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            Effectiveness of Stiffened Plates on Rigidity

                           under Latera! Loads ･

                                                   '

          Chozaburo YAMABE,* Yoichiro OKAMuRA* and Yoshio FuKuMoTo*

                              (Received June 30, 1961)

        ]n this paper the effe:tive breadth of stiffened plates subjected to lateral loads is

     calculgted on the view point of the rigidity and numerical calculation is executed

     for some typical cases

                                1. Introduction

    The conception of the effective breadth was introduced in structural engineering

for the purpose of estimating the strength of structures consisting of plates and stiffners

by the elementary beam theory. And by means of this effective breadth which has been

treated by many researchers, the maximum stresses in structures subjected to bending

loads can be estimated easily. While, there are some cases in practice where it is neces-

sary to estimate the rigidity of the structures. For this purpose, the effective breadth

men tioned above is inadequate.

    In this paper, the effective breadth to estimate the maximum deflection of structures

by the elementary beam theory is newly defined and numerical calculation is executed

for some typical cases shown in Fig. 1, when both ends are simply supported.

                    i 2. Theory

    Here, the plate is treated as a case of plane stress loaded only by shear stress

imposed on it by the stiffners on the line of connection between plates and stiffners,

and the stiffner is treated as a web which obeys the elementary beam theory. The

coordinates are shown in Fig. 1.

    For the plate, a stress function F which satisfies

                             04F                     04F            04F           "Ox4 +2"ox2ayE'+ ay4 =O . ･･･(1)
                                                                   '
is employed. The stress components are given by

                alF 02F 02F                        Ov='ox2, r=- 'oxay "'( 2)           O. == '''byT,

                                 '     ttFor E a harmonic form is assumed as follows;

           F=Z f;s sin tunx . "'(3)
               n
where tuva==nz/L n: integer
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then, Eq. (1) requires that f;z takes are form as ' ,

          ]C;} =(An+Cfb(onY)COS htunY+(Bn+DntuvaY)sinh tavaY "'(4)

where Afb, Bca, Cn, Dn are arbitrary constants which are determined by the boundary

conditions.

   For typical cases, the relations between these constants determined from the physical

boundary conditions are shown in Fig. 1.

    Case I. Single web, fiange with free sides

                                            Bn 1-v .
                                           'Cn'= -1 +v =j

                                           c... - 4n(di".bS,Slnj.hsituncbh,C.O.Sbhtu"b)--

                                               An (.1' + cgs h2tonb)
                                           Dn==                                                tohb 2 + 1' sin h2tonb

          2'

               An 4 silhqn+qn
              i- = ' ixi × 'T"( 3-[ v5 (1 ;i >'7cos' h-lrh '+L'(i +-i) 2 × ak=/2 '+"UL(5"=2' v + Ji )'J

    where an :- nTB/L

    Case II. Double web, flange bounded by webs

                                            B. .
                                           rcll-' = i

                                           Cn==O

                                                  -A.
                                           D" = -tuhb tanrh6h-b'

                                            An 1 sinhava+an
           .- b == Lil'h" Xt' cos han+I-
            z
    Case III. Multiple webs-
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                                            Cfb =1
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   Then,

where qn is

boundary

   And An

L

  z
   1. Boundary condition, the value of

Bn, Cn, Dn are represented by A.

         ]lb=Avacaeb

  a function of y only and implies

condition.

  can be determined by considering

   C.--O

   Dn= '""

    A,, 4
    b 7 ava

      × ----- --

Bn7 Cn,

and f"a can be

no indeterminate

 the

- An tan hwnb
tovab-7"farnrh'-dittb'r

        cos hava - 1
     (3 -v) (1 +v) sin han- (1 +v) 2ava

   Dn and An for typical cases.

        written as

                         -･(5)

           factor for each physical

equilibrium of a section and the con-

.
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tinuity of strains along the line of a connection between a plate and a Neb, vvhen a

external bending moment (sagging) Mis given. '
   The equilibrium condition of a section is

                M== M.-eX' "･･(6)
    Mw : bending moment (sagging) to which the web is subjected,

    X==2t[O"FYay]e==2t 2] A,.[Oip./ay]6sintu.x: total tension which acts on the plate,

                    n
   e: distande between the plate and the cqntroid of the web,

   t : thickness of the plate. ' '
The continuity conditions is ･ '
           -[--Oa?y-"i,;'--yrOa2."F, ],=, ., ,= -e' i!illw +-t`.r' '''(7)

    Ihv: moment of inertia of the web about its own neutral axis, '

    Aw: area of the web.

    Now we expand M in a harmonic form as follows;

           M==XMn sin tunX "'(8)
               n
the values of Mra for typical states of loading are given in Fig, 2.

     (1) Concentrated load at centre (both ends supported)

                                          MLe == Z Mde sin tuvax
                                               n
                                          Mb =` "2-.PiL-" × ( - 1) (va-i)12 × .rtti .

                                          [n-1, 3, 5, ''･]

 1, (2) kUniform load. (both ends supported)

                                          Mx == £ 1vabsin tonx
                                               n
                                               4pL2 1
                                          M}b=T, ×-nS-

                                          [n -= 1,3, 5, ･･･]

                 Fig. 2. The value of lh for some loading conditions.

    Eliminating M. from Eq. (6) and (7), and considering Eq. (8)

                                                                     '                                          M.
           -Acr'=C4/E)ttlttojtil'll-vti){q'h],:,''.,,tr'C2}/'el'''//ii'ho---g'le'EA--i'i5opII17t7,'kr

                                                                      ･･･(9)

    Then, the arbitrary constants in Eq. (4) are determined completely, and it results

that we can find the stress distribution. .
    To determine the effective breadth based on the rigidity we wi11 calculate the deflec-

                                         'tion of the web z. x must satisfy

              d22 --M.--M±eK. ･･･(lo)           --d-xi'pt Ello - EIde

P

'
M
x

p

Mx,

L
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substituting M and X of the harmonic form in Eq. (10), and considering Eq. (9)

     L--g.2g--=-Eixdu,F-/t-iok'k[iS'e',,/b".X/i/6-:-/1/-:-tto-:-s-;,･:--:-geg."l-ir---E[9"':vas/'i'',"'.''i';"''a)),･

            XMva sindi nx ･･･(11)
    Now, we employ the function;

           1va-[-(oi-da-61-asJ[,O)q+Xrbl.Oii]//,]v-;-6.-1--,- ･･･(i2)

which is equivalent to the effective breadth of the flange, when M==Mvasintu,bx. This

term was defined and numerically calculated by A. Schadei)2) to estimate the effective

breadth based on the strength. (the equation of Z. is given in Fig. 1 for each case.)

    Substituting Eq. (12) in Eq. (11)

           -dixZ, ==Jb-?reet!Lsintunx "'(13)

    I;,= 4-e-4--w--+-22/hn-tt+-<-{2i-IT----q-l4w)-: moment of inertia of the section, the fiange breadth

of which is 2 Zva.

    As both ends are simply supported,

            z'nt"Ei"'¥LaMi2.2rz-sintuvax . '･･･(i4)

    The deflection of the mid-point of the span 6 is given as follows;

    for concentrated load, o=¥-El-4-× 2nR,L.,3 [n=1,3,s･･･]

                                                      ･ ･･･(15)
    for uniform load, 6=¥ -(･:--IE-)-;'li--1iLilx 4nP,l,`
                                                  [n=1, 3, 5･･･]

While, the corresponding deflection of equivalent beam is

                                               '                             PL3    for concentrated load, 6="4sttl"-

                                                                     ･･･(16)
   for uniform ioad, ･6= "3-5sl'ii!liei' ' -

   Equating Eq. (15) and (16), the `effective' moment inertia of the equivalent beam

Iis determined. And the effectiveness of the plate Z/b based on the rigidity is gained

from the equation;

                            '
          '-2'"=-iL7g'i'l-i2-Aidedimi"×-4i- ･･･(i7)

              A==2bt .
                             '

                          3. Numerical calculation -
   For the numerical L/calculation, we consider the cases, where the structures are
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shown in Fig. 1 and the load conditions are shown in Fig. 2. And when the web is

flat bar, Eq. (17) is

                        ,-2'ri==-3"s'1[=96(,¥p,.(1".4n)/4`;4xL4Aw-

    for concentrated load,

                                     n
                                            [n== 1. 3, 5･･･]
                                                                         ･･･(18)
    foruniforihioad, -2･------Z--:-S-,,-l,-,5-9,-･S.ll-ii-,-(-,-i,l,)-l-:i-li12.E,'-",tt(l;--)-･×--Ai--

                                       n'
                                            [n==1, 3, 5･･･] '

                      . (An/b)(.A/Aw)+1
where wh.-                       r'4(2'rl!b) (AI A-w' >' [F'i-

    This Eq. (18) contains A/Aw for a parameter, and we take 1, 5 and 10 for its valties
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here. As the convergehcy of the series in Eq. (18) is rapid, it is suthcient to take ac-

count of the first two terms, and the values of 2/b are plotted against LIB in Fig. 3

   From these, it is found that 2/b are affected little by the loading condition and

AIAw･
   In this connection, we will compare Z/b with 2s/b (effectiveness considering the

strength) which was calculated by A. Schade. The values of ls/b are given for a para-

meter B, the relation of which to A/A. is

           B--l x-A.---[-g- [2-..:}l-] ･･･(ig)
                                                                    '
when the web is a fiat bar. Schade's broken lines in Fig. 3 and Fig. 4 are curves of

aslb for B==1/6 (A/A...i2).

   These lines are affected by the loading conditions, contrary to Z/b. And it is found

that Z/b is larger than Zs/b for a concentrated load while Zlb agrees nearly with 2s/b for

a unifQrm load.

          '        '
                               4. Conclusion

    There are cases where it is appropriate to design the structures on the view point

of the rigidity, but it seems that there is no simple method to calculate the defiection

of the stiffened plate under bending loads. So, we define the effective breadth based on

the rigidity and calculate it for some practical cases and show the results in Fig. 3 and

Fig. 4. These results are applicable to calculate the maximum deflections of the struc-

tures by the elementary beam theory.
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