Tm=Y(£)—¥ (%) on y=1,
where ¢(x)=—[gy in (12)]y-1: even function, l 14)
Y(x)=—[rm in (13)]y-1: odd function. j
Let X2,+1 be the biharmonic funct‘ion‘ which is resolved as follows:
Lorar=2A'+%",
where %’ is a function satisfying the boundary condition
o,=¢(X), tsy=0 on y=1, (15)
%7 is a function satisfying the boundary condition

0,=0, tmy=Y(x)—Y(x) on y=1.

Consider the function
x/=Sw(A{,uy sinh uy-- Bf, cosh uy)cos ux du , (16)
0

where A, Bl are arbitrary constants. Equation (16) is even in both x and » and
satisfies the equation '
VX'=0.

It will satisfy the condition for zero shear on the edge y=1 if

inh #u+u u
Bl=— sinh#tucoshu 4 ..
sinhu

Representing B in (16) by Af,

x/=8:[(sinh u-+u cosh u)cosh uy—uysinh % sinhuy] AlLf (w)cos ux du,

where an
f(u)=—1/sinh % .

Using (15), -
$(x)=—-3-\ ur(sinh2 u-+-20) A4 f (wycos ux du. (18)

Inverse sine transformation of this equation is
‘Ang(u):L’fﬂ?(sﬁ?%—'—.&:ZWS:qs(W}cos uw dw. L : (19

Substituting (19) into (17), we obtain

4*5'” uysS—(s+uc)C
[}

7
r= uy.

- cos uxduS:cﬁ(w)cos uwdw, (20)

where
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s=sinh#, S=sinh #y, c=coshu#, C=coshu#y, >=sinh2u+2u. ¢
Let ¥/ be the function, which has precisely the same form as X',
x”=S:(A’u’uy sinh #y-+ B cosh #y)cos ux du, (22

where A%, By are arbitrary constants. ‘It will satisfy the condition for zero normal

stress on the edge y=1 if

Blf=— # sinh % Al
cosh#

Representing BY in (22) by A%,

%”=S: (sinh  cosh uy —y cosh « sinh uy) A% f'(u)cos ux du, '

where J (23)
f(u)=—u/coshu .

Using (15),

¥(x)— \lf(x>————S w(sinh 20 -+2u) AL f'()sin ux du. | (24)
Then, A}/ f/(u) is given by

__ 4 y(w)— Y (w) .

Al S (w) T So #(sinh 2%+ 2u) sin uwdw. (25
Substituting (25) into (23),

Z”=A{S:%Sg—wcosuxdu8:[\p(w)—-—\p_(w)]sin uwdw, (26)

where ¥ (w) is undetermined at this étage. . ;
In order that Xzy+1 may be the required solution, we must give ¢(x) and y(x) the

following values, derived from (12) and (13) by putting p*=1--%2;

_2E>+Do (2n+1)(nDz2p+ Eons2) n(zn 1) Es, o
(%)= Toz? c0320+2§ { Atatya GETOD }co < A

Ds = (n(2n+1)Dzq , #2n—1E2 1. o ’
Yr(x)= 1+ = sin 20—1—2”231 { (1+x2)"+1 + (1+xt)m " }sm(Zn +2)

27
# being the acute angle defined by the equation :
tanf=x.
In order to determine the value of Y(x), it is necessary to evaluate the strain at the

line of connection with flange. By considering the condition, ‘¢,=0 on y=1, the unit

elongation in the x-direction is written by

1 1 [0 | O | BN ,
[Em]v-l——E’[ﬂw]1/=1""*E’[ 6y2 -+ 6y2 —+ ayz ]'y=1. ‘ (28)
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The terms on the right-hand side of (28) may be written as follows. Denoting
2 -
[szr] ) by ¢(x) and using (11), we have
Y=

oy?
02%a,
s=[5 ],
_ D—2E, 201 (nD2p— Esps2) , n(2n—1)E>, i
={agz C0S 20—|—22 { (1-Cx2)m*1 + A+x)m }cos(2n+2)ﬁ,
where f=tan"'x . : /
(29)

Let f(u) be the Fourier cosine transform of ¢(x), [¢(x): even function], ie.,

5(x)=8: F(u)cos uxdu. (30)
Then, f(u) is written by

— 2 peo

f(u)=——7;go o(w)cosuwdw. (31)
Substituting (31) into (30),

2 o oo

[66;2” L 1=%Socosuxdug0 ¢(w)cos uw dw. (32)

Using (20),
/4 oo

[6;;(2 :L ) —47%-80 5 % cosuxduso é(w)cos uw dw. (33)

Using (26),
217 oo 2 oo .

[66;6 Ld:é_—so —2§,~cosuxduso [ (w)— (w)]sin uw dw. (34)

Thus, the value of [e,]y-1 is given as follows:
[ex]y=1= .E?n S:[Z sc;u S ¢(w)cosuwdw+—~s {Y(w)
—E(w)}sinuwdw+S:Tp(w)cosuwdw]cosuxdu, (35)

where ¢(w) and Y (w) are given by (27), ¢(w) is given by (29) and ¥(w) is not
determined yet.

On the other hand, the unit elongation of the flange on the line of connection, &, is
given by the equation in such a form as

Exé E%ft'; S g(u)cosuxdus V¥ (w)sin uw dw, v (36)

where g(#) is a function of # only and depends on the boundary condition. [The cal-
culation of g(#) is given at 2-3 for typical cases.]
Equating (35) to (36),
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S: ¥ (w)sin uw dw=—;, WR 2(sc u)S ¢tw)cosuwdw

+4c28:tl/(w)sin uwdw—{-Z‘S:a(w)cos uw dw} ,

(37)
where
t
R=g2u ¥ 2+4c? .
gz
Substituting (27) and (29) into (37), and considering
= _cos 2nf cos uw = sin 2% sin uw . me Tyt 3
So A+w?)m dw= So (1+w2)» dw= 2(2n—1)! l
(38)*

S"" cos(2n+2)0 cos uw dw—gm sin(2#+2)8 sin uw dw_ne-“uz"-l(u——n) ’
0 (1+w?)» - (1+w?)» - (2n)]

we attain to the expression

[ Pwsinuwdw="2" Di(1+e)+ 5 Dauy s (1em)

— E Buuns g 1D (e + 2o |- By gy e ], (3)

Then %" in (26), subsequently X:r.1 in (15) is determined; i.e.,

xzm—4g @;ﬂ(swcw)du o QC%S@I S+ucw+s¢‘}du, (40)
where
w=%g:¢(w)cosuwdw
1 (41)
r=— S [ (w) — i (w) ] sin ww dw

Now we will determine the stresses produced by this function at the circum_ference!
of the hole, and for this purpose it is convenient to express X241 as a series in ascending

powers of p. Considering

=3 2%—1 127 oo 2n+1 n2m+2
yScosux=714[Z‘, 2nup R P il :]cos 2n6 1

2 n=0 (2")! nw( (2n+1)!
( )2 N ? (42)
— o _(up)™
Ccosux= Eo @ cos 2nd I
we may now express Xz-+1 in the form
Aori1== é;(L%?-!—M(” 2) p**cos 2nd, : (43)
) 2 Sw : y2n-1
i = o\ [ {(n—u)(0+7)— 0} —e*{(n+u)(0—7)—0}] du
@n)! Jo 2 )
(44)
(. 1

on -——WS: [e(O+7)+e (T —D)] uz.ﬂ du

* See pp. 56 and 57, Reference 1).
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Restoring the suffix () to the coefficients of X:., we find

LY =raoD{"+ 3, (", DSy’ -+ "B, B4} l

) (45)
M ="1,D§” + Z {1, D5; +0, ES)} l
“ao=ﬁ[(Zn—l)lzn—1—21'zn+fzn—1
~2{ 1 (1) — (1)) du]
1
up=m[(2”"1)[21.+2p—1_2I2n+2p+]2n+2p—1
o 1+e—2u ou _ou u2n+2p—1
—2f" LEE 1 ey —u(1—e ) g
2
"By= (2n)!(215—2)![2(”“‘1)12"””‘2—(2”? —n=p Dl
_212n+2p—1_'(n+p—1)]2n+2p—3 ’ (46>
+ZS: p(l-i—e‘z“)];u(l—e *) {n(Q+e) —u(l— e‘z“)}———u2 ki du]
_ 1 _ oo (1+e—2u)2 u2n+1
o= (2n+1)!|:12"“ S R 3 d“}
_ 1 _ o (1+e-2u)2 y2n2p+l
= on 1)1 (2p—1)1 [IZ"””“ So R z d”]
X .
”817:_ (2”_’_1)!(21)__2)! [(zp'—-1)I24r.+2p—1—"2[21n+2p+f2n+2p—1
. L 2p(1+e—2u)2_2u(1__e—4u) u2n+2p—1
So R 2 du]
where .
. 4n*
],-—S e~y [

/

The terms of the integrals in (46) represent the effects of the flange and vanish (R—c0)
when the perforated strip has no flange. A

The coefficients in X2.,1 are thus determined in terms of those of Xz2-. To complete
the cycle, we have now to determine the coefficients in Xz..z in terms of those of ¥z..1.
The stresses due to ¥2..1 are given immediately by the differentiation of (43) as

a,,=z[M§,'>- i{n<zn—1>L<'>+(n D@r+1)MDp }Z’HCOSZnﬂ]

]. (48)
=2 {n(;m D)L +n(2n+1) ME0 }zn‘zsinZnﬂ

n=1

* The values of Is and Js for S<<20 have been obtained by Howland [See p. 67, Reference
1.
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av=2[ My + él{n(Zn—l)L"’+(n+1)(2n+1)M<" } - cos 20 | J

The first two of these must be cancelled at the edge of the hole by’the stresses due
"to Xz2r+2. If we express Xz.2 in such a form as Xa»;

(7 +1) (r+1)

x2r+2_____D‘()r+1)1ogp+ Z ID -+ p::o_z JCOS 2nd, (49)

the corresponding stresses will be given by adding the suffix (#41) to the coefficients
in equations (8) and (9). Putting p=21 and equating the coefficients to the negatives of
those in (48), we obtain the following equations:

D(r+1) ZM(')XZ '
D§ D=4 ((2n—1) LE) 2022 M5} ) (50)
E{P=— a2 (2 L4 (2n+1) 22 M) I

From (45), (46) and (50), we can determine the coefficients in terms of those at the
stage of the preceding approximation.
2-2 Determination of the Stresses
To determine the stress function of the perforated strip under the uniform tensile
stress 7, we start with the stress function, X4, of the perfect strip under tension.
%= Tp*(1+cos26) /4 , (51)

satisfies the definition. And the stress function Xs which produces on the edge of the
hole stresses cancelling the values of ¢, and 7,, due to X} are obtained by replacing the

coefficients in (7) by the following values:

D¥=Taz/2, DSV =Ta/4, ES¥=—T/2 é 2
and all the other coefficients are zero.

Substituting (52) into (45), the coefficients in %1 are given by
L =T {("ate—"B1) /2 + a1 12/ 4} } 53)

M= T {("re—"31) )2+ 1122 /4}
From these it is easy to calculate the values of the coefficients, D{", D{) and E§, of
2z by using (50). Proceeding in this way, we find Ly~ and M{ -V from‘Df)"l), Dy v
and E{~V by using (45), and further D§’, D{’ and E{’ from L{"" and M{,"Y by us-
ing (50).
The final value of X is given by

2=Tp*(1+cos28)/4+ T[-—do log p-+mop?

dz,.

+ —ez'n* + (l?n"l" mZWPZ)pZW} cos 2”0:] ’ (54)

2792
0

+2{%

#e=1

where
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=3 D/ T, du= 3 DY/ T, en=SEQ/T |
b= LD/ T, m=E M/ T, = MD/T. } =
The stresses are
g,= [“(1 COSZﬂ)‘i‘ZMo—"i -—2 :“:1{ n(?z;|;+lz)d2" OH_D(;f DL
+n(2n—1)1s,0*72 4+ (n—1) (2%+1)manZ"} cos 2n0}
ov= T3 (1+cos26) +2mo+—d°—+2 El{”(z’:ﬁ}}dz"qh———(”‘l);ff —1)¢zn
(56)

+n(21n—1)1,0%% 2 4 (n—l—l)(Zn—l—l)mz,.pZ"} cos 2nf

r,a—T[ s1n20+22{n(2n 1)<12n02"_ i?@)

+n(2n+ 1)(mznp2”—%>} sin 2n0]

The circumferential stress on the edge of the hole is obtained, by putting p=21 in the
second of equations (56),

0, =2T fo P, cos 2n6

Po=1/4+mo+do/(22%)
=1/4+3d2/ 24+ 1 +6m22
P,=10d,/26+3es/ 2+ 61,42 +15m .2t
Po=21d/3*+10es/ 25+ 151514 + 285 2°
Py=36ds/21°+21es/ 28+ 281505+ 45m12°

(57)

2-3 Calculation of g(u) and R

We will determine g(%) and R for the typical cases as shown in Fig. 2.
The stress function of the flange, %, which satisfies

0% 0% ox _
oxt +2 0x2022 - 0z¢ =0, (58)

is given by
'=S: [(A%+Cluz)cos huz-+ (B, + Dluz)sinhuz] cos uxdu, (59)

where A}, Bl, Cl, and D], are arbitrary constants, to be determined from the boun-
dary conditions.

[Case-1] H-Beam
Boundary condition:
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z
Flange 5
-— T —
(Case-13 =0, rx=0
H-B Web - P
eam T e 4 2t 5 .
b [ = 7
x
-— - —
b b - —_
Fl
Fm=Lsm (Flange)
2ty
(Cross section) (Stresses at connection)
z
b4 -— —
Flange | N 720, tu= L (=T He 50 )
N B > -— v v
(Case- 2 : a2 113 = =0, r..=0
Web N y - 4 —— - 7
Box-shaped Beam.—ql, b =
4 = z z z) -— - —
¢ 0
0 v ft
el aF P . ] — . —
[ [ = fy _(Flange)
b2 L2y Y@=
(Stresses at comnection) .

(Cross section)

(Case~II}  Flange A \1 : -; T ;::o—;;)-_‘;’l—’(-x)-;%;;‘ (%)
Double Bottom. - T T o i =0, re=0 7
Web . - 0
—i, < z -— - —_
i 2R
M i T T TTTeTTooTToT oo s T eeTeT -
& & L ’I - —
(Cross section) (Stresses at connection) (Flange)
Fig. 2. Typical structures and these boundary conditions
- N ~ 7NN 2 B -
=0, Tgp=—Y/(£)=— Y(x) on 2=0,
2ty
0:=0, 7x%=0 on z=b - (60>
where v is the displacement in the 2z-direction.
From the condition v=0 on 2==0,
B, 1—y _. . . .
C, " i = (v: Poisson’s ratio).
From the condition 6,=0, 7..=0 on 2z=b, (61)
Yol ub+3¢ -, w5 jTet —,
C’w_‘ u2b2+j§2 U Du"' MZbg _I__]'sg Au;
where S=sinh ub, c¢=cosh ub.
Substituting (61) into (59), we obtain the stress function containing A’ alone.
7:80 [t +75)C—2-(uaC+§3) + (j+2)uS |ALF wcos ux du,
where (62)

C=cosh uz, S=sinhuz, X=sinh 2ub-+2ub

-1
F =y

2% _
From the condition [Tg;z]zu!)':_[?%J 0=——2—z;";—\[/(x), it follows that
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A1F? _ 2t °° ?(W) -
i (u)_n(1+j)t780 wis S uw dw.
Then,
g 2tw Sw*(u?b%j's?)f_}# uzC+jS
n(1+7)tr Jo uy 2 u?

+—(ﬂz§}cos uxduSN V(w)sin uw dw.
uy 0

Subsequently, g(#) in (36) and R in (37) are

1 re L is -
= b2 2)(1 2)],
g(u) ES [(ub?+552) (1 +v) +2(j+c*)]
o tw Z A+»)(B=Y) ( 2upy ptui
Regp- e [(1+v)2u2b2+ 1272 (emnpemm)
— 2 .
+_5lt”_:l+(1+e-2u)z .
2
[Case-II] Box-shaped Beam
Boundary condition:
v=0, Tx=0 on z=(, ]
=0, m=\ﬁ—’(x)=;—f@_(x) on z=b, j
From the condition v=0 on 2z2=0,
BL/Cl=j.
‘From the condition =0 on 2=0,
Cl=0.
From the condition 0.=0 on z=b,
—/___,___j_—/
D= ubs Au.

Substituting (68) into (59), we obtain
7?=S: [ubSC—uzeS] ALf (u)cos ux du, l

where "(u) = }) ) [
ubs

27 —_
From the condition [rwlscs=— [,S%BX?J = -?:“l/ (x),

N

A ()=~ f;j Sw —%‘%‘—)»—sin uw dw.

Then,

F=—

e " B35S o] Fwsin .

Subsequently,

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(7D
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(wy=4-5 | (72

g(u 5 )

R=eu0- (1 ey tod (14 gy, (73)
175

[Case-111] Double Bottom

Boundary condition:

v=0, 7m=0 on 2==0,
— tw —- (74)
=0, re=Y'(x)=—77—Y(x) on z=b.
2ty
From the condition =0, 7.=0 on 2z=0,
El[’t/a;,A:]: _{u=0~ |
(75)
From the condition v=0 on 2z=b, [
=, g —
v j5—ubt A
Substituting (75) into (59), we obtain
5(=Sw[(js—ub2)?+uzs§] AlF (u)cos uxdu, ]
0 .
(76)
where N 1
S =g - {
27 —
From the condition [rm]z=b=—[*£c%l=b=%?7\l/(x),
A7 FT (g s bw = Y(w)
ALf'(u)= R A E Sﬁ s sinuw dw. an
Substituting (77) into (76),
=ty = (js—ubc)C+uzsS .-
L= RN SO P cos uxduso Y (w)sinuw dw. (78)
Subsequently,
| 1 (3—»)§E—(1+»)ub
e "y 1+4+p)(3— .
Ry s [0 (1t 5 (1) b+ (1 e,

(80)

3. Numerical caleulation

Numerical calculation is performed for the case-II. The value of stress concentra-
tion factor oymes./ T is shown against 4, together with the one of the perforated strip

without flange. (Fig. 3)
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Fig. 3. The stress concentration factors for the case-II

The value of 6ymes./ T increases with 2 in both cases, but the ratio of the increment
is smaller in the case-II. While the ratio of the increment depends on the scantling of
the flange, the effects of the flange seem to be considerable. (The numerical calculation
is now being continued.)

4. Conclusion

The formulae for the stresses on the edge of the hole in the flanged strip under
tension are obtained for the typical three cases. And the results of the numerical calcula-
tion for the box-shaped beam are shown to illustrate the effects of the flange on the
decrement of the stress concentration. (The numerical calculation is now being continued.)
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