S5 ABLIASE SRy g by

Osaka Metropolitan University

<ARTICLE>A Genetic Algorithm for Bicriteria
Scheduling Problems

S&8: eng

HARE

~EH: 2009-08-25
*F—7— K (Ja):
*F—7— K (En):

YERZE: Morita, Hiroyuki
X—=ILT7 KL R:

Firi&:

https://doi.org/10.24729/00000919




117

A Genetic Algorithm for Bicriteria Scheduling Problems
Hiroyuki Morita

Abstract

In this paper, a genetic algorithm that produces an approximate set of all non-dominated
solutions is proposed for a bicriteria permutation scheduling problem. And a measure of dis-
tance between the set of all non-dominated solutions and any approximate set is defined. In
order to show its effectiveness, we shall compare its performance with exact non-dominated
solutions by carrying out computational experiments for a bicriteria single machine permu-
tation scheduling problem. Computational results demonstrate that proposed algorithm have
good performance from viewpoints of both solution quality and computational efficiency for

practical input size case.

1. Introduction

In real applications of industrial scheduling, decision-makers are usual-
ly faced with various multi-objective scheduling problems. As remarked
by [25), a schedule that is optimum with respect to one criterion normally
performs badly with respect to other criteria. Therefore a schedule with
satisfactory performance on all measures may be a better alternative for
the decision-maker. This consideration leads to the research on multicrite-
ria scheduling. A number of papers(see [5], (6], (10, [20], [24], [25]) point-
ed out the importance of extensive research of multiobjective scheduling.

Recently, multiobjective scheduling has been studied by many
researchers (see survey papers (5], [10], [24]). Most papers in the litera-
ture focused on problems on a single machine as noticed by [24]. One rea-
son might be that even a single-objective scheduling problem on multiple
machines is difficult to solve in most cases as evidenced by NP-complete-
ness results (see [19]). Because of this, we can not enumerate all of non-
dominated solutions for most multiobjective scheduling problems in rea-
sonable computational time in practice.

On the other hand, many researchers proposed various metaheuristic
approaches such as simulated annealing, tabu-search and genetic algo-
rithms (GA) for multiobjective combinatorial optimization (MOCO) prob-
lems (see(2],17],(8],19],[11],(12],[15], [16], [21], [28], [29], [31], [34]).
Ulungu and Tegheml[35] gave an excellent survey for various metaheuris-



118 Journal of Economics, Business and Law vol.2 2000

tic approaches for MOCO. The approaches using GA have been proposed
by [71,(8],(12],(15], [16], [23], [28] , [31],[34] and etc. In particular, [1] and
[8] gave an extensive survey for GA approaches in multiobjective opti-
mization. Approaches by simulated annealing have been proposed by (2],
[9], [29]. Recently, the tabu search methods are proposed by (11] and [14].
Most of these algorithms are for general-purpose, and to the author's
knowledge, comparative study among them has not been extensively
done yet. In view of this, the authors(21] have conducted a comparative
study of GA approaches and other heuristics for a bicriteria two-machine
flow-shop scheduling problem that minimizes both makespan and maxi-
mum tardiness. As a result, we have observed that GA approaches are
superior to the heuristics proposed by [3]. Among GA approaches, using a
single strategy among those proposed by (7], (8], [12], (28] does not work
well, but combining these strategies together with a new strategy, called
seeding strategy, introduced by the authors[21] exhibits the best perform-
ance.

The aim of this paper is to improve our GA proposed in [21] and to
apply to another class of bicriteria scheduling problem in order to see its
effectiveness from the viewpoint of the goodness of approximation of an
exact set of all non-dominated solutions. The problem dealt with in this
paper is a bicriteria single machine scheduling problem minimizing both
total flow time and maximum tardiness simultaneously. This problem has
been studied by Wassenhove and Gelders[36], and O (n*plogn) time algo-
rithm for computing an exact set of non-dominated solutions was pro-
posed, where p is the maximum of processing times of n jobs(each pro-
cessing time is assumed to take a positive integer value). Although the
running time of this algorithm is pseudo-polynomial, it is efficient if p is
not too large. The reason why we apply our algorithm to this problem in
spite of the existence of the exact algorithm by [36] is that we can
observe how closely our algorithm approximates the exact set of non-
dominated solutions. In the other multiobjective scheduling problems, we
can not enumerate all of non-dominated solutions for practical input size
case, so we can not decide our algorithm is superior or not absolutely. As
we shall see in Section 4, our algorithm can produce all non-dominated
solutions for this problem of size up to 500 jobs in acceptable computa-
tional time.



A Genetic Algorithm for Bicriteria Scheduling Problems 119

The organization of this paper is as follows. Section 2 gives necessary
notations and briefly reviews basic ideas the existing multiobjective GA's,
and also defines a scheduling problem discussed in this paper. Section 3
presents our genetic algorithm. Section 4 reports our experimental
results. Finally, we conclude this paper with discussion on a potential
applicability of our method to a large class of combinatorial optimization
problems.

2. Preliminaries
2.1 bicriteria combinatorial optimization problems

Suppose that we are given a finite set X of R", and two objective func-
tions f;: X—R, j=12 (both are assumed to be minimization). An element
xeX is called a feasible solution or simply a solution. Bicriteria optimiza-
tion problems are then formulated as

P : minimize __ {f,(x), f,(x)}. (1)

Since both objectives cannot be minimized simultaneously in general, it is
quite natural that the decision-maker chooses a solution from among non-
dominated solutions. A solution is called non-dominated if there does not
exist yeX with y#x satisfying

HO)<fi(x) and  f,(0) < f,(0), (2)

and one of the inequalities in(2) strictly holds. A set of all non-dominated
solutions for a set X is denoted by ND(X). ND(X) is computed by solv-
ing the following single-objective problem by continuously varying the
parameter from 0 to 1 (see [27],[33)).

minimize . U, (f,, f,) = max{af, (x), 1 - @) /, (x)} + Blof, (¥) + A - @) £, (X)}, (3)

where 0< @ <1 and f is a very small positive constant. Let V. (X)
denote the minimum value of the above problem. Since we are dealing
with the problem for approximating ND (X), we need to introduce a new
measure to compare the relative degree of approximation of two approxi-
mate sets of ND(X). Let S: and S: be two such sets. Let us assume
that the decision maker chooses his or her utility function from among
family of functions U,(f,,f,) defined below by randomly choosing from



120 Journal of Economics, Business and Law vol.2 2000

the interval .
UL ) = maxta LD -y LDy 1 e hD 1 - ) 22Dy

, 7, /3 7, 1)
U.(f,,f,) is obtained from U.(f,, f.) by introducing range equalization
factors m, and =, in order to equalize the ranges of f, and f,, which
was introduced by [33]. Given a set S of solutions, =, is defined as
max.esf. (x) —minsesf,(x). Then the utility value for a particular & with
respect to S,,i=1,2 is defined by

v (8) = minU,(f,(x), ,(x)), i=12 ®)

We can compute the expected value of the ratio of the utility value Y, (S,)
to V. (S,) with respect to @ by
Y (S
&wwwwnj (6)
Vo (S, )
This is called the expected ratio of S, to §,, denoted by ratio(s, |S,). It seems
obvious that if this value is larger than one, S1 is a better approximate set of
ND(X) than S, Notice that the equality ratio(S,|S,) = ratio(s, |S,) does not
always hold, and ratio(S,| S,)- ratio(S, | §,)>1 holds in general(the proof
is omitted).

2.2 Bicriteria single-machine scheduling problems

All performance measures considered in this paper are regular. Here,
a measure of performance is said to be regular if it is non-decreasing
function of job completion times and the scheduling objective is to mini-
mize the performance measure. Scheduling problems treated in
this paper is a bicriteria single-machine scheduling problem that mini-
mizes both total flow time and maximum tardiness. It is denoted by
n/1//2C,T . using the notation of [24] and defined as follows.

Suppose that we are given jobs that are available at time 0 and are to
be sequenced -on a single machine. Jobs are numbered from 1 through n.
Each job j has processing time p, and due date d, where p; is assumed to
be a positive integer. Since we are considering regular performance
measures, scheduling is determined by a permutation. Given a schedule,
completion time C; of job is uniquely determined. Although C; depends



A Genetic Algorithm for Bicriteria Scheduling Problems 121

on a schedule, we omit from the notation of C; such dependency for the
sake of simplicity. Total flow time X C, is defined to be 2C,. Tardiness T,
of job j is defined to be max|C,— d,,0l. Maximum tardiness Twmax is

defined as max ., 7T, .

3. Overview of multiobjective GA

Genetic algorithms have been recognized to be well suited to multi-
objective optimization in nature since they are keeping multiple solutions
in parallel. Genetic algorithms proceed in general by keeping a set of solu-
tions (such set is called a population and a solution in the set is called an
individual in GA) and by performing crossover, mutation, and selection
operations (see [12]). The major difference between single-objective and
multiobjective GA lies in the way of selecting individuals for the next
generation. In a single-objective GA an individual can be evaluated
according to the single objective function, while in a multiobjective GA it
is desired to obtain a set of individuals that are uniformly distributed
over the objective space and well approximates the set of non-dominated
solutions.

We shall briefly explain the selection strategies proposed for multi-
objective GA. Schaffer(28] proposed the method that divides a set of indi-
viduals into subgroups according to each objective. Selection is performed
in each subgroup according to the corresponding objective, independent-
ly of other objectives. This method naturally tends to keep individuals
which are good with respect to a particular objective while it seems hard
to produce individuals for which all objective values are "acceptably
small" (all objectives are assumed to be minimization).

Goldberg(12] proposed the ranking method by which all individuals in
a population are ranked according to the dominance relation among indi-
viduals in a current population. Namely, the individuals that are not domi-
nated by any other individual are ranked "one". After deleting rank-one
individuals, the non-dominated individuals in the remaining population
receives rank two, and so forth. According to the ranks of individuals,
selection is performed.

Horn et al.[15] proposed the method that uses domination relationship
and Sharing. Sharing is proposed by Goldberg and Richardson(13] and is a



122 Journal of Economics, Business and Law vol.2 2000

technique which decreases fitness values of individuals when they are
crowded 1n the objective space. In other words, when there is a lot of
individuals around the individual, it makes small its fitness value. By
using this, diversity of its population is hold.

Tamaki et al.[34] proposed a hybrid strategy that mixes the Schaffer's
method and elitism that always keeps rank-one individuals for the next
generation.

3.1 Our Genetic Algorithm

In [21], the authors have investigated several selection strategies pro-
posed for multiobjective GA by carrying out computational experiments
for a two-machine flow-shop scheduling problem that minimizes both C,_,,
and 7. simultaneously. Considering the facts we found in [21], we shall

max

take the following strategies in our GA.

a) All solutions that are ranked one by Goldberg's method [12] (ie.,
approximate non-dominated solutions at any generation) are kept for
the next generation because it is costly to rediscover them.

b) (Schaffer's strategy) When selection is performed, a few good solu-
tions in the current population with respect to each objective are kept
for the next generation without applying tournament selection’ even if
their ranks are more than one.

¢) Among the solutions not selected in a) and b), solutions kept for the
‘next generation are determined by tournament selection, hoping to
keep the diversity of individuals.

d) (Seeding strategy) In addition to the set of randomly generated indi-
viduals, we initially add a few solutions to the current population that
are good with respect to each objective. A certain exact or heuristic
algorithm depending on the computational difficulty of the correspon-
ding single-objective scheduling problem computes such good solu-
tions. Using this strategy, we can obtain good solutions more quickly.
Fig. 1 illustrates the idea of using seeding strategy.

1.Tournament selection is one of selection method that chooses the number of individuals (tournament size)
randomly from a population, selects the best individual among them, and repeats until mating pool is filled.
In our experiment, tournament size is two and they are compared on ranking.



A Genetic Algorithm for Bicriteria Scheduling Problems 123

> A

*: Seeding solution e : Tentative solution

Fig. 1. Image of seeding strategy

In addition to these facts, for more large input size problem instances we

found some point, which have to improve though additional experiments

as follows.

a) It takes much CPU time, especially for large input size problem.

b) When we use only GA operators(i.e, crossover and mutation), it is
slow to converge to non-dominated solutions generally.

To improve problem a), selection method is changed. Tournament
selection is same, but its ranking method is changed. In previous version
of our algorithm, we used Goldberg's ranking method. Although this is
good one, it takes much time to rank each individuals at each genera-
tions. So in this version, we select individuals based on domination rela-
tionship with shearing. It was proposed by Horn et al[15]. First, two indi-
viduals are chosen randomly, and their domination relationship is
checked. When one individual dominates another, non-dominated solution
(e, winner) is selected next generation. But when no individual domi-



124 ' Journal of Economics, Business and Law vol.2 2000

nates each other (i.e, a tie), by using sharing winner is determined.

About problem b), a kind of local search methods is incorporated into
our GA. Its local search method is as follows. At any generation, all elite
individuals (i.e., approximate non-dominated solution_s) are applied local
search method except individuals that are applied at previous generation.
In other words, no individual that is applied local search once are applied
again. In local search part, all new solutions that are generated by local
search is compared with a set of elite solutions. When a new solution
dominates one or more elite solutions, a set of elite solutions is updated.
Fig. 2 illustrates the image of this local search method.

fr A

: elite solutions at this
+ generation

: new elite solutions
which are generated
by local search

:not remained solutions
which are generated
by local search

Fig. 2: New local method incorporated in our algorithm

All the other features are the same as those adopted in the conventional
GA. The high-level description of our GA is given as follows:

a) Seeding solutions are generated using existing exact or approximate
method for each criterion. Other solutions are generated randomly.
b) Perform crossover and mutation.
¢) Local search is implemented for elite solutions.
d) Selection strategies
d-1) Good solutions with respect to each objective are kept.
d-2) All solutions that are ranked one are kept.
d-3) Among the solutions not selected in d-1) and d-2), solutions
kept by tournament.selection.



A Genetic Algorithm for Bicriteria Scheduling Problems 125

e) Repeat b) ~d) until terminated generation is met.
f) Output non-dominated solutions that are found until GA is terminated.

4. Computational Experiments

We have implemented our multiobjective GA illustrated in the previous
section. The exact set of non-dominated solutions is denoted by ND*. We
have generated ten problem instances for each of five different numbers of
jobs, 1.e.,n=100, 200, 300, 400, 500. We shall refer to the ratio that is how
much non-dominated solution our GA can find in ND* as detection ratio. As
mentioned early, for this problem, we can compute the detection ratio,
since we can compute ND* exactly for such large n by the algorithm [36].
In addition to detection ratio, we analyze the performance by computing
the expected performance ratio defined in Section 2.1. In these experi-
ments, PA-8200 (240MHz) is used as CPU and compilation is implemented
by gec (ver.25.8).

4.1 Generation of problem instances

We have generated ten problem instances for each of n=100, 200, 300,
400, 500 according to the following scheme. For each n, problem instances
are randomly generated as below. Potts and Van Wassenhove(26] have
reported that the difficulty of problem is influenced by two parameters,
relative range of due date (RDD) and average lateness factor (LF).
Following their remark, Daniels and Chambers(3], and Yagiura and
Ibarakil37] generated instances of scheduling problems. We also did the
same way. In our experiments, we have chosen ten combinations of
parameters RDD and LF, from the sets {0.1, 0,2, 0.3, 04, 0.5} and, {08,
1.0} respectively. Then, for each combination of RDD and LF, we have
generated ten problem instances as follows:

a) Each processing time p, is determined by uniform distribution over
the integers in the range of {1,30] .

b) Then, each due date d; is determined by uniformly distribution over
the integers in the range of [(1 —LF —RDD/2)T.(1 —LF +RDD/2)T],
where T=np and p denotes the average processing time.



126 Journal of Economics, Business and Law vol.2 2000

4.2 Implementation details

When implementing metaheuristic algorithms, we sometimes have to
be careful about details of tuning the program parameters. In order to
determine such parameters in our testing for GA, we have performed
preliminary computational experiments. We shall explain how we choose
such parameters for GA as follows:

- Population size: From our preliminary experiments, we have observed
that if we know |ND*|, the size of non-dominated solutions, in advance,
it is better to set population size more |ND*|.

- Crossover and mutation operators: There have been proposed a num-
ber of different crossover operators that deal with permutations. Our
preliminary experiments have not exhibited a significant difference
among them. Thus, we have adopted OX (order crossover) proposed
by [22]. As for mutation operator, we use the way to randomly choose
two jobs in a current schedule and to swap their positions in the corre-
sponding permutation.

- Seeding solution: For w/1/X£C,T,,, we can compute an exact solution
for each criterion. n/1//2C; and n/1//IT,,, can be optimally solved by
means of Smith's rule [30] and by means of EDD rule [17], respectively.
So these solutions are incorporated in initial solution set.

- Local search: As neighborhood solutions, two-swap method is used. To
decrease computational time, it is implemented every 10 generations.

4.3 Computational results
4.3.1 non-dominated solutions

As early mentioned, it is important to compare our computational
results with exact non-dominated solutions. Tab.1 illustrates the number
of non-dominated solutions for each problem instances. We can see that
by changing LF and RDD the number of non-dominated solutions
changes. And as input size increases, the number of non-dominated solu-
tions increases largely.

Fig.3 illustrates a state of non-dominated solutions. We can see the
trade-off between two objective functions. The other problem instances
are similar with this figure.



A Genetic Algorithm for Bicriteria Scheduling Problems 127

Tab.1l: number of non-dominated solutions for each problem instances

DabODatlDat2Dat3Dat4Dat5Dat6Dat7Dat8Dat9Alg. min. | Max.
100 jobs 18 20 87 611 115 5 5 9 24 32 346 5 115
200jobs | 25| 28| 140| 227] 345] 5| 7| 23| 58| 62| 920] 5| 345
300 jobs 37| 122| 248| 476 647 3 22 25 67| 149| 1796 3 647
400 jobs 28 222 | 821 791| 912 6 38| 162 207| 264| 295.1 6 912
500 jobs 68 539 | 1180 | 1134 5 26| 117 343 | 440| 420.1 5 1180
1400
]
1300 1
]
|
7]
§ 1200 \
g
E 1100
3
E
s
= 1000
Se R
900 ey o oo,
¢ hadhd e o
800 1 1 1 N 1
52200 52400 52600 52800 53000 53200 53400 53600
Total flow time

Fig.3: Example of non-dominated solutions (100 jobs: dat4)

4.3.2 Computational results for each problem instances

Of course the number of generations that need for finding all non-dom-
inated solutions is different for each problem instances. Additionally in
this experimentation, local search technique is utilized. So even if same
parameter values are used, we notice that it takes different computational
time at same generations. It depends on how much local search parts are
used at any generation. In these experimentation, our algorithm can find
all non-dominated solutions for all problem instances. Tab.2 illustrates
entire results for all problem instances.

As an entirely, up to 500 jobs input sizes, we can find all non-dominated
solutions in acceptable computational time. But dat3 and dat4 seems diffi-



128 Journal of Economics, Business and Law vol.2 2000

cult to find all non-dominated solutions generally. It is a reason that has
much non-dominated solutions by these LF and RDD combinations. For
these problem instances of all input sizes, we need more computational
time than the other problem instances. In terms of generations, it seems
that we can do that in small generations. Local search has much contribu-
tion about it. '

Although local search is powerful, can we find all non-dominated
solutions using only local search? To research about this, the algorithm
that removes GA parts computes same problem instances. In other
words, only local search updates a set of elite solutions in the same
way and when it can not update a set of elite solutions, algorithm is
terminated. Tab.3 illustrates their results. At 400 jobs and 500 jobs
problem instances, it takes too much time, so computational results are
shown up to 300 jobs problem instances.

Tab.2: Computational results for all problem instances

100 jobs 200 jobs 300 jobs 400 jobs . 500 jobs
Number of| CPU | Number of | CPU | Number of| CPU |Number of| CPU [Numberof| CPU
Generation| time | generation | time |Generation| time |Generation| time |Generdtion| time
(sec) (sec) (sec) (sec) (sec)
Dat0 130 154 210 1483| 240 8318 430 37075 320 3896.3
Dat1 100 8.1 290 3983| 320 21993 470 13978 420 183612
Dat2 170 488 280 6476 390 70665 | 300 |253729| 580 | 364308
Dat3 140 533 310 [24903] 520 18471.7 640 (1019119 210 |180704.1
Dat4 150 918 380 36544] 540 386549 390 1351023 550 288012
Dat5 80 34 160 512 280 2689 240 7514 330 3720
Dat6 80 32 160 945 200 5765 300 35175 280 6589.6

330
250

Dat7 140 9.5 250 1647 200 863.7 8476 290 8056.6
Dat8 100 105 220 2526| 260 1689.1 113588| 360 37934
Dat9 100 134 250 385.1 310 33522 510 [156834| 340 |534899
Avg. 119 [2574| 255 . |8287| 326 74075 386 31986 368 637195
Min. 80 32 160 512 200 2689 240 7514 210 3720

Max 170 918 380 [36544) 540 | 386549 640 135102 580 288012

As shown Tab.3, there are some cases that can find all non-dominated
solutions in 100 jobs problem instances, but in general it is difficult to find
all by using only local search. Especially, as input size becomes large, it
seems that it is terminated with poor performance. Fig4 shows a exam-
ple of these results, when algorithm is terminated. Although a part of
non-dominated solutions are found, i.e., upper left area, there are some
solutions that can not close to non-dominated solutions, ie., right down area.



A Genetic Algorithm for Bicriteria Scheduling Problems 129

Tab.3: Computational results by using only local search
Detection ratio(X) CPU time(sec.)
100 jobs | 200 jobs | 300 jobs | 100 jobs | 200 jobs | 300 jobs
Dat0 | 278 | 880 | 216 | 128 | 2623 | 26853
Datl | 1000 | 929 | 803 | 126 | 11082 | 97215
Dat2 | 316 | 864 | 573 | 1225 | 21321 | 293408
Dat3 | 525 | 326 | 523 | 1377 | 80006 | 669350
Datd | 652 | 472 | 318 | 2602 | 118418 | 532226
Dat5 | 600 | 400 | 667 | 08 | 2070 | 5679
Datb | 1000 | 857 | 318 | 60 | 2864 | 13468
Dat7 | 1000 | 913 | 720 | 172 | 3706 | 22535
Dat8 | 1000 | 810 | 672 | 232 | 5423 | 53699
Datd | 938 | 645 | 799 | 233 | 23080 | 68498

Figb illustrates the set of elite solutions at every ten generations. At
first mainly elite solutions are updated by GA, at later generation local
search improves the quality of elite solutions. Tab.4 shows detection ratio
and expected ratio in same problem instances.

3750

3700

O non—dominated

$
o dat0
8 3850
: 4
E
3
E: 3600 %
)
[aY
3550 oY . H A
o ) L)

3500
434200 484400 484800 484800 485000 485200 485400 485600 485800 436000

Total flowtime

Fig4: Computational result by only using local search (300 jobs: dat0)

5. Conclusion

In this paper, we propose a genetic algorithm for bicriteria scheduling
problems. From computational experiments, we have shown that our GA
has good performance both in solution quality and computation time. The
problem that is slow to converge to non-dominated solutions by GA is
improved by introducing local search part. Now some parameter value



Fig.5: A set of elite solutions and each generation

130 Journal of Economics, Business and Law vol.2 2000
3850 0 nom—dominated -3850
- O initial . -
3800 . 4 10th generati 3000 |- D1 © nomdominated
A X 20th generation
5 30h gonerat 0 70th generation
3850 L 3 © 40th generstion o] 3850 |4y 8
" s m patio . ’ 4 BOth generation
3800 x a = nerstion i 3800 L) ]
g xx o 3 x 90th generation
k 2
F e 3 <3 T g 9750 .
s "]
] A . o g A
E 3100 x g 37100
NI X : 3 .
Xyt s
3080 e asso 8%
f x : 1]
3600 3 : 3600 |-g* 2
C9 X LYY %
3550
A & 3550
Ap o * X a 5 . ] .
3500
450000 500000 550000 600000 £50000 700000 250000 3500
Total flowtime 484000 485000 488000 490000 492000 494000 496000
Total flowtime

Tab.4: Detection ratio and Expected ratio (300 jobs: dat0)

Generation 0 10 20 30 40 50 60 70 80 90
Detection ratio | 00% | 00% | 00% | 00% [ 00% | 00% | 00% | 0.0% | 54% | 108%
Expected ratio | 1325 | 91.46 | 82.06 | 8206 | 1537 | 1537 | 1513 | 838 | 681 | 6.06
100 | 110 | 120 | 130 | 140 | 150 | 160 [ 170 | 180 | 190 | 200
35.1% | 89.2% | 97.3% | 97.3% | 97.3% | 97.3% | 97.3% | 97.3% | 97.3% | 97.3% | 100.0%
315 | 241 | 194 | 163 | 145 | 132 | 123 | 116 | 1.12 | 1.00 | 1.00

may not be appropriate, so I guess that there is a chance to decrease
computational time more. About these problems, we have to analyze com-
putational results more in the future.

Up to the present, we applied our GA to two kinds of bicriteria sched-
uling problem and confirmed good performance from some computational
results. As future researches, we would like to apply our GA to other
scheduling problems as well as the other MOCO problems in order to see
its effectiveness.




(1]

(2]

(3]

(4]

(5]

(6]

(7]

[8]

(9]

[10]

11]

[12]

[13]

[14]

A Genetic Algorithm for Bicriteria Scheduling Problems 131

References
C. A. Coello Coello, An Updated Survey of Evolutionary Multiobjective Optimization
Techniques: State of the Art and Future Trends, In 1999 Congress on Evolutionary
Computation, pp. 3-13, Washington, D.C., Jhly (1999).
P. Czyzak and A. Jaszkiewicz, Pareto simulated annealing - a metaheuristic technique
for multiple objective combinatorial optimization (in preparation).
R. L. Daniels and R. J. Chambers, Multiobjective flow-shop scheduling, Naval Research
Logistics, Vol.37, pp.981-995 (1990).
L. Davis, Applying adaptive algorithms to epistatic domains, Proc. of the 9th IJCAI, A.
Joshi (ed.), Morgan Kaufumann, pp.162 (1985).
P. Dileepan and T. Sen, Bicriterion static scheduling research for a single machine;
OMEGA Int. Journal of Management Science, Vol.16, No.1, pp.53-59 (1988).
R. A. Dudek, S. S. Panwalkar and M. L. Smith, The lessons of flow-shop scheduling
research, Operations Research, Vol40, pp.7-13  (1992).
C. M. Fonseca and P. J. Fleming, Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization; Proc. of S5th Int. Conf. on Genetic Algorithms,
pp.416-423 (1993).
C. M. Fonseca and P. J. Fleming, An overview of evolutionary algorithms in multiob-
jective optimization, Evolutionary ComputationVol.3 No.l, pp.1-16 (1995).
P. Fortemps, J. Teghem, and B. Ulungu, Heuristics for multiobjective combinatorial
optimization by simulated annealing, Proc. of 11th Int. Conf. on MCDM, Coimbra,
Portugal, August 1-6 (1994).
T. D. Fry, R. D. Armstrong, and H. Lewis, A framework for single machine multiple
objective sequencing research, OMEGA Int. Journal of Management Science, Vol.17, No.6
pp.595-607 (1989).
X. Gandibleux, N. Mezdaoui and A. Freville, A tabu search procedure to solve multiob-
jective combinatorial optimization problems, to appear in Proc. volume of MOPGP'96, R.
Caballero and R. Steuer (eds.), Springer-Verlag.
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley (1989).
D. E. Goldberg and J. J. Richardson, Genetic algorithms with sharing for multimodal
function optimization. Genetic Algorithms and Their Applications: Proc. of the 2™ ICGA,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp.41-49 (1987).
M. P. Hansen, Tabu search for Multiobjective Optimization: MOTS, Proc. of 13th Int.
Conf. On MCDM, Cape Town, South Africa, January 6-10 (1997).

{15] J. Horn, J. Nafpliotis and D. E. Goldberg: A niched pareto genetic algorithm for multi-



132

(16]

(17

(18)

(19]

(20}

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

Journal of Economics, Business and Law vol.2 2000

objective optimization, Proc. of I1st IEEE Conf. on Evolutionary Computation, pp.82-87
(1994).

H. Ishibuchi and T. Murata, Multi-objective genetic local search algorithm; Proc. of 3rd
IEEE International Conference on Evolutionary Computation, pp.119-124 (1996).

J. R. Jackson, Scheduling a production line to minimize maximum tardiness, Research Report
43, Management Science Research Project, UCLA (1955).

S. M. Johnson, Optimal two- and three-stage production scheduling with setup times
included, Naval Res. Logist. Quart. 1, pp.61-68 (1954).

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, Sequencing and
scheduling: Algorithms and complexity; Handbooks in OR & MS, Vol.4, Logistics of
Production and Inventory (S. C. Graves et al, eds.) Chap9, pp445-522, North-Holland
(1993).

S. A. Melnyk, S. K. Vickery and R. L. Carter, Scheduling, sequencing and dispatching:
alternative perspectives, J. Prodn Inv. Mgmt, Vol.27, No.2, pp.58-68 (1986).

H. Morita and N. Katoh, A Genetic algorithm for a bicriteria flow-shop scheduling
problem, Transactions of the Institute of Sy&tems, Control and Information Engineers,
Vol.10,No.3, pp.127-136 (1997) (in Japanese).

H. Muhlenbein M. Gorges-Schleuter and "O. Kramer, Evolution algorithms in combinatorial
optimization, Parallel Computing, Vol.7, pp65 (1988).

T. Murata and H. Ishibuchi, MOGA: Multi-objective genetic algorithms, Proc. of 2nd
IEEE International Conference on Evolutionary Computation, pp.289-294 (1995).

A. Nagar, ]J. Haddock and S. Heragu, Multiple and bicriterion scheduling: A literature
survey, European Journal of Operational Research, Vol.81, pp.88-104 (1995).

S. S. Panwalkar, R. A. Dudek and M. L. Smith, Sequencing research and the industrial
scheduling problem, In Symposium on the Theory of Scheduling and Its Application (Ed. by SE
Elmaghraby), Springer, New York (1973).

C. N. Potts and L. N. Van Wassenhove, A decomposition algorithm for the single
machine total tardiness problem, Operations Research Letters, Vol.1, pp.177-181 (1982).
Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization,
Academic Press (1985).

.J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algo-

rithms, Proc. of 1st Int. Conf. on Genetic Algorithms and Their Applications, pp.93-100
(1985).

P. Serafini, Simulated annealing for multi objective optimization problems, Proc. of the
Xth International Conference on  MCDM, Taipei, pp.87-96 (1992).

W. E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart. 3,



(311

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]

[41]

A Genetic Algorithm for Bicriteria Scheduling Problems 133

pp.59-66 (1956)

N. Srinivas and K. Deb, Multiobjective optimization using non-dominated sorting in
genetic algorithms, Evolutionary Computation, Vol.2, No.3, pp.221-248  (1995).

T. Starkweather, S. McDaniel and C. Whitley, A comparison of genetic sequencing
operators, Proc. of 4th International Conference on Genetic Algorithms, pp.69-76 (1991).

R. E. Steuer, Multiple criteria optimization: Theory, computation, and application, John Wiley
& Sons (1986).

H. Tamaki, M. Mori and M. Araki, Multi-criteria optimization by genetic algorithms,
Abstracts of the 3rd Conf. on the Association of Asian-Pacific Operational Research Societies
within IFORS, p51 (1994).

E. L. Ulungu and J. Teghem, Multi-objective Combinatorial Optimization Problems, A
Survey; Journal of Multi-Criteria Decision Analysis, Vol.3, pp.83-104 (1994).

L. N. Van Wassenhove and L. F. Gelders, Solving a bicriterion scheduling problem,
European Journal of Operational Research, Vol. 4, pp.42- 48 (1980).

M. Yagiura and T. Ibaraki, Genetic and local search algorithms as robust and simple
optimization tools, Meta-Heuristics: Theory & Applications, I. H. Osman and ]J. P. Kelly
(eds.), Kluwer Academic Publishers, pp.63-82 (1996).

E. Falkenauer and S. Bouffouix, A Genetic algorithm for job shop, Proc. of the 1991
IEEE International Conference on Robotics and Automation, pp.824-829 (1991).

F. Glover, Genetic algorithms and scatter search: unsuspected potentials, Statistics and
Computing, vol4, pp.131-140  (1991).

A. Hertz, B. Jaumard, C. C. Ribeiro and W. P. Formosinho Filho, A multi-criteria tabu
search approach to cell formation problems in group technology with multiple objec-
tives, Recherche operationnelle/Operations Research , 28/3, pp.303-328  (1994).

E. D. Taillard, L. M. Gambardella, Adaptive Memories for the quadratic assignment
problem, IDSIA-87-97 TECHNICAL REPORT, pp.1-18.



