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Introduction

The experimental and analytical results presented in this paper were obtained in
course of an investigation into the factors controlling the dynamic Young’s modulus of
compacted clayey soil at high pressures under various conditions of moisture content,
degree of saturation, void ratio and density. In a study of the effects of radial inertia
and attached weight in longitudinal vibration of a cylindrical rod, analytical results
showed the necessity of the significant correction to the theory for the velocity of
wave propagation and frequency of vibration. An analytical solution for the vibration
of a cylindrical rod was presented using the three dimensional elasticity theory by L.
Pochhammer.!) However, this solution is very complex and it may not be expected
that we apply the solution to the measurement of dynamic Young’s modulus of clayey
soils.

Therefore, in this paper, we introduced the one-dimensional wave equation
including a radial inertia term according to the energy method?) and showed an
analytical solution of this equation which satisfy the boundary conditions of the
resonant test.

As the other solutions?) that take internal damping of the soil into account have been
shown that the elastic solution are satisfactory within the range of damping developed
for small-strain amplitudes in the resonant test, the present solution has been used to
determine the dynamic Young’s modulus of compacted clayey soil at high pressure
subjected to longitudinal exciting forces in our experiments.

Formulation

Let us consider a compacted soil specimen in the form of a cylindrical rod excited
by sinusoidal motion applied at the end. We may take the axis of the soil specimen as
the Z-axis and use cylindrical coordinates 7,6 and Z for difining the position of an
element in the soil specimen. The components of displacements in the radial and
tangential directions may be denoted U, and Uy and the component in the Z-direction
by U,.

If we take the assumptions that the deformation of the specimen is symmetrical
with respect to the Z-axis and the strain components in Z and r directions and the
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displacement in 6 direction of an element in the soil specimen are represented by

&:(zt) = '——au’a(zz’t)
e (=202 — e o) @
Ug:()

where €, €, : strain components in 7 and Z directions
ug : displacement component in 8 direction
M : Poisson’s ratio

the kinetic energy T per unit of length of the soil specimen is given by following

equation z
4

Fig. 1 Coordinates system of a soil specimen

R 2 21\ 2
_[ef{ou\?, (0u \? _ 1 2(6uz> 1 4 2(6 uz> )
T"‘Joz{( at ) Jr( at ) }Z”rdr g PRI Gy ) TR G, (2)
where. p : Mass density of soil specimen
R : radius of a cross section of the soil specimen
t : time

The strain energy per unit of length of the soil specimen W is

W= : UZZEEZd&)andrz —-=ER?(9e)” (3)
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where E : Young’s modulus ot the soil specimen

Using Hamilton’s principle, the variational equation of motion becomes

ot

sff T —w) dtdz~——”8(’]‘—W)dtdzZSJdtJ‘[_}Z_anz< a“z)%%pnw@i;;)

— é»szRz (aag’ ) 2]dz

where the integration with respect to z is taken along the specimen.
Let T—-W be replace temporarily by L, then we have

AR T T ou, du, 9%u,
L=T-W L< at * a2 ’8t62)

and first variation

2
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In forming the variation, we use the identities
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and on integrating by parts, and equating to zero the coefficient of §U, under the sign
of double integration:

j Ou, 9(du,) _ f < ou,

e P e ([ S s

(15 28 e 28 e [ 0

(f 9%u, 38%(8u,) d%u o(8u,) 3
— z 7 \VUz) = (Y Yz 0 ol, 0°u, 2(8 z
J atoz atoy dz dt j ( 9tdz ot ) 8toz2 (a?> dz)dt %(8)

(9%, [ 9%u, ) <a3uz 94u, )
<6taz du, jatzaz du, dt J atazzau’"j""é"t"ﬂ"w—zauzdt dz
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0t9z*

du, dtdz /

we obtain the equation

. o*u, , - 0%u, 1 , o, 03'u _
JJrRe (=0 S B St en® RP it )du dt dz=0 ®)

Consequently, we can reduce the following equation from the conditions which eq.

(9) is satisfied for an arbitrary value of §U,.

0%u,

0%u, , 1 84u,
P atZ - z z (10)

9z 2

= F;

The eq. (10) is the expression for the longitudinal wave motion taking account of
the inertia of the radial motion and the final term represents the correction of the
radial inertia to conventional wave equation of thin rod.
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Test Procedure

All vibration tests were carried out on cylindrical soil specimen 5cm in diameter
and 10 — 10.5¢m in length, compacted statically at high pressures 10 — 50 (kg/cm?).
The tests reported herein were performed on the diluvial clayey soils with the
following index properties.

Table 1. Physical properties of Soils

o Property Density L?qgid Pl.astfic Plasticity Opt. water Maxim\%m
oil Limit Limit Index | content dry desity
A 2,631 53.5% 23.3% 30.2 21.5% 1.609g/cm’
B 2.664 46.5 30.4 16.1 20.0 1.680
c 2.661 82.2 53.4 28.8 49.3 1.094
D 2.771 70.9 47.1 23.8 30.5 1.325

Table 2. Mechanical analysis of sample soils

Soi;r :exture Gravel Sand Silt Clay Triangular diagram
A 0% 32% 29% 39% | clay
B 0 3 87 10 \L silty loam
c 0 36 43 21 ( clay loam
D 0 24 | 44 32 1 clay

The compaction of soils was performed by special apparatus deviced for high
compaction pressures in our laboratory and the conditions of soils — moisture content,
density, degree of saturation and void ratio — were changed over a wide range.

Table 3. Conditions and sizes of a soil specimen

vd Sr A Q v
|
0%
1.75 19.625 10.5 206.1
(g/em®) |50 (cm?) (cm) (cm?3)
100

An outline of the apparatus used in the longitudinal vibraiton tests is shown in
Fig. 2. In general, this apparatus is called the resonant-column apparatus and the test is
based on theoretical solutions of eq. (10) given in following section which relate the
dynamic Young’s modulus of the cylindrical soil specimen to its resonant frequency.

The soil specimen is attached to a vibrating base having a resonant frequency
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several times that of the soil specimen and accelerometer is attached to the top of the
soil specimen. The electromagnetic vibration generator is used to apply the vibration to
the base of the specimen. The frequency of the vibration generator may be adjusted to
the maximum response of the soil specimen in order to determine its resonant
frequency and the maximum amplitude of the soil specimen is measured by the
synchro-scope connected the accelerometer on the top of the specimen.

) Piezo-Type Control Unit
Surcharge Accelerometer \
Vibrating Table Soil Synchroscope
Sample \
Electro-Magnetic Vibrator @0
]
d o
V(//8 77 17777

Fig. 2 Longitudinal Vibration Measuring Instrument

Solution and Boundary Conditions

When the vibration tests of soil specimens are carried out using the apparatus as
shown in Fig. 2, the boundary conditions for the specimen may be written as follows:

Z=0 ! W=U, sin ot (11)
Z=1 . W (0%, \_ A ap2 0%
Ag ( ot? ) Béoty puRE =57
g 1 o5 80U, (12)
oz 2 M R%Grp,
where U, : amplitude of vibration table
w. : angular velocity (circular frequency) of vibration table
A i cross-section area of a soil specimen
W : weight of added mass and accelerometer
g : acceleration of gravity

The latter eq. (12) expresses the condition that the force of Z-direction in the
specimen equals the product of the mass and its acceleration at the end with the mass
attached. The sign is negative because the force is tensile or positive when the
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acceleration of the mass is negative.

As the motion of the specimen attached on the vibration table is stationary
vibration, we may consider that the frequency of the specimen is equal to that of the
table. Therefore, we can assume that the solution of eq. (10) is represented as follows:

1.(z,t) =1 (2)sin ot (13)

where A(z) : unknown function z only (the displacement amplitude along the
length of the soil specimen)

This equation describes the displaced shape of a soil specimen vibrating in a natural

mode.
Substituting eq. (13) into eq. (10), we have following equation

2
(‘—E—““‘%"puz R? wz)ii—(;‘—z(éz—)—+m2 A(z)=0 (14)
Introducing the notation
a?=-S-—Lpu? R? o2 (15)

we can rewrite eq. (14) in the following form

2 2
dg‘z(f) e YOR (16)

Consequently, the general solution of eq. (16) is given by the expression

2 (z2)=C cos “;Z +C2 sin-a;—z ’ (17)

where C; and C, are integral constants.
Substituting eq. (17) into eq. (13), we have the solution of the fundamental wave
equation (10) as follows:

u; (z,t) = <C1 cos—a’éz'*Jr-Cz sin ‘ZZ )sin wt (18)

For a soil specimen of finite length, the displacement amplitude A(z) must be
determined by the end conditions. Using the boundary conditions eq. (11) and eq. (12)
to determine the integral constants C; and C, in eq. (17), we find

C, = U (19)

from the first boundary condition, and
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o 1+~P—gv-3£tan(—@ég> . (20)
pgah 1, of °
W (=)

w

from the second boundry condition.
When the weight of a soil specimen is represented by W', we have the following
expression

W' =pgAQ (21)

So, we can rewrite eq. (19) as follows:

u
R
C2= fante— ) (22)
where tang= %, W —a andt=pg (22)

Substituting these values of C; and C, given by eq. (19) and eq. (22) into eq.
(18), the displacement amplitude of the soil specimen will now be represented in the
form

_ wz 1 ez
uz(z,t)—uo(cos a +tan(¢—ﬁ)sm a )sm wt (23)

It is apparent that the displacement amplitude in eq. (23) U,(z,t) becomes infinite
when we let tan(¢—f) approch to zero, and the system of Fig. 3 occurs the phenomenon
of resonance.

Z
Accelerometer and Added Mass
|
/l/ Soil specimen

Q /]

|
g J ——p T
— ZR'—"‘

Fig. 3 Longditudinal Vibration System
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Then,

¢—B=m—1Dr {N=123........ ) (24)

If a specimen can be excited longitudinally in the first normal mode of vibration
and the resonant frequency fr measured, we must take n = 1 in eq. (24).
Consequently,

$=p0
and then tan~! (——) —p=-2%

Finaly, we obtain the following relation

Eq. (25) is the frequency equation for the first normal mode of longitudinal
vibration. For any ratio of weight of soil specimen to weight of added mass, the values
of f can be found. The pnnlmum values of B which satisfy eq.(25) are plotted in Fig. 4
for various values of W—. The values of a for resonant frequency can now be computed
from the following equation, using the appropriate values of .

WX wQ 27Z‘fRQ 26
a=—7 s (26)
where o=2rfr. (0=2=f).

Consequently, dynamic Young’s modulus E is founded from eq.(15) as follows:

2nfrQ\2% 2 2 [24e
Ene—(£52) Fopnt i R =2t p{ 2 utR 2 (27)
where f : frequency of vibration
fr : resonant frequency

If we do not consider the effects of the radial inertia of cylindrical soil specimen
eq.(27) becomes

b

Epr1= (‘:‘Z%R—Q—> : (28)
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Test Results 4)

The dynamic young’s modulus of soil specimen under sinusoidal vibration was
subjected to a constant loading in vertical direction. Measurements were taken of the
acceleration in z-direction and the resonant frequency developed in each specimen.

The dynamic Young’s modulus E was computed by eq.(27) from the data
obtained in resonant tests, and these values were checked by the existing formula

. . 2W ny® 29
2=16f R2p(1+ + 7 (29)
Epr2 . P( pgASZ) ]6<l+ 2W )plz
pg Al

where 7 is the coefficient of the viscosity of a soil.
 As we may consider that the soil specimens show elastic behaviour in the range of
small strain (10—6 ~ 107*), we take 7 = 0 in eq.(28).

Eq.(28) was introduced from the wave equation which based on the Voigt type
rheological model of soil.

Fig. 5 ~ 8 shows the dynamic Young’s moduli of soil A, B, C and D for the
various values of 1/a. When we compare with the values of E which are computed by
€q.(29) and eq.(28), the values by two different equations almost agree. The magnitude
of E changes with degree of saturation or density, and a certain differences between
Esr=9 and Eg.50 may be observed. When 0 < 1/a < 2, E shows small values in a
measure, but this reason is not clear sufficiently according to the consideration done to
date.

As shown in Fig. 9, the dynamic Young’s modulus E increases with increasing

Sample A
~ X : Sr=0% Yd=1.75 g/cm3
.75 g/cm
i b B Sr = 50%
= O Sr = 100%
<
=
x
(o]
o
A
€3]
—
.
N
My

1 1 1 I J
1 2 3 4 5
(i/on

Fig. 5 Dynamic Young’s Modulus (EpRr1, EpRr2) vs. Mass Ratio (1/a)
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moisture content to the neighbourhood of 10%, and then tend to return to the near
original place. Also, as the value of density increase, the modulus E increase further.

«~ Sample B

g _ 3

< Yd=1.75 g/cm

£ . Sr=50%

“

%

& EDR1

a

' EDR2

-

o

a1
| [\ I\ i 3
1 2 -3 4 5 (1/Q)

Fig. 6 Dynamic Young’s Modulus (Epr1, EDR2) vs. Mass Ratio (1/&)

~ Sample C
5 2k vd =1.75 g/cm3
2 Sr = 50%
<
o
—
X
(V]
Y
a
i Ebri1
a1
m EDR2
1 1 1 1 .4
0 3 4 5
(1/a)

Fig. 7 Dynamic Youg’s Modulus (EpR1, EDR2) vs. Mass Ratio (1/&)
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(3]
o
E" X sr=0% Sample D Yd=1.75 g/em3
-
X
[N}
24
o
48]
B
24
[a)
83
1
1 1 n L F
0 1 2 3 4 5 (1/a)
Fig. 8 Dynamic Young’s Modulus (EDR1, EDR?2) vs. Mass Ratio (1/a)
NE 2.0 —— Sample A
L2 X Sr=0% =e-= D
v A 50 A
:4 O 100 P S~ -
= Pad ~ -0EDR1
S 7 Yd=1.75 glem®
E‘ 1.5¢ - -
m _ — =<0 EDR2
g ¥ -7 Epr1
3] Yd=1.75 g/cm3
X EDR2
1.0
3
Yd=1.64 g/cm
EDRr1
)
0.5)
) s
Yd=1.433 g/cm
Y
4 1 1 \ EDR1
Y 10 20 35 0

Fig. 9 Dynamic Young’s Modulus (Epr1, EpR2) vs. Water Content (w)
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——— Sample A
----- D
N
o
o
=
-
x 2F
& . 3
b Theoretical Line Yd=1.75 g/cm
1. E = 15000 kg/cm? X Sr=0%
2. 10000 A 50%
3. 5000 O 100%
1
1 3 I 1 )
0 1 2 3 4 5 (1/0)
Fig. 10 Resonant Frequency (fR) vs. Mass Ratio (1/a)
= Sample D
T — B
) ——— A
S - A
9 3
] Y4=1.75 glcm

Sr=507%

0 1 2 3 4 5 (1/a)

Fig. 11 Resonant Frequency (fR) vs. Mass Ratio (1/a)
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Fig. 10 ~ 11 illustrates the relationships between the mass ratio 1/a and the
resonant frequency fr of the soil specimen during which the specimens are the state of
resonance. The resonant frequency decreases with increasingin 1/a, and 1l/a~fz curves
become a hyperbola and the curves approach to the 1/a axis asymptotically. The
experimental curves in Fig. 10 ~ 11 are calculated using the test data and these curves
agree approximately with theoretical curves for E = 5000 kg/cm?, E = 10000 kg/cm?
and E = 15000 kg/cm®. In the region of 1/a = 0 ~ 1/a = 2, the values of the resonant
frequency obtained from the tests are smaller than the theoretical results, but in the
case of S, =0, the test results for any soils agree well with the theoretical values.
Further, Fig. 10~ 11 illustrates the significant effect the attached mass has on the
longitudinal wave velocity of compacted clayey soils. In these diagrams, we can find
that the curves of resonant frequency show a rapid rate decrease in the region of 0 <
1/a < 2. For 1/a > 2, the curves become almost straight lines and each curves
approach to constant values as 1/ increases.

The effects of radial inertia on the dynamic Young’s modulus were investigated by
the term

2pnzsz2f; (30)

Table 4.  Effects of Lateral Inertia (P*) vs. Poisson’s
Ratio (1) and Mass Ratio (1/q)

]/Ol P‘i 0.25 0.30 0.35 0.40 0.45‘—[
4.44 5.55 7.00 9.52 12.44 15.74
4.18 5.96 7.51 10.22 13.35 16.90
3.97 6.28 7.92 10.78 14.08 17.81
3.71 6.79 8.55 11.64 15.20 19.24
3.47 | 7.48 9.43 12.84 16.77 21.22
3.25 8.07 10.17 13.84 18.07 22.87
2.96 8.60 . 10.83 14.74 19.26 24.37
2.69 9.22 11.62 15.82 20.66 26.15
2.47 9.07 13.07 17.78 23.23 29.40
2.21 10.06 14.48 19.71 25.75 32.59
1.91 8.64 12.44 16.93 25.95 27.98
1.68 9.45 13.60 18.51 24.18 30.60
1.39 11.09 15.97 21.74 28.40 35.94
1.13 11.80 16.99 23.12 30.20 38.22
0.91 12.09 17.41 23.70 30.96 39.18
0.64 14.45 20.81 28.33 37.00 46.83
0.09 47.95 69.04 93.97 122.74 155.35J
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in eq.(27) using the experimental data. In this calculation, the results suggested that
the radial inertia of soil specimen have not much effects upon the dynamic Young’s
modulus.

The effect of the dynamic Young’s modulus due to radial inertia of a specimen is at
most 1% in the value obtained from eq.(27), and so we can neglect the effects of radial
inertia.

Conclusion

From the facts described above, we may conclude that eq.(28) is applicable and
useful to find the dynamic Young’s modulus of clayey soil by resonant coloumn test.
The analytical and experimental investigation indicate that the significant effects
on dynamic Young’s modulus arise when the additional mass is attached on the soil
specimen.
From the analytical results, it can be consider that there is no effects of radial
inertia on the dynamic Young’s modulus.
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Table of Notation

A ¢ Cross-section area of a soil specimen (cm?2)

E :  Dynamic Young’s Modulus (kg/cm?2)

Epry, EpDR2 : Dynamic Young’s Modulus (kg/cm?2) by eq. (29) and eq. (28)
®f :  Resonant Frequency (Hy), (c/s)

g ¢ Acceleration of Gravity (cm/sec2)

l ¢ Length of Soil Specimen (cm)

p* :  Lateral Inertia = 2r2u2R2f2p (kg/cm?2)

2R :  Diameter of a Compacted Soil Specimen (cm)

S, :  Degree of Saturation (%)

|4 : Volume of a Soil Specimen (cm3)

w :  Water Content (%)
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a 1/a
Yd

")

fo)

Compacted Clayey Soil
Mass Ratio

Dry Density (g/cm3)
Dynamic Poisson’s Ratio
Mass Density (g/cm3)
Circular Frequency (Hy), (c/s)
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