Tension Problem of a Perforated Strip Stiffened with Flanges along the Straght Edges

メタデータ	言語：eng
	出版者：
	公開日：2010－04－05
	キーワード（Ja）：
	キーワード（En）：
	作成者：Okumura，Yoichiro，Yamabe，Chozaburo，
	Fukumoto，Yoshio
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24729／00009000

Tension Problem of a Perforated Strip Stiffened with Flanges along the Stra ght Edges

Yoichiro Okamura*, Chozaburo Yamabe* and Yoshio Fukumoto*

(Received June 30, 1962)

The tension problem of the perforated strip, which is stiffened with flanges along both edges, is studied. The calculation is executed for typical three cases and results of numerical calculation for box-shaped beam are shown.

1. Introduction

The stress analysis of a perforated strip under tension has been studied by many investigators, with fruitful results. But the effects of the flanges, when they are attached to the straight edges of the perforated strip, on the stress distribution are left unclarified, while this problem is one of theoretical interest as well as practical importance.

In the present paper, the tension problem of the perforated strip, which has one circular hole mid-way between the edges and is stiffened symmetrically with the flanges along both edges, is studied. It is dealt as a two-dimensional problem and its solution is sought by successive method for typical three cases. This process is analogous to that used by Howland ${ }^{1)}$ for the unflanged strip.

2. Theory

We consider the perforated strip with the flanges on both edges, of isotropic, elastic material, infinitely extended in longitudinal direction and loaded by uniform tension

Fig. 1. Perforated strip

[^0]applied at infinity.
As shown in Fig. 1, Cartesian co-ordinates (x, y) has its origin at the center of the circular hole (its radius is equal to λ) and the x-axis lies on the center line of the perforated strip. As the stress system is symmetrical both about the axes of the coordinates, the analysis will be developed only for the positive region of x and y. Coordinates x, y and the radius λ are measured in a unit equal to half the width of the perforated strip.

Both the perforated strip and the flanges are regarded as thin plates (the thicknesses of which are equal to t_{w} and t_{f}, respectively) and the normal stresses perpendicular to the plane of the plate are ignored.

Separating the flanges from the perforated strip, each of them is supposed to be in a state of generalised plane stress. The flanges and the perforated strip are subjected to shearing stresses at the lines of connection between them and these shearing stresses are determined from the condition of continuity of normal strains at their intersection.

2-1 Stress Function of the Perforated Strip (Successive Approximation)

Polar co-ordinates (ρ, θ) will also be used, and it will be convenient to take the initial line along the y-axis and the positive direction of θ clockwise. Then the relation between the two systems of co-ordinates is

$$
\begin{equation*}
x=\rho \sin \theta, \quad y=\rho \cos \theta \tag{1}
\end{equation*}
$$

where ρ is co-ordinate measured in a unit equal to half the width of the perforated strip.
Denoting the stress function, χ, χ must satisfy the following conditions (a), (b), (c) and (d):
(a) At all points within the material

$$
\begin{equation*}
\frac{\partial^{4} \chi}{\partial x^{4}}+2 \frac{\partial^{4} \chi}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} \chi}{\partial y^{4}}=0 ; \tag{2}
\end{equation*}
$$

(b) When $x \rightarrow \infty$, the stresses are

$$
\begin{equation*}
\sigma_{x}=\frac{\partial^{2} \chi}{\partial y^{2}}=T, \sigma_{y}=\frac{\partial^{2} \chi}{\partial x^{2}}=0, \tau_{x y}=-\frac{\partial^{2} \chi}{\partial x \partial y}=0 ; \tag{3}
\end{equation*}
$$

(c) On the straight edge, $y=1$,
$\sigma_{y}=0$ and the normal strain in the x-direction must be equal to that occuring in the flange at the line of connection between the flange and the perforated strip.
(d) On the edge of the hole, $\rho=\lambda$,

$$
\begin{align*}
& \sigma_{0}=\frac{1}{\rho^{2}} \frac{\partial^{2} \chi}{\partial \theta^{2}}+\frac{1}{\rho}-\frac{\partial \chi}{\partial \rho}=0 \tag{5}\\
& \tau_{\rho \theta}=-\frac{\partial}{\partial \rho}\left(\frac{1}{\rho} \frac{\partial \chi}{\partial \theta^{-}}\right)=0
\end{align*}
$$

To satisfy these conditions, we write

$$
\begin{equation*}
\chi=\chi_{0}^{\prime}+\chi_{0}+\chi_{1}+\chi_{2}+\cdots \cdots, \tag{6}
\end{equation*}
$$

where the terms of the series are each, separately, solution of the biharmonic equation (2) and have, in addition, the following properties.
χ_{0}^{\prime} gives the stresses at infinity.
$x_{0}^{\prime}+\chi_{0}$ satisfies the conditions on the edge of the hole and at infinity, but not on the straight edge, i.e., it is the solution for an infinite plate with a hole.
χ_{1} cancels the stresses due to χ_{0} on the edge $y=1$ and satisfies the condition of the continuity of the normal strain to the flange on the edge $y=1$, but introduces stresses on the edge of the hole.
χ_{2} cancels these, but again does not satisfy the boundary conditions on the straight edge.

More generally, $\chi_{2 r}+\chi_{2 r+1}$ satisfies the boundary conditions on $y=1$, while $\chi_{2 r-1}+\chi_{2 r}$ gives zero stresses over $\rho=\lambda$.

Now we derive equations from which $\chi_{2 r+1}$ and $\chi_{2 r+2}$ may be calculated. The value of $\chi_{2 r}$ will be assumed to be given in the form

$$
\begin{equation*}
\chi_{2 r}=-D_{0}^{(r)} \log \rho+\sum_{n=1}^{\infty}\left(\frac{D_{2 n}^{(r)}}{\rho^{2 n}}+\frac{E_{2 n}^{(r)}}{\rho^{2 n-2}}\right) \cos 2 n \theta, \tag{7}
\end{equation*}
$$

where $D_{0}^{(r)}, D_{2 n}^{(r)}, E_{2 n}^{(r)}$ are coefficients, to be determined later.
For simplicity of writing, it will be convenient to omit the suffix (r) in all the coefficients until it becomes necessary to distinguish them from those of the $\chi_{2_{r+2}}$ series. Making this temporary simplification of notation, we have for the stresses due to $\chi_{2 r}$,

$$
\begin{align*}
\sigma_{\rho} & =\frac{1}{\rho}-\frac{\partial \chi_{2 r}}{\partial \rho}+\frac{1}{\rho^{2}}-\frac{\partial^{2} \chi_{2 r}}{\partial \theta^{2}} \\
& =-\frac{D_{0}}{\rho^{2}}-2 \sum_{n=1}^{\infty}\left\{\frac{n(2 n+1) D_{2_{n}}}{\rho^{2 n+2}}+\frac{(n+1)(2 n-1) E_{2 n}}{\rho^{2 n}}\right\} \cos 2 n \theta \tag{8}\\
\tau_{\rho \theta} & =-\frac{\partial}{\partial \rho}\left(\frac{1}{\rho} \frac{\partial \chi_{2 r}}{\partial \theta}\right) \\
& =-2 \sum_{n=1}^{\infty}\left\{\frac{n(2 n+1) D_{2 n}}{\rho^{2 n+2}}+\frac{n(2 n-1) E_{2_{n}}}{\rho^{2 / n}}\right\} \sin 2 n \theta, \tag{9}\\
\sigma_{\theta} & =\frac{\partial^{2} \chi_{2 r}}{\partial \rho^{2}} \\
& =\frac{D_{0}}{\rho^{2}}+2 \sum_{n=1}^{\infty}\left\{\frac{n(2 n+1) D_{2 n}}{\rho^{2 n+2}}+\frac{(n-1)(2 n-1) E_{2 n}}{\rho^{2 n}}\right\} \cos 2 n \theta . \tag{10}
\end{align*}
$$

The stresses relative to the Cartesian axes are given by the equations

$$
\begin{align*}
& \sigma_{x}=\frac{D_{0}-2 E_{2}}{\rho^{2}} \cos 2 \theta+2 \sum_{n=1}^{\infty}\left\{\frac{(2 n+1)\left(n D_{2 n}-E_{2 n+2}\right)}{\rho^{2 n+2}}+\frac{n(2 n-1) E_{2 n}}{\rho^{2 n}}\right\} \cos (2 n+2) \theta \tag{11}\\
& \sigma_{y}=-\frac{D_{0}+2 E_{2}}{\rho^{2}} \cos 2 \theta-2 \sum_{n=1}^{\infty}\left\{\frac{(2 n+1)\left(n D_{2 n}+E_{2 n+2}\right)}{\rho^{2 n+2}}+\frac{n(2 n-1) E_{2 n}}{\rho^{2 n}}\right\} \cos (2 n+2) \theta, \tag{12}\\
& \tau_{x y}=-\left[\frac{D_{0}}{\rho^{2}} \sin 2 \theta+2 \sum_{n=1}^{\infty}\left\{\frac{n(2 n+1) D_{2 n}}{\rho^{2 n+2}}+\frac{n(2 n-1) E_{2 n}}{\rho^{2 n}}\right\} \sin (2 n+2) \theta\right] \tag{13}
\end{align*}
$$

We have now to construct $\chi_{2 r+1}$ so that it produces on the edge of the strip, the stresses cancelling the value of σ_{y} in (12), and making the value of shearing stress to be $-\bar{\psi}(x)$ after addition of the value of $\tau_{x y}$ in (13), where $-\bar{\psi}(x)$ is to be determined from the condition of the continuity of the normal strain; i.e., $\chi_{2 r+1}$ satisfies
$\left.\begin{array}{cc} \\ \text { where } & \sigma_{y}=\phi(x), \tau_{x y}=\psi(x)-\bar{\psi}(x) \text { on } y=1, \\ \phi(x)=-\left[\sigma_{y} \text { in (12) }\right]_{y=1}: \text { even function }, \\ \psi(x)=-\left[\tau_{x y} \text { in (13) }\right]_{y=1}: \text { odd function. }\end{array}\right\}$
Let $\chi_{2 r+1}$ be the biharmonic function which is resolved as follows:

$$
\chi_{2 r+1}=\chi^{\prime}+\chi^{\prime \prime},
$$

where χ^{\prime} is a function satisfying the boundary condition

$$
\begin{equation*}
\sigma_{y}=\phi(x), \tau_{x y}=0 \quad \text { on } \quad y=1, \tag{15}
\end{equation*}
$$

$\chi^{\prime \prime}$ is a function satisfying the boundary condition

$$
\sigma_{y}=0, \tau_{x y}=\psi(x)-\bar{\psi}(x) \text { on } y=1 .
$$

Consider the function

$$
\begin{equation*}
x^{\prime}=\int_{0}^{\infty}\left(A_{u}^{\prime} u y \sinh u y+B_{u}^{\prime} \cosh u y\right) \cos u x d u \tag{16}
\end{equation*}
$$

where $A_{u}^{\prime}, B_{u}^{\prime}$ are arbitrary constants. Equation (16) is even in both x and y and satisfies the equation

$$
\nabla^{4} x^{\prime}=0
$$

It will satisfy the condition for zero shear on the edge $y=1$ if

$$
B_{u}^{\prime}=-\frac{\sinh u+u \cosh u}{\sinh u} A_{u}^{\prime}
$$

Representing B_{u}^{\prime} in (16) by A_{u}^{\prime},

$$
\left.\begin{array}{c}
x^{\prime}=\int_{0}^{\infty}[(\sinh u+u \cosh u) \cosh u y-u y \sinh u \sinh u y] A_{u}^{\prime} f(u) \cos u x d u, \tag{17}\\
f(u)=-1 / \sinh u .
\end{array}\right\}
$$

where
Using (15),

$$
\begin{equation*}
\phi(x)=-\frac{1}{2} \int_{0}^{\infty} u^{2}(\sinh 2 u+2 u) A_{u}^{\prime} f(u) \cos u x d u \tag{18}
\end{equation*}
$$

Inverse sine transformation of this equation is

$$
\begin{equation*}
A_{u}^{\prime} f(u)=-\frac{4}{\pi u^{2}(\sinh 2 u+2 u)} \int_{0}^{\infty} \phi(w) \cos u w d w \tag{19}
\end{equation*}
$$

Substituting (19) into (17), we obtain

$$
\begin{equation*}
\chi^{\prime}=\frac{4}{\pi} \int_{0}^{\infty} \frac{u y s S-(s+u c) C}{u^{2} \bar{\Sigma}} \cos u x d u \int_{0}^{\infty} \phi(w) \cos u w d w \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
s=\sinh u, S=\sinh u y, c=\cosh u, C=\cosh u y, \Sigma=\sinh 2 u+2 u . \tag{21}
\end{equation*}
$$

Let $\chi^{\prime \prime}$ be the function, which has precisely the same form as χ^{\prime}. .

$$
\begin{equation*}
x^{\prime \prime}=\int_{0}^{\infty}\left(A_{u}^{\prime \prime} u y \sinh u y+B_{u}^{\prime \prime} \cosh u y\right) \cos u x d u, \tag{22}
\end{equation*}
$$

where $A_{u}^{\prime \prime}, B_{u}^{\prime \prime}$ are arbitrary constants. It will satisfy the condition for zero normal stress on the edge $y=1$ if

$$
B_{u}^{\prime \prime}=-\frac{u \sinh u}{\cosh u} A_{u}^{\prime \prime} .
$$

Representing $B_{u}^{\prime \prime}$ in (22) by $A_{u}^{\prime \prime}$,
$\chi^{\prime \prime}=\int_{0}^{\infty}(\sinh u \cosh u y-y \cosh u \sinh u y) A_{u}^{\prime \prime} f^{\prime}(u) \cos u x d u$,
where

$$
\begin{equation*}
f^{\prime}(u)=-u / \cosh u . \tag{23}
\end{equation*}
$$

Using (15),

$$
\begin{equation*}
\psi(x)-\bar{\psi}(x)=-\frac{1}{2} \int_{0}^{\infty} u(\sinh 2 u+2 u) A_{u}^{\prime \prime} f^{\prime}(u) \sin u x d u . \tag{24}
\end{equation*}
$$

Then, $A_{u}^{\prime \prime} f^{\prime}(u)$ is given by

$$
\begin{equation*}
A_{u}^{\prime \prime} f^{\prime}(u)=-\frac{4}{\pi} \int_{0}^{\infty} \frac{\psi(w)-\bar{\psi}(w)}{u(\sinh 2 u+2 u)} \sin u w d w . \tag{25}
\end{equation*}
$$

Substituting (25) into (23),

$$
\begin{equation*}
\chi^{\prime \prime}=\frac{4}{\pi} \int_{0}^{\infty} \frac{y c S-s C}{u \Sigma} \cos u x d u \int_{0}^{\infty}[\psi(w)-\bar{\psi}(w)] \sin u w d w, \tag{26}
\end{equation*}
$$

where $\bar{\psi}(w)$ is undetermined at this stage.
In order that $\chi_{2 r+1}$ may be the required solution, we must give $\phi(x)$ and $\psi(x)$ the following values, derived from (12) and (13) by putting $\rho^{2}=1+x^{2}$;

$$
\begin{align*}
& \phi(x)=\frac{2 E_{2}+D_{0}}{1+x^{2}} \cos 2 \theta+2 \sum_{n=1}^{\infty}\left\{\frac{(2 n+1)\left(n D_{2 n}+E_{2 n+2}\right)}{\left(1+x^{2}\right)^{n+1}}+\frac{n(2 n-1) E_{2 n}}{\left(1+x^{2}\right)^{n}}\right\} \operatorname{co} \\
& \psi(x)=\frac{D_{0}}{1+x^{2}} \sin 2 \theta+2 \sum_{n=1}^{\infty}\left\{\frac{n(2 n+1) D_{2 n}}{\left(1+x^{2}\right)^{n+1}}+\frac{n(2 n-1) E_{2 n}}{\left(1+x^{2}\right)^{n}}\right\} \sin (2 n+2) \tag{27}
\end{align*}
$$

θ being the acute angle defined by the equation

$$
\tan \theta=x .
$$

In order to determine the value of $\bar{\psi}(x)$, it is necessary to evaluate the strain at the line of connection with flange. By considering the condition, $\sigma_{y}=0$ on $y=1$, the unit elongation in the x-direction is written by

$$
\begin{equation*}
\left[\varepsilon_{x}\right]_{y=1}=\frac{1}{E}-\left[\sigma_{x}\right]_{y-1}=-\frac{1}{E}\left[-\left[\frac{\partial^{2} \chi_{2 r}}{\partial y^{2}}+\frac{\partial^{2} \chi^{\prime}}{\partial y^{2}}+\frac{\partial^{2} \chi^{\prime \prime}}{\partial y^{2}}\right]_{y=1} .\right. \tag{28}
\end{equation*}
$$

The terms on the right-hand side of (28) may be written as follows. Denoting $\left[\frac{\partial^{2} \chi_{2 r}}{\partial y^{2}}\right]_{y=1}$ by $\bar{\phi}(x)$ and using (11), we have

$$
\begin{aligned}
\bar{\phi}(x) & =\left[\frac{\partial^{2} x_{2 r}}{\partial y^{2}}\right]_{y=1} \\
& =\frac{D_{0}-2 E_{2}}{1+x^{2}} \cos 2 \theta+2 \sum_{n=1}^{\infty}\left\{\frac{(2 n+1)\left(n D_{2 n}-E_{2 n+2}\right)}{\left(1+x^{2}\right)^{n+1}}+\frac{n(2 n-1) E_{2 n}}{\left(1+x^{2}\right)^{n}}\right\} \cos (2 n+2) \theta,
\end{aligned}
$$

where

$$
\begin{equation*}
\theta=\tan ^{-1} x \tag{29}
\end{equation*}
$$

Let $\bar{f}(u)$ be the Fourier cosine transform of $\bar{\phi}(x),[\bar{\phi}(x)$: even function], i.e.,

$$
\begin{equation*}
\bar{\phi}(x)=\int_{0}^{\infty} \bar{f}(u) \cos u x d u \tag{30}
\end{equation*}
$$

Then, $\bar{f}(u)$ is written by

$$
\begin{equation*}
\bar{f}(u)=\frac{2}{\pi} \int_{0}^{\infty} \bar{\phi}(w) \cos u w d w \tag{31}
\end{equation*}
$$

Substituting (31) into (30),

$$
\begin{equation*}
\left[\frac{\partial^{2} \chi_{2 r}}{\partial y^{2}}\right]_{y=1}=\frac{2}{\pi} \int_{0}^{\infty} \cos u x d u \int_{0}^{\infty} \bar{\phi}(w) \cos u w d w . \tag{32}
\end{equation*}
$$

Using (20),

$$
\begin{equation*}
\left[\frac{\partial^{2} x^{\prime}}{\partial y^{2}}\right]_{3-1}=\frac{4}{\pi} \int_{0}^{\infty} \frac{s c-u}{\Sigma} \cos u x d u \int_{0}^{\infty} \phi(w) \cos u w d w \tag{33}
\end{equation*}
$$

Using (26),

$$
\begin{equation*}
\left[\frac{\partial^{2} \chi^{\prime \prime}}{\partial y^{2}}\right]_{y=1}=\frac{4}{\pi} \int_{0}^{\infty} \frac{2 c^{2}}{\Sigma} \cos u x d u \int_{0}^{\infty}[\psi(w)-\bar{\psi}(w)] \sin u w d w . \tag{34}
\end{equation*}
$$

Thus, the value of $\left[\varepsilon_{x}\right]_{y-1}$ is given as follows:

$$
\begin{align*}
{\left[\varepsilon_{x}\right]_{y=1}=} & \frac{2}{E \pi} \int_{0}^{\infty}\left[2 \frac{s c-u}{\Sigma} \int_{0}^{\infty} \phi(w) \cos u w d w+\frac{4 c^{2}}{\Sigma} \int_{0}^{\infty}\{\psi(w)\right. \\
& \left.-\bar{\psi}(w)\} \sin u w d w+\int_{0}^{\infty} \bar{\phi}(w) \cos u w d w\right] \cos u x d u \tag{35}
\end{align*}
$$

where $\phi(w)$ and $\psi(w)$ are given by (27), $\bar{\phi}(w)$ is given by (29) and $\bar{\psi}(w)$ is not determined yet.

On the other hand, the unit elongation of the flange on the line of connection, $\bar{\varepsilon}_{x}$ is given by the equation in such a form as

$$
\begin{equation*}
\bar{\varepsilon}_{w}=\frac{2 t_{w}}{E \pi t_{f}} \int_{0}^{\infty} g(u) \cos u x d u \int_{0}^{\infty} \bar{\psi}(w) \sin u w d w, \tag{36}
\end{equation*}
$$

where $g(u)$ is a function of u only and depends on the boundary condition. [The calculation of $g(u)$ is given at 2-3 for typical cases.]

Equating (35) to (36),

Tension Problem of a Perforated Strip Stiffened with Flanges along the Straight Edges 105

$$
\begin{align*}
\int_{0}^{\infty} \bar{\psi}(w) \sin u w d w & =\frac{1}{e^{2 u} R} 2(s c-u) \int_{0}^{\infty} \phi(w) \cos u w d w \\
& \left.+4 c^{2} \int_{0}^{\infty} \psi(w) \sin u w d w+\Sigma \int_{0}^{\infty} \bar{\phi}(w) \cos u w d w\right] \tag{37}
\end{align*}
$$

where

$$
R=e^{-2 u}\left[\frac{t_{w}}{t_{\tau}} g(u) \Sigma+4 c^{2}\right]
$$

Substituting (27) and (29) into (37), and considering

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\cos 2 n \theta \cos u w}{\left(1+w^{2}\right)^{n}} d w=\int_{0}^{\infty} \frac{\sin 2 n \theta \sin u w}{\left(1+w^{2}\right)^{n}} d w=\frac{\pi e^{-u} u^{2 n-1}}{2(2 n-1)!} \tag{38}\\
& \int_{0}^{\infty} \frac{\cos (2 n+2) \theta \cos u w}{\left(1+w^{2}\right)^{n}} d w=\int_{0}^{\infty} \frac{\sin (2 n+2) \theta \sin u w}{\left(1+w^{2}\right)^{n}} d w=\frac{\pi e^{-u} u^{2 n-1}(u-n)}{(2 n)!}
\end{align*}
$$

we attain to the expression

$$
\begin{align*}
& \int_{0}^{\infty} \bar{\psi}(w) \sin u w d w=\frac{\pi u e^{-u}}{R}\left[D_{0}\left(1+e^{-2 u}\right)+\sum_{n=1}^{\infty} D_{2 n_{0}} \frac{u^{2 n}}{(2 n-1)!}\left(1+e^{-2 u}\right)\right. \\
& \left.\quad-\sum_{n=0}^{\infty} E_{2 n_{n}+2} \frac{2 u^{2 n}}{(2 n)!}\left\{(n+1)\left(1+e^{-2 u}\right)+2 u e^{-2 u}\right\}+\sum_{n=1}^{\infty} E_{2 n_{0}} \frac{2 u^{2 n_{0}-1}}{(2 n-2)!}\left(1+e^{-2 u}\right)\right] . \tag{39}
\end{align*}
$$

Then $\chi^{\prime \prime}$ in (26), subsequently $\chi_{2 r+1}$ in (15) is determined; i.e.,

$$
\begin{equation*}
\chi_{2 r+1}=4 \int_{0}^{\infty} \frac{y S \cos u x}{\Sigma}(s \Phi+c \Psi) d u-4 \int_{0}^{\infty} \frac{C \cos u x}{\Sigma}\left\{\frac{s+u c}{u} \Phi+s \Psi\right\} d u \tag{40}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
\mathscr{D}=\frac{1}{\pi u} \int_{0}^{\infty} \phi(w) \cos u w d w \tag{41}\\
\Psi=\frac{1}{\pi u} \int_{0}^{\infty}[\psi(w)-\bar{\psi}(w)] \sin u w d w
\end{array}\right\}
$$

Now we will determine the stresses produced by this function at the circumference ${ }^{\text {© }}$ of the hole, and for this purpose it is convenient to express $\chi_{2 r+1}$ as a series in ascending powers of ρ. Considering

$$
\left.\begin{array}{l}
y S \cos u x=-\frac{1}{2}\left[\sum_{n=0}^{\infty} \frac{2 n u^{2 n-1} \rho^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{u^{2 n+1} \rho^{2 n+2}}{(2 n+1)!}\right] \cos 2 n \theta \tag{42}\\
C \cos u x=\sum_{n=0}^{\infty} \frac{(u \rho)^{2 n}}{(2 n)!} \cos 2 n \theta
\end{array}\right\}
$$

we may now express $\chi_{2 r+1}$ in the form

$$
\left.\begin{array}{c}
\chi_{2 r+1}=\sum_{n=0}^{\infty}\left(L_{2 n}^{(r)}+M_{2 n}^{(r)} \rho^{2}\right) \rho^{2 n} \cos 2 n \theta \\
L_{2 n}^{(r)}=\frac{2}{(2 n)!} \int_{0}^{\infty}\left[e^{u}\{(n-u)(\Phi+\Psi)-\mathscr{\Phi}\}-e^{-u}\{(n+u)(\Phi-\Psi)-\Phi\}\right] \frac{u^{2 n-1}}{\Sigma} d u \tag{44}\\
M_{2 n}^{(r)}=\frac{1}{(2 n+1)!} \int_{0}^{\infty}\left[e^{u}(\Phi+\Psi)+e^{-u}(\Psi-\Phi)\right] \frac{u^{2 n+1}}{\Sigma} d u
\end{array}\right\} .
$$

[^1]Restoring the suffix (r) to the coefficients of $\chi_{2 r}$, we find

$$
\begin{align*}
& \left.\begin{array}{l}
L_{2 n}^{(r)}={ }^{r} \alpha_{0} D_{0}^{(r)}+\sum_{p=1}^{\infty}\left\{{ }^{n} \alpha_{p} D_{2 p}^{(r)}+{ }^{n} \beta_{p} E_{2 p}^{(r)}\right\} \\
M_{2 n}^{(r)}={ }^{n} \gamma_{0} D_{0}^{(r)}+\sum_{p=1}^{\infty}\left\{{ }^{n} \gamma_{p} D_{2 p}^{(r)}+{ }^{n} \delta_{p} E_{2 p}^{(r)}\right\}
\end{array}\right\}, \tag{45}\\
& { }^{*} \alpha_{0}=\frac{1}{(2 n)!}\left[(2 n-1) I_{2 r_{0-1}}-2 I_{2 r_{0}}+J_{2 n-1}\right. \\
& \left.-2 \int_{0}^{\infty} \frac{1+e^{-2 u}}{R}\left\{n\left(1+e^{-2 u}\right)-u\left(1-e^{-2 u}\right)\right\} \frac{u^{2 n-1}}{\Sigma} d u\right] \\
& { }^{n} \alpha_{p}=\frac{1}{(2 n)!(2 p-1)!}\left[(2 n-1) I_{2 n+2 p-1}-2 I_{2 n+2 p}+J_{2 n+2 p-1}\right. \\
& \left.-2 \int_{0}^{\infty} \frac{1+e^{-2 u}}{R}\left\{n\left(1+e^{-2 u}\right)-u\left(1-e^{-2 u}\right)\right\} \frac{u^{2 n+2 p-1}}{\Sigma} d u\right] \\
& { }^{n} \beta_{p}=\frac{2}{(2 n)!(2 p-2)!}\left[2(n+p-1) I_{2_{n}+2 p-2}-(2 n p-n-p+1) I_{2_{n+}+2 p-3}\right. \\
& -2 I_{2_{n+2}+2 p}-(n+p-1) J_{2_{n+2 p-3}} \tag{46}\\
& \left.+2 \int_{0}^{\infty} \frac{p\left(1+e^{-2 u}\right)-u\left(1-e^{-2 u}\right)}{R}\left\{n\left(1+e^{-2 u}\right)-u\left(1-e^{-2 u}\right)\right\} \frac{u^{2 r_{0}+2 p-3}}{\Sigma} d u\right] \\
& { }^{n} \gamma_{0}=\frac{1}{(2 n+1)!}\left[I_{2 \cdot n+1}-\int_{0}^{\infty} \frac{\left(1+e^{-2 u}\right)^{2}}{R} \frac{u^{2 / n+1}}{\Sigma} d u\right] \\
& { }^{m} \gamma_{p}=\frac{1}{(2 n+1)!(2 p-1)!}-\left[I_{2 n+2 p+1}-\int_{0}^{\infty} \frac{\left(1+e^{-2 u}\right)^{2}}{R} \frac{u^{2 n+2 p+1}}{\Sigma} d u\right] \\
& { }^{n} \delta_{p}=-\frac{1}{(2 n+1)!(2 p-2)!}\left[(2 p-1) I_{2 n+2 p-1}-2 I_{2 n+2 p}+J_{2 n+2 p-1}\right. \\
& \left.-\int_{0}^{\infty} \frac{2 p\left(1+e^{-2 u}\right)^{2}-2 u\left(1-e^{-4 u}\right)}{R} \frac{u^{2 n+2 p-1}}{\Sigma} d u\right]
\end{align*}
$$

where

$$
\left.\begin{array}{l}
I_{s}=\int_{0}^{\infty} \frac{u^{s}}{\Sigma} d u \tag{47}\\
J_{s}=\int_{0}^{\infty} \frac{u^{\varepsilon}}{\Sigma} e^{-2 u} d u
\end{array}\right\}
$$

The terms of the integrals in (46) represent the effects of the flange and vanish ($R \rightarrow \infty$) when the perforated strip has no flange.

The coefficients in $\chi_{2 r+1}$ are thus determined in terms of those of $\chi_{2 r}$. To complete the cycle, we have now to determine the coefficients in $\chi_{2 r+2}$ in terms of those of $\chi_{2 r+1}$. The stresses due to $\chi_{2 r+1}$ are given immediately by the differentiation of (43) as

$$
\begin{align*}
& \sigma_{\rho}=2\left[M_{0}^{(r)}-\sum_{n=1}^{\infty}\left\{n(2 n-1) L_{2 n}^{(r)}+(n-1)(2 n+1) M_{2 n}^{(r)} \rho^{2}\right\} \rho^{2 n \beta-2} \cos 2 n \theta\right] \\
& \tau_{\rho \theta}=2 \sum_{n=1}^{\infty}\left\{n(2 n-1) L_{2 n}^{(r)}+n(2 n+1) M_{2 n}^{(r)} \rho^{2}\right\} \rho^{2 n-2} \sin 2 n \theta \tag{48}
\end{align*}
$$

[^2]$$
\sigma_{\theta}=2\left[M_{0}^{(r)}+\sum_{n=1}^{\infty}\left\{n(2 n-1) L_{2 n}^{(r)}+(n+1)(2 n+1) M_{2 n}^{(r)} \rho^{2}\right\} \rho^{2 n-2} \cos 2 n \theta\right] \quad \mid
$$

The first two of these must be cancelled at the edge of the hole by the stresses due to $\chi_{2 r+2}$. If we express $\chi_{2 r+2}$ in such a form as $\chi_{2 r}$;

$$
\begin{equation*}
\chi_{2 r+2}=-D_{0}^{(r+1)} \log \rho+\sum_{n=1}^{\infty}\left\{\frac{D_{2 n}^{(r+1)}}{\rho^{2 n}}+\frac{E_{2 n}^{(r+1)}}{\rho^{2 n-2}}, \cos 2 n \theta,\right. \tag{49}
\end{equation*}
$$

the corresponding stresses will be given by adding the suffix $(\gamma+1)$ to the coefficients in equations (8) and (9). Putting $\rho=\lambda$ and equating the coefficients to the negatives of those in (48), we obtain the following equations:

$$
\left.\begin{array}{l}
D_{0}^{(r+1)}=2 M_{0}^{(r)} \lambda^{2} \tag{50}\\
D_{2 n}^{(r+1)}=\lambda^{4 n}\left\{(2 n-1) L_{2 n}^{(r)}+2 n \lambda^{2} M_{2 n}^{(r)}\right\} \\
E_{2 n}^{(r+1)}=-\lambda^{4 n-2}\left\{2 n L_{2 n}^{(r)}+(2 n+1) \lambda^{2} M_{2 n}^{(r)}\right\}
\end{array}\right\}
$$

From (45), (46) and (50), we can determine the coefficients in terms of those at the stage of the preceding approximation.

2-2 Determination of the Stresses

To determine the stress function of the perforated strip under the uniform tensile stress T, we start with the stress function, χ_{0}^{\prime}, of the perfect strip under tension.

$$
\begin{equation*}
x_{0}^{\prime}=T \rho^{2}(1+\cos 2 \theta) / 4 \tag{51}
\end{equation*}
$$

satisfies the definition. And the stress function χ_{0} which produces on the edge of the hole stresses cancelling the values of σ_{ρ} and $\tau_{\rho \theta}$ due to χ_{0}^{\prime} are obtained by replacing the coefficients in (7) by the following values:

$$
\left.\begin{array}{l}
D_{0}^{(0)}=T \lambda^{2} / 2, D_{2}^{(0)}=T \lambda^{4} / 4, E_{2}^{(0)}=-T \lambda^{2} / 2 \tag{52}\\
\text { and all the other coefficients are zero. }
\end{array}\right\}
$$

Substituting (52) into (45), the coefficients in χ_{1} are given by

$$
\left.\begin{array}{l}
L_{2 n}^{(0)}=T \lambda^{2}\left\{\left({ }^{n} \alpha_{0}-{ }^{n} \beta_{1}\right) / 2+{ }^{n} \alpha_{1} \lambda^{2} / 4\right\} \tag{53}\\
M_{2 n}^{(0)}=T \lambda^{2}\left\{\left({ }^{n} \gamma_{0}-{ }^{n} \delta_{1}\right) / 2+{ }^{n} \gamma_{1} \lambda^{2} / 4\right\}
\end{array}\right\}
$$

From these it is easy to calculate the values of the coefficients, $D_{0}^{(1)}, D_{2 n}^{(1)}$ and $E_{2 n}^{(1)}$, of χ_{2} by using (50). Proceeding in this way, we find $L_{2 n}^{(r-1)}$ and $M_{2 n}^{(r-1)}$ from $D_{0}^{(r-1)}, D_{2 n}^{(r-1)}$ and $E_{2 n}^{(r-1)}$ by using (45), and further $D_{0}^{(r)}, D_{2 n}^{(r)}$ and $E_{2 n}^{(r)}$ from $L_{2 n}^{(r-1)}$ and $M_{2 n}^{(r-1)}$ by using (50).

The final value of χ is given by

$$
\begin{align*}
\chi=T \rho^{2}(1 & +\cos 2 \theta) / 4+T\left[-d_{0} \log \rho+m_{0} \rho^{2}\right. \\
& \left.+\sum_{n=1}^{\infty}\left\{\frac{d_{2 n}}{\rho^{2 n \theta}}+\frac{e^{2 n}}{\rho^{2 n-2}}+\left(l_{2 n}+m_{2 n \rho^{2}} \rho^{2}\right) \rho^{2 n}\right\} \cos 2 n \theta\right], \tag{54}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
d_{0}=\sum_{r} D_{0}^{(r)} / T, d_{2 n}=\sum_{r} D_{2 n}^{(r)} / T, e_{2 n}=\sum_{r} E_{2 n}^{(r)} / T \tag{55}\\
l_{2 n}=\sum_{r} L_{2 n}^{(r)} / T, m_{0}=\sum_{r} M_{0}^{(r)} / T, m_{2 n}=\sum_{r} M_{2 n}^{(r)} / T
\end{array}\right\}
$$

The stresses are

$$
\left.\begin{array}{c}
\sigma_{\rho}=T\left[\frac{1}{2}(1-\cos 2 \theta)+2 m_{0}-\frac{d_{0}}{\rho^{2}}-2 \sum_{n=1}^{\infty}\left\{\frac{n(2 n+1)}{\rho^{2 n+2}} \frac{d_{2 n}}{\rho^{2}}+\frac{(n+1)(2 n-1) e_{2 n}}{\rho^{2 n}}\right.\right. \\
\left.\left.\quad+n(2 n-1) l_{2 n} \rho^{2 n-2}+(n-1)(2 n+1) m_{2 n} \rho^{2 n}\right\} \cos 2 n \theta\right] \\
\sigma_{0}=T
\end{array}\right] \frac{1}{2}(1+\cos 2 \theta)+2 m_{0}+\frac{d_{0}}{\rho^{2}}+2 \sum_{n=1}^{\infty}\left\{\frac{n(2 n+1) d_{2 n}}{\rho^{2 n+2}}+\frac{(n-1)(2 n-1) e_{2 n}}{\rho^{2 n}}\right]
$$

The circumferential stress on the edge of the hole is obtained, by putting $\rho=\lambda$ in the second of equations (56),

$$
\begin{align*}
& \quad \sigma_{\theta}=2 T \sum_{n=0}^{\infty} P_{2_{n}} \cos 2 n \theta \\
& P_{0}=1 / 4+m_{0}+d_{0} /\left(2 \lambda^{2}\right) \\
& P_{2}=1 / 4+3 d_{2} / \lambda^{4}+l_{2}+6 m_{2} \lambda^{2} \tag{57}\\
& P_{4}=10 d_{4} / \lambda^{6}+3 e_{4} / \lambda^{4}+6 l_{4} \lambda^{2}+15 m_{4} \lambda^{4} \\
& P_{6}=21 d_{6} / \lambda^{8}+10 e_{6} / \lambda^{6}+15 l_{6} \lambda^{4}+28 m_{6} \lambda^{6} \\
& P_{8}=36 d_{8} / \lambda^{10}+21 e_{8} / \lambda^{8}+28 l_{8} \lambda^{6}+45 m_{8} \lambda^{8} \\
& \ldots \ldots
\end{align*}
$$

2-3 Calculation of $\boldsymbol{g}(\boldsymbol{u})$ and \boldsymbol{R}

We will determine $g(u)$ and R for the typical cases as shown in Fig. 2.
The stress function of the flange, \bar{x}, which satisfies

$$
\begin{equation*}
\frac{\partial^{4} \bar{\chi}}{\partial x^{4}}+2 \frac{\partial^{4} \bar{\chi}}{\partial x^{2} \partial z^{2}}+\frac{\partial^{4} \bar{\chi}}{\partial z^{4}}=0, \tag{58}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\bar{\chi}=\int_{0}^{\infty}\left[\left(\bar{A}_{u}^{\prime}+\bar{C}_{u}^{\prime} u z\right) \cos h u z+\left(\bar{B}_{u}^{\prime}+\bar{D}_{u}^{\prime} u z\right) \sinh u z\right] \cos u x d u \tag{59}
\end{equation*}
$$

where $\overline{A_{u}^{\prime}}, \overline{B_{u}^{\prime}}, \overline{C_{u}^{\prime}}$ and $\overline{D_{u}^{\prime}}$ are arbitrary constants, to be determined from the boundary conditions.

[Case-I] H-Beam

Boundary condition:

Fig. 2. Typical structures and these boundary conditions

$$
\begin{array}{cc}
v=0, \tau_{x z}=-\bar{\psi}^{\prime}(x)=-\frac{t_{w}}{2 t_{J}} \bar{\psi}(x) & \text { on } z=0, \\
\sigma_{z}=0, \quad \tau_{x z}=0 & \text { on } z=b \tag{60}
\end{array}
$$

where v is the displacement in the z-direction.
From the condition $v=0$ on $z=0$,

$$
\frac{\bar{B}_{u}^{\prime}}{\overline{C_{u}^{\prime}}}=\frac{1-\nu}{1+\nu} \equiv j, \quad(\nu: \quad \text { Poisson's ratio })
$$

From the condition $\sigma_{z}=0, \tau_{x z}=0$ on $z=b$,

$$
\bar{C}_{u}^{\prime}=-\frac{u b+\bar{s} \bar{c}}{u^{2} b^{2}+j \bar{s}^{2}} \bar{A}_{u}^{\prime}, \quad \bar{D}_{u}^{\prime}=\frac{j+\bar{c}^{2}}{u^{2} b^{2}+j \bar{s}^{2}} \bar{A}_{u}^{\prime}
$$

where

$$
\bar{s}=\sinh u b, \quad \bar{c}=\cosh u b
$$

Substituting (61) into (59), we obtain the stress function containing \bar{A}_{u}^{\prime} alone.

$$
\bar{\chi}=\int_{0}^{\infty}\left[\left(u^{2} b^{2}+\overline{j s^{2}}\right) \bar{C}-\frac{\bar{\Sigma}}{2}(u z \bar{C}+j \bar{S})+\left(j+\bar{c}^{2}\right) u z \bar{S}\right] \bar{A}_{u}^{\prime} \bar{f}^{\prime}(u) \cos u x d u
$$

where

$$
\begin{equation*}
\bar{C}=\cosh u z, \quad \bar{S}=\sinh u z, \bar{\Sigma}=\sinh 2 u b+2 u b \tag{62}
\end{equation*}
$$

$$
\overline{f^{\prime}}(u)=\frac{1}{u^{2} b^{2}+j s^{2}}
$$

From the condition $\left[\tau_{x z}\right]_{z=0}=-\left[\frac{\partial^{2} \bar{\chi}}{\partial x \partial z}\right]_{z=0}=-\frac{t_{w}}{2 t_{f}} \bar{\psi}(x)$, it follows that

$$
\begin{equation*}
\overline{A_{u}^{\prime}} \overline{f^{\prime}}(u)=\frac{2 t_{w}}{\pi(1+j) t_{r}} \int_{0}^{\infty} \frac{\bar{\psi}(w)}{u^{2} \bar{\Sigma}} \sin u w d w \tag{63}
\end{equation*}
$$

Then,

$$
\begin{align*}
\bar{\chi}=\frac{2 t_{w}}{\pi(1+j) t_{f}} & \int_{0}^{\infty}\left[\frac{\left(u^{2} b^{2}+j \bar{s}^{2}\right) \bar{C}}{u^{2} \bar{\Sigma}}-\frac{1}{2}-\frac{u z \bar{C}+j \bar{S}}{u^{2}}\right. \\
& \left.+\frac{\left(j+\bar{c}^{2}\right) z \bar{S}}{u \bar{\Sigma}}\right] \cos u x d u \int_{0}^{\infty} \bar{\psi}(w) \sin u w d w \tag{64}
\end{align*}
$$

Subsequently, $g(u)$ in (36) and R in (37) are

$$
\begin{align*}
& g(u)=\frac{1}{(1+j) \bar{\Sigma}}\left[\left(u^{2} b^{2}+j \bar{s}^{2}\right)(1+\nu)+2\left(j+\overline{c^{2}}\right)\right] \tag{65}\\
& R=\frac{t_{w}}{2 t_{J}} \frac{\Sigma}{\bar{\Sigma}} e^{-2 u}\left[(1+\nu)^{2} u^{2} b^{2}\right.+\frac{(1+\nu)(3-\nu)}{4}\left(e^{2 u b}+e^{-2 u b}\right) \\
&\left.+\frac{5-2 \nu+\nu^{2}}{2}\right]+\left(1+e^{-2 u}\right)^{2} \tag{66}
\end{align*}
$$

[Case-II] Box-shaped Beam

Boundary condition:

$$
\left.\begin{array}{lll}
v=0, & \tau_{x z}=0 & \text { on } \quad z=0 \tag{67}\\
\sigma_{z}=0, & \tau_{x z}=\overline{\psi^{\prime}}(x)=\frac{t_{w}}{t_{f}} \bar{\psi}(x) \quad \text { on } \quad z=b
\end{array}\right\}
$$

From the condition $\quad v=0$ on $z=0$,

$$
\overline{B_{u}^{\prime}} / \overline{C_{u}^{\prime}}=j
$$

From the condition $\tau_{x z z}=0$ on $z=0$,

$$
\overline{C_{u}^{\prime}}=0
$$

From the condition $\sigma_{z}=0$ on $z=b$,

$$
\bar{D}_{u}^{\prime}=-\frac{\bar{c}}{u b s} \bar{A}_{u}^{\prime}
$$

Substituting (68) into (59), we obtain
where

$$
\begin{equation*}
\bar{\chi}=\int_{0}^{\infty}[u b \bar{s} \bar{C}-u z \bar{c} \bar{S}] \overline{A_{u}^{\prime}}{\overline{f^{\prime}}}^{\prime}(u) \cos u x d u \tag{69}
\end{equation*}
$$

From the condition $\left[\tau_{x z z}\right]_{z=b}=-\left[\frac{\partial^{2} \bar{\chi}}{\partial x \partial z}\right]_{z=b}=\frac{t_{w}}{t_{f}} \bar{\psi}(x)$,

$$
\begin{equation*}
\overline{A_{u}^{\prime}} \overline{f^{\prime}}(u)=-\frac{4 t_{w}}{\pi t_{f}} \int_{0}^{\infty}-\frac{\bar{\psi}(w)}{u^{2} \bar{\Sigma}} \sin u w d w \tag{70}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\bar{\chi}=-\frac{4 t_{w}}{\pi t_{\tau}} \int_{0}^{\infty} \frac{b \bar{s} \bar{C}-z \bar{c} \bar{S}}{u \bar{\Sigma}} \cos u x d u \int_{0}^{\infty} \bar{\psi}(w) \sin u w d w \tag{71}
\end{equation*}
$$

Subsequently,

$$
\begin{gather*}
g(u)=4 \frac{\bar{c}^{2}}{\bar{\Sigma}} \tag{72}\\
R=e^{-2 u(1-b)}\left(1+e^{-2 u b}\right)^{2} \frac{t_{w} \Sigma}{t_{f} \bar{\Sigma}}+\left(1+e^{-2 u}\right)^{2} \tag{73}
\end{gather*}
$$

[Case-III] Double Bottom
Boundary condition:

$$
\left.\begin{array}{ll}
v=0, \quad \tau_{x z}=0 & \text { on } z=0 \tag{74}\\
v=0, \quad \tau_{x z}=\overline{\psi^{\prime}}(x)=\frac{t_{w}}{2 t_{f}} \bar{\psi}(x) & \text { on } z=b
\end{array}\right\}
$$

From the condition $v=0, \tau_{x z}=0$ on $z=0$,

$$
\begin{equation*}
\bar{B}_{u}^{\prime} / \overline{C_{u}^{\prime}}=j, \quad \overline{C_{u}^{\prime}}=0 \tag{75}
\end{equation*}
$$

From the condition $v=0$ on $z=b$,

$$
\bar{D}_{u}^{\prime}=\frac{\bar{s}}{j \bar{s}-u b \bar{c}} \bar{A}_{u}^{\prime}
$$

Substituting (75) into (59), we obtain
where

$$
\begin{align*}
& \bar{\chi}=\int_{0}^{\infty}[(j s-u b \bar{c}) \bar{C}+u z \bar{s} \bar{S}] \bar{A}_{u}^{\prime} \bar{f}^{\prime}(u) \cos u x d u \tag{76}\\
& \bar{f}^{\prime}(u)=\frac{1}{j \bar{s}-u b \bar{c}}
\end{align*}
$$

From the condition $\left[\tau_{x z z}\right]_{z=b}=-\left[\frac{\partial^{2} \bar{\chi}}{\partial x \partial z}\right]_{z=b}=\frac{t_{w}}{2 \tilde{t}_{f}} \bar{\psi}(x)$,

$$
\begin{equation*}
\overline{A_{u}^{\prime}} \overline{f^{\prime}}(u)=\frac{t_{w}}{\pi(1+j) t_{f}} \int_{0}^{\infty} \frac{\bar{\psi}(w)}{u^{2} \tilde{s}^{2}}-\sin u w d w \tag{77}
\end{equation*}
$$

Substituting (77) into (76),

$$
\begin{equation*}
\bar{\chi}=\frac{t_{w}}{\pi(1+j) t_{f}} \int_{0}^{\infty} \frac{(j s-u b c) \bar{C}+u z \bar{S} \bar{S}}{u^{2} s^{2}} \cos u x d u \int_{0}^{\infty} \bar{\psi}(w) \sin u w d w \tag{78}
\end{equation*}
$$

Subsequently,

$$
\begin{align*}
& g(u)=\frac{1}{2(1+j)} \frac{(3-\nu) \bar{s} \bar{c}-(1+\nu) u b}{\bar{s}^{2}} \tag{79}\\
& R=\frac{t_{w} e^{-2 u} \Sigma}{2 t_{r}\left(1-e^{-2 u b}\right)^{2}}\left[\frac{(1+\nu)(3-\nu)}{2}\left(1-e^{-4 u b}\right)-2(1+\nu)^{2} u b e^{-2 u b}\right]+\left(1+e^{-2 u}\right)^{2} \tag{80}
\end{align*}
$$

3. Numerical calculation

Numerical calculation is performed for the case-II. The value of stress concentration factor $\sigma_{\theta \text { max. }} / T$ is shown against λ, together with the one of the perforated strip without flange. (Fig. 3)

Fig. 3. The stress concentration factors for the case-II
The value of $\sigma_{s \text { max }} / T$ increases with λ in both cases, but the ratio of the increment is smaller in the case-II. While the ratio of the increment depends on the scantling of the flange, the effects of the flange seem to be considerable. (The numerical calculation is now being continued.)

4. Conclusion

The formulae for the stresses on the edge of the hole in the flanged strip under tension are obtained for the typical three cases. And the results of the numerical calculation for the box-shaped beam are shown to illustrate the effects of the flange on the decrement of the stress concentration. (The numerical calculation is now being continued.)

References

1) R.C.J., Howland, Phil. Trans. of the Roy. Soc. Ser. A, vol. 229 (1930).

[^0]: * Department of Naval Architecture, College of Engineering.

[^1]: * See pp. 56 and 57, Reference 1).

[^2]: * The values of I_{δ} and J_{s} for $S \leq 20$ have been obtained by Howland [See p. 67, Reference 1)].

