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Effectiveness of Stiffened Plates on Rigidity
under Lateral Loads
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(Received June 30, 1961)

In this paper the effective breadth of stiffened plates subjected to lateral loads is
calculated on the view point of the rigidity and numerical calculation is executed
for some typical cases ’

1. Introduction

The conception of the effective breadth was introduced in structural engineering
for the purpose of estimating the strength of structures consisting of plates and stiffners
by the elementary beam theory. And by means of this effective breadth which has been
treated by many researchers, the maximum stresses in structures subjected to bending
loads can be estimated easily. While, there are some cases in practice where it is neces-
sary to estimate the rigidity of the structures. For this purpose, the effective breadth
men tioned above is inadequate.

In this paper, the effective breadth to estimate the maximum deflection of structures
by the elementary beam theory is newly defined and numerical calculation is executed
for some typical cases shown in Fig. 1, when both ends are simply supported.

2. Theory

Here, the plate is treated as a case of plane stress loaded only by shear stress
imposed on it by the stiffners on the line of connection between plates and stiffners,
and the stiffner is treated as a web which obeys the elementary beam theory. The
coordinates are shown in Fig. 1.

For the plate, a stress function F which satisfies

oF 0+F L
o 2 pmys T gy =0 b

is employed. The stress components are given by

_®F  __®F ___ 0F 25
9a= "gyr » OV gxz 0 TT T Bxby

For F, a harmonic form is assumed as follows;
F=3f,sinw.x . -(3)

where op=nr/L n: integer
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then, Eq. (1) requires that f, takes are form as ]
Jo=(An+Coomy)cos har,y -+ (Bu+ Duwyn y)sinh wn y w(4)

where A,, By, Cy, D, are arbitrary constants which are determined by the boundary
conditions.

For typical cases, the relations between these constants determined from the physical
boundary conditions are shown in Fig. 1.

Case 1. Single web, flange with free sides

Bn _ 1-wv _ .
Co ~di+w 7

Cou An(wnb +sinhenbcos hwrb)
e w3b?+ j sin hwnb
D An(j+cos Wanb)
7 wibi+ jsin honb
,z.
An 4 sin han +an

5 am NGB0 (1) coshant (1) X ah/2F (52wt Py
where an=nrB/L

Case II. Double web, flange bounded by webs

_Ba__
Cn a
Cn=0
ay=0 D= — —dn
" wnbtanhwnb
y g Ao _ 1 sinhaotdn
v b an X Coshant1
z
Bo _
Cn 7
Cn*O
D~ ~Antanhesd
"7 wpb—j tan hond
A 4
b an
cos han—1
X

(B—») @ +u)sinhar— (1 +»)%an
Fig. 1. Boundary condition, the value of Bs, Cn, Dn and An for typical cases.
Then, B,, Cs, D, are represented by A, and f, can be written as
Jo=Aupn = (5)

where ¢, is a function of ¥ only and implies no indeterminate factor for each physical
boundary condition.
And A, can be determined by considering the equilibrium of a section and the con-
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tinuity of strains along the line of a connection between a plate and a web, when a
external bending moment (sagging) M is given.
The equilibrium condition of a section is
M=M,—eX ’ ~+(6)
M, : bending moment (sagging) to which the web is subjected,
X=2t[0F/0y]1=2t > A,[0p,/0y]tsinw,x: total tension which acts on the plate,
e : distance between the plate and the centroid of the web,
t . thickness of the plate.

The continuity conditions is

o°F 0 F _eM, X
S R b i (0

I, : moment of inertia of the web about its own neutral axis,

A,: area of the web.
Now we expand M in a harmonic form as follows;

M= 3 M,sin o,x -+ (8)

the values of M, for typical states of loading are given in Fig. 2.

(1) Concentrated load at centre (both ends supported)

lP My= 3 Musinonx
& ‘ 7 2PL ez 1
Mx Mn=-"57"X (-1 X
[#=1,3,5,-1
L
(2) EUniform load. (both ends supported)
b My= 2, Mnsinonx
4 pL? 1
Mx Mn= 71;3 X7n57
L [n=1,3, 5, ]
Fig. 2. The value of Mx for some loading conditions.
Eliminating M,, from Eq. (6) and (7), and considering Eq. (8
A= , M, R
Ll G v, T2t/ A (L0 A B0a/3)5
- (9)

Then, the arbitrary constants in Eq. (4) are determined completely, and it results

that we can find the stress distribution. ,
To determine the effective breadth based on the rigidity we will calculate the deflec-

tion of the web z. z must satisfy

dz Mw M'+‘9X o (1
T dxt T EIL, ElL, a0
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substituting- M and X of the harmonic form in Eq. (10), and considering Eq. (9)

e 1 (Iw/e)[ O3 YR ), T RHCAD LB/ 0913

—_ L Sl A .
ax " Bl Lol [ T tign] | +t/eAD Tte A Bl 00]s
X M, sinw »% (1)

Now, we employ the function;

[00a/03)8 iy
Au= (62%/9372) +”w$b¢'n] y=0orbd (12)

which is equivalent to the effective breadth of the flange, when M=M,sinw,x. This
term was defined and numerically calculated by A. SchadeD? to estimate the effective
breadth based on the strength. (the equation of 4, is given in Fig. 1 for each case.)
Substituting Eq. (12) in Eq. (11)
dz 1 M, .
—gpr = E D sino a3

LoAu+22t (L, +eAy)
244t + Ay,
of which is 2 2,.
As both ends are simply supported,

I,= : moment of inertia of the section, the flange breadth

=g };—‘M»I sin WX e (14)

The deflection of the mid-point of the span & is given as follows;

: . I . 2PL -
for concentrated load, &= o) AR [#=1,3,5]
(=117 {15)
; oy (D 4pLt -
for uniform load, o= > EL X o (#=1,3,5-]
While, the corresponding deflection of equivalent beam is
_ PrLs
for concentrated load, &=- ASET
-(16)
. - _5pL*
for uniform load, 0= 3R4ET

Equating Eq. (15) and (16), the ‘effective’ moment inertia of the equivalent beam
I is determined. And the effectiveness of the plate i/& based on the rigidity is gained
from the equation;

A =L, A,
b L,terd,—1 A

A=2bt

..(17)

3. Numerical calculation

For the numerical :calculation, we consider the cases, where the structures are
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shown in Fig. 1 and the load conditions are shown in Fig. 2. And when the web is

flat bar, Eq. (17) is

for concentrated load,

74— 96 X2 (Yra/ 1)

b s /= %
[n:l, 3, 5...]

A

w

-+(18)

. 1 575—1536 2(_1)(7»—1 )/z(.,’[%_/ns) 4
for uniform load, BT elad S (1Y@ /) —Brs X
[r=1, 3, 5-]
_ (/0)(A/AD+1

where

Vo= 4 /B (A A +1

This Eq. (18) contains A/A,, for a parameter, and we take 1,5 and 10 for its values
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Fig. 3. A/b for the concentrated load. (Broken

line shows the value As/b)
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Fig. 4. A/b for the uniform load. (Broken

line shows the value As/8)
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here. As the convergency of the series in Eq. (18) is rapid, it is sufficient to take ac-
count of the first two terms, and the values of A/6 are plotted against L/B in Fig. 3
and Fig. 4. » '

From these, it is found that 1/b are affected little by the loading condition and
A/A,.

In this connection, we will compare 1/b with 21,/b (effectiveness considering the
strength) which was calculated by A. Schade. The values of 1,/b are given for a para-
meter £, the relation of which to A/A,, is

1 A, [ 4(A/AL+1

B=y x4 [3<A/A'w)+1’} (19

when the web is a flat bar. Schade’s broken lines in Fig. 3 and Fig. 4 are curves of
As/b for B=1/6 (A/A=2).

These lines are affected by the loading conditions, contrary to 1/6. And it is found
that A/b is larger than 1,/b for a concentrated load while A/ agrees nearly with 1./b for
a uniform load.

4. Conclusion

There are cases where it is appropriate to design the structures on the view point
of the rigidity, but it seems that there is no simple method to calculate the deflection
of the stiffened plate under bending loads. So, we define the effective breadth based on
the rigidity and calculate it for some practical cases and show the results in Fig. 3 and
Fig. 4. These results are applicable to calculate the maximum deflections of the struc-
tures by the elementary beam theory.
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