

衛星データを用いた生駒山地における森林熱収支の 季節変化の評価

メタデータ	言語: jpn
	出版者:
	公開日: 2010-12-16
	キーワード (Ja):
	キーワード (En):
	作成者: 青野, 靖之, 工藤, 友美, 文字, 信貴
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10466/11160

衛星データを用いた生駒山地における 森林熱収支の季節変化の評価

青野靖之•工藤友美*•文字信貴

(大阪府立大学農学部大気環境学研究室)

Seasonal Change of Heat Budget in Ikoma Mountain Forest Estimated from Satellite-derived Data

Yasuyuki Aono, Tomomi Kudo and Nobutaka Monji

(Lab. of Atmospheric Environment, College of Agriculture, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, 599-8531 Japan)

Abstract

The seasonal and spatial changes in heat budget terms in the forest in Mt. Ikoma area, located at the boundary of Osaka and Nara Prefectures, were estimated using LANDSAT/TM data, sensed in April, June, August and December. Sensible and latent heat fluxes were calculated using the bulk transfer equation for heat and for moisture, respectively. In the bulk equation for sensible heat transfer at each pixel, surface temperature (from TM band 6), air temperature (interpolated according to elevation) and wind speed (interpolated distribution using a variational method with consideration of complexity of the terrain) were used as variables. In the bulk transfer and saturation specific humidity at the surface temperature were used. The bulk transfer coefficient was corrected for diabatic conditions for each pixel. The moisture availability for each day was calculated, considering the normalized difference vegetation index (NDVI).

The distribution pattern of estimated sensible heat flux showed a strong contrast between the east and west sides of the ridge line. This contrast became stronger under strong wind conditions. In summer, the value of sensible heat flux was estimated as 160 W m^{-2} under a calm condition, while it exceeded 200 W m⁻² in the case with more than 3 m s⁻¹ of mean wind speed. The estimations of latent heat flux fell within the range of $350 \text{ (summer)} - 100 \text{ W m}^{-2}$ (winter). The moisture availability varied in the range of 0.15-0.53, according to wind speed and humidity. It was clear from this analysis that accurate interpolations of meteorological variables such as wind speed and air temperature distributions are important for deducing each heat flux, even with satellite-derived data.

Key words: Bulk transfer method, Forest, Heat budget, LANDSAT/TM data, Variational method.

キーワード:森林,熱収支,バルク法,変分法,ランドサットTMデータ

1. はじめに

人工衛星によるリモートセンシングデータを用いた森 林の熱収支解析は、これまで Brutsaert *et al*.(1993), 金子・日野(1994)などにより試みられてきた。これら の研究では、モニンオブコフ相似則やバルク法に基づい て計算した森林の顕熱または潜熱フラックスのいずれか 一方と、純放射量・地中熱フラックスの計算値を併用し て、残差項から残りの熱フラックスを推定するものであ る。

日本の場合,大部分の森林は複雑地形地にあり,そう した地域での熱収支解析の手法の開発が必要となる。青 野ら(1996)は,衛星データと地上の気象観測値を熱・

¹⁹⁹⁷年6月7日 全国大会にて一部発表 1997年10月9日 受付, 1998年2月25日 受理 *現在,株式会社ウェスコ環境調査部

水蒸気に関するそれぞれのバルク輸送式に適用して、山 地森林の顕熱・潜熱フラックスの分布を推定する方法に ついて述べた。盛夏時を対象としたこの解析の結果では、 撮像時刻の午前中に日射がよく当たる側の斜面で顕熱・ 潜熱フラックスの推定値が高くなる分布が得られた。

しかしながら、山地の熱フラックスの分布は季節や気 象条件によって当然変化する。また潜熱フラックスを推 定するためのバルク式中の蒸発散効率と呼ばれるパラメ ータも、気象条件により大きく変わる。さまざまな条件 下における熱収支の解析結果を蓄積することは、熱フラ ックスの分布や蒸発散効率の変化と気象条件との関係を 把握することにつながる。

本研究では、大阪府・奈良県境に位置する生駒山の森 林を対象に、季節の異なる4つの事例における各熱収支 項の分布を推定した。解析には地球観測衛星ランドサッ トのTMデータと地上の気象観測値を併用した。顕熱・ 潜熱フラックスの推定には、熱と水蒸気の輸送量を表す それぞれのバルク式を用いた。推定に必要な気温などの 気象要素の分布は、気象台やアメダスによる地上気象観 測値を用いて推定した。山地内で複雑とみられる風速の 分布については、物理的な条件を考慮し変分法を用いた 内挿法の一種である MATHEW モデル (Shermann, 1978)を用いて推定した。以上のようにして得られた各 熱収支項の分布やその変化、また推定方法の精度につい て考察する。さらに計算の過程で得られた蒸発散効率の 変化の理由について検討する。

2. データおよび解析方法

2.1 対象地域と使用衛星データ

本研究の熱収支の解析には, 1988年12月6日, 1990年4月 16日,同年6月19日,同年8月 6日のそれぞれ午前9時50分に 撮像されたランドサット5号によ るTMデータ(パス-ロウ:110-36) を用いた。このTMデータは可視 光(バンド1~3),近赤外(バンド 4), 中赤外(バンド5,7), そし て熱赤外(バンド6)の7つの波長 帯における反射(放射)輝度を0~ 255 のデジタル値で表したもので, 1 画素の分解能はおよそ 30 m (熱 赤外バンドは120m)四方に相当 する。用いた画像の切り出し範囲 を Fig.1 に示す。解析に先立ち, 画素の並びを東西に合わせること

を目的とした幾何補正を最近接法により行った。幾何補 正後の画素のサイズは東西 31.8 m,南北 30.8 mに相当す る。

4つの画像のうち4月16日のものは対象地域の北側 4分の1程度が雲に覆われていたため、この範囲につい ては解析の対象から除外した。他の3つの事例について は雲や積雪は見られなかった。

Fig.1に示した森林の範囲は,1990年8月6日のTM データに基づいた最尤法による土地被覆分類から決定した。分類はバンド1(0.45~0.52 μ m),2(0.52~0.60 μ m), 3(0.63~0.69 μ m),4(0.76~0.90 μ m)の各々の輝度値を 用いて行った。区分精度は平均97%であった。本研究で は熱収支解析をこの森林の範囲に限定して行った。この 森林はアカマツ,コナラなどの優占する二次林代償植生 からなる。対象範囲内を標高 300~650 mの尾根がほぼ 南北に走る。

2.2 熱収支計算の基本的手順

地表面における一般的に熱収支式は、純放射量 R_n (W m⁻²)、顕熱フラックスH (W m⁻²)、潜熱フラックス λE (W m⁻²)、地中熱フラックスG (W m⁻²)により次のよう に表せる。

 $R_{\rm n} = H + \lambda E + G \tag{1}$

純放射量R_nについては次の式より推定するものとした。

 $R_n = (1 - A_g) R_s + \epsilon R_L - \epsilon \sigma T_s^4$ (2) ここで R_s は下向き短波放射(W m⁻²), A_g は森林表面の アルベド, R_L は下向き長波放射(W m⁻²), ϵ は森林の射 出率(本研究では川島(1986)にならい 0.986 を使用し, 右辺第二項の R_L の吸収率としても等しく適用), σ は Stefan-Boltzmann 定数(5.67×10⁻⁸ W m⁻²K⁻⁴), T_s

Fig. 1. Scene of LANDSAT TM used in estimations of heat budget terms of Ikoma mountain. Rectangular shows the coverage of TM image used in this study. Black color area indicates the forest determined by the result of ground cover classification using maximum likelihood classifier.

は表面温度(K)である。 R_L については,	以下のSwinbank
(1963)の計算式を用いた。	

 $R_{\rm L} = 1.2 \sigma T_{\rm a}^4 - 171$ (3) ここで, $T_{\rm a}$ は気温(K)である。

 $CCC, I_a (a \times (m(n) C O) O_0)$

地中熱フラックスGについては,推定した純放射量 R_n を基にして一定の G/R_n 比から求めた。本研究では古藤田ら(1984)にならいこの比を 0.08 として計算した。

顕熱フラックスH, 潜熱フラックス *l* E は, 以下のようなバルク輸送式に基づいてそれぞれ表せる。

$$H = C_{\rm p} \rho C_{\rm h} U (T_{\rm s} - T_{\rm a}) \tag{4}$$

$$\lambda E = \lambda \rho C_{\rm e} U \beta \left(q_{\rm sat} - q_{\rm a} \right) \tag{5}$$

ここで C_p は大気の定圧比熱(J kg⁻¹ K⁻¹), ρ は大気の 密度(kg m⁻⁸), C_h は顕熱輸送のバルク係数, Uは風速 (m s⁻¹), λ は水の気化熱(J g⁻¹), C_e は水蒸気輸送の バルク係数, β は蒸発散効率, q_a は大気の比湿(g kg⁻¹), q_{sat} は表面温度に対する飽和比湿(g kg⁻¹)である。

これら(2)~(5)式に,後に述べる表面アルベド A_{g} , 下向き短波放射量 R_{s} ,風速U,表面温度 T_{s} ,気温 T_{a} , 比湿 q_{a} の推定値,大気の安定度を用いて推定したバルク 係数 C_{h} , C_{e} ,さらに撮像当日について推定した蒸発散 効率 β を当てはめて,各熱収支項を画素ごとに計算した。

2.3 基本となる変数の計算および設定

(1)表面温度 各熱収支項の計算に必要な表面温度T_s の分布は,TMデータの熱赤外波長域(バンド6:10.4~ 12.5µm)の輝度値から推定した。熱赤外バンドの輝度値 の較正には,大阪府立水産試験場が大阪湾内で撮像日当 日と翌日の10~16時に観測した深さ10 cm 以内での表 層海水温データを用いた。解析対象の撮像当日の大阪湾 全域を含む画像から,海水温の日変化の幅が小さく河川 からの影響も少ないと思われる水深15m以上の沖合い の海水温観測点に対応する画素の輝度値を読み取った。 解析する4つの事例のうち,1990年8月6日の場合に 最も多くの点(12ヶ所)で比較可能となった。この日の バンド6の輝度値V₆と,各点の海水と同等の放射量を伴 う黒体の温度T_B(K)との間で次の関係式を得た。

 $T_{\rm B}$ =0.408 $V_{\rm 6}$ +234.28 (r=0.92) (6) この較正式の傾きは,同様の方法による他の研究の結果 (たとえばLathrop and Lillesand, 1987;富田・佐橋, 1995)に近い。一方,1990年4月16日,6月19日には 対照可能な海水温測定点が3~5ケ所と少なかった。また 1988年12月6日の場合には測定点の水温の範囲が狭く, また $T_{\rm B}$ と $V_{\rm 6}$ との回帰式の傾きが0.22と,前述した既往 の研究結果による値に比べかなり小さくなった。そこで 本研究では8月6日に関する(6)式の傾きのみを,他の 撮像日にも適用し、それぞれの輝度値を用いて残差が最 小になる定数項を決定した。 $T_{\rm B}$ と表面温度 $T_{\rm s}$ (K)の間 の換算に用いる各土地被覆表面の射出率は川島(1986) にならい,水域で0.993,森林では0.986とした。

(2) 森林表面のアルベド 森林表面のアルベドについ ては、青野ら(1996)と同様の方法により求めた。これ はランドサットMSSにおいて0.5~1.1 µm の狭帯域地 表面アルベドを算出する中川・大井(1992)の方法を、 TM の場合に置き換えたものである。この方法では、 Lacis and Hansen(1974)およびLiou and Sasamori (1975)の提案したパラメタリゼーションにより、撮像 当時のオゾンおよび水蒸気による吸収とレーリー散乱の 効果を考慮しながら、TMデータの絶対輝度から得られ る惑星アルベドに対する地表面アルベドの関係を一次式 として近似的に求める。そしてこの関係を画素ごとに適 用することになる。解析には撮像時刻の大阪における地 上気温と水蒸気圧の値、そして当時のオゾン全量(鹿児 島と館野における月平均値の平均)を用いた。

解析の結果,各事例の森林表面のアルベドは平均0.07 ~0.12と変化していた(Table1)。また山地の西側斜面 よりも東側斜面でアルベドが大きくなる傾向が全ての事 例で見られたが,両側の植生のタイプには差がほとんど ない。両側の斜面間で森林の反射特性に差がないと考え ると,計算の結果得られたアルベドの差は,斜面と太陽 の入射方向の影響によって,真上から見た一定面積の斜 面が受ける短波放射量が変化して生じたと思われる。本 研究では森林表面のアルベドを一定と考え,東西の両斜 面で得られたそれぞれの最頻値を平均した値を各撮像日 のA_aとして(2)式の計算に一律に用いた。

(3)下向きの短波放射量 上に述べたように、森林全体のアルベドを一定と考えた場合、絶対反射輝度に基づいて計算した画素ごとのアルベドの相対的な変化が、斜面に入射する下向きの短波放射量*R*_s(Wm⁻²)の画素ごとの違いに対応すると考えられる。これに基づき、森林の斜面に入射する画素ごとの*R*_sの値を、画素ごとのアルベド計算値*A*_{gp}と森林のアルベド平均値*A*_gを使って(7)式のように求めた。

$$R_{\rm S} = \frac{R_{\rm So} \cdot A_{\rm gp}}{A_{\rm g}} \tag{7}$$

ここで R_{so} は、大阪管区気象台と奈良地方気象台の午前10時の時間別全天日射量の平均値である。なお、本研究では森林における反射輝度の高いバンド4の輝度値を対照しながら、画像上で山の陰にあたる(直達日射がない)と判断できた部分における A_{gp} の最大値を計算し、これを(7)式に代入して散乱日射量とした。こうした直達日射のない部分については、この散乱日射量を一律に R_{s} にあてはめて計算に用いた。

(4) 粗度などの変数の設定 Table1 に、本研究の解

(surface parameters)				
reference height; z				21.5 m
mean height of trees; h				11.5 m
zero plane displacement; d_0				9.2 m
roughness length for wind; z_0				1.01m
roughness length for temperature; z_h				0.08m
(meteorological variables)				
dates	Aug. 6, 1990	Jun. 19, 1990	Apr. 16, 1990	Dec. 6, 1988
mean surface albedo; A_{g}	0.102	0.113	0.103	0.078
downward short wave radiation; R_{So}	684.7	690.3	605.6	354.2 Wm ⁻²
diffused short wave radiation; R_d	218.5	219.9	213.7	196.8 Wm ⁻²
air pressure; P	994.7	1009	1003.9	1016.9 hPa
specific humidity; q_a	16.35	13.45	6.14	3.60 g kg ⁻¹
wind speed*: U	1.1	2.5	1.0	4.8 ms ⁻¹

Table 1 Variables and parameters used in estimations of heat fluxes on each day.

*; mean values interpolated through MATHEW model over forest area.

析に用いた主な変数やパラメータをまとめた。本研究で は二度の現地調査(1994年9月,1996年7月)で得た山 頂付近の平均樹高h(11.5 m)の10m上方すなわち21.5m を,熱収支解析の対象面の高さz(m)とした。地面修正 量 d_0 はArya(1988)にならい0.8h,すなわちここでは 9.2mと仮定した。また、本研究では風速の粗度長 z_0 を 1.01 mとしたが、これは1994年の盛夏時に行った滋賀 県内の針葉樹林内における観測において、中立に近い場 合の顕熱輸送のバルク係数 C_h が0.027になったことから 決めた値である(観測方法については、文字ら(1994)を 参照)。森林における温度の粗度長 z_h はGarratt(1978) にならい $z_0/12$ 、すなわち本研究では0.08 mとした。

(5) 比湿 本研究では、1930年代に観測されていた 午前10時の大阪市内と生駒山麓(四條畷市田原)におけ る各月の平均相対湿度と平均気温,ならびに大阪市内に おける水蒸気圧の最近の都市効果(嚴,1994)に基づいて、 市街地-森林間の比湿の平均的な差を月ごとに計算した。 そしてこれを大阪と奈良における撮像当時の観測値によ る比湿の平均に加えた値を森林内で一律に用いた(Table 1)。

(6) 気温分布 本研究では地上からの高さにより山頂 の観測値を補正し、さらにこれに基づいて気温の地理的 分布を海抜高度に従って内挿した。最初に尾根近くの開 けた草地上にあるアメダス生駒山観測所での観測値をz=1.5 mにおける気温, TMデータにより得られたその場 所の表面温度を温度の粗度長 z_h の高さ(0.08 m)におけ る気温と考える。ここで気温の鉛直プロファイルが対数 分布しており、 z_1 , z_2 と異なる地上高の気温 $T_a(z_1)$, $T_a(z_2)$ を用いた { $T_a(z_1) - T_a(z_2)$ }/($\ln z_1 - \ln z_2$) の値が観測所周辺で一定と仮定し、観測所における高 さ 21.5mにおける気温を外挿した。次に海抜高度に対す る気温の変化率をアメダス生駒山観測所と大阪管区気象 台の気温の観測値から把握し、海抜高度の分布に応じて 21.5 mの高さの気温分布を内挿した。海抜による気温分 布の内挿方法は青野ら(1996)に準じた。

(7)風速分布 バルク法による熱収支の推定では,水 平風速が重要な変数になる。ところが生駒山周辺のよう に地形が複雑な地域では風速を一様と見なすことができ ない。そこで本研究では,こうした地域でもよく適用さ れる風速分布の内挿方法の一種である変分法を用いるこ とにした。一般的にマスコン(Mass Consistent)モデル とも呼ばれるこの方法は,理論的にはSasaki(1958)に よって開発されたもので,一定の厚さの境界層よりも下 の高度に設けた各格子点で流れの質量保存則が満たされ るように,観測値から得られた流れの場全体を変分しな がら修正させる方法である(詳細については鈴木(1992) を参照)。このモデルは用いる境界条件により Dickerson (1978)の MASCON モデルや Shermann (1978)の MATHEW モデルがあるが,本研究では後者を用いた。

風速分布の内挿では、生駒山を中心に東西45.8 km, 南北36.8 kmと熱収支解析の対象地域よりもかなり広い 領域を考えた。この領域内に東西2290 m,南北1840 m 間隔(21×21 格子),鉛直方向では200 m間隔に格子点 を設定した。Shermann(1978)はこのモデルを最大 1450 mの高度までについて適用しているが、そこで使 われた格子の鉛直方向の間隔が50 mと短いことから、 本研究ではさらに200 m(一段に相当)だけ格子の並びを 増やして、1620 mの高さまでを考慮し、これを境界層 の高さと考えた。地上で4 つの格子点により囲まれる面 積は、国土数値情報の基準地域区画メッシュ4 つ分に相 当する。

この領域内に位置する生駒山と周辺6ヶ所(大阪,堺, 豊中,枚方,奈良,田辺)のアメダス観測点による風速 の観測値を用いて,まずそれぞれの格子点における風速 の東西・南北成分を,各観測点からの距離の2乗の逆数 の和により重みづけた平均値として求めた。風速成分の 地上からの高さによる変化は、1/5 乗則により推定した。 このときの鉛直成分は、風が斜面に対し平行に吹くと仮 定して水平成分を基に計算した。

MATHEWモデルは、こうして得られた風速分布を地 形に合わせて、より滑らかにするための内挿方法である。 このモデルでは、こうして求めた風系の東西、南北、鉛 直の成分(u_0 , v_0 , w_0)に海抜高度の情報を加えて修正し た成分(u, v, w)が求められる。 その際に、 |) 各格子 点上で質量保存則が成り立つ、すなわち、

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(8)

さらに、 ||) 体積*V* について積分して得られる修正量の 総量*E*_r

$$E_{r} = \int_{V} \left[\alpha_{1}^{2} \left(u - u_{0} \right)^{2} + \alpha_{1}^{2} \left(v - v_{0} \right)^{2} + \alpha_{2}^{2} \left(w - w_{0} \right)^{2} \right] dV$$

が最小になる,という2つの束縛条件をかける。ここで α_1, α_2 はそれぞれ水平の修正成分と鉛直の修正成分と の比を表す重み係数である。Shermann (1978)は中立 条件下の α_1^2/α_2^2 の値を 10^{-4} としているが,実際にこれ を確かめることは難しく、本研究では大気が不安定な事 例を扱うことが多いことから、ここでは α_1^2/α_2^2 を0.01 とした。この後の推定の手順としては、上の(9)式をラ グランジェの未定乗数 λ_c が入った式に改め、さらにそ の両辺を微分した形式

$$\begin{split} \delta E_{\rm r}\left(u,v,w,\lambda_{\rm c}\right) &= \int_{V} \left(|2\alpha_{1}^{2}\left(u-u_{0}\right)-\frac{\partial\lambda_{\rm c}}{\partial x}|\,\delta u\right. \\ &+ |2\alpha_{1}^{2}\left(v-v_{0}\right)-\frac{\partial\lambda_{\rm c}}{\partial y}|\,\delta v+|2\alpha_{2}^{2}\left(w-w_{0}\right)-\frac{\partial\lambda_{\rm c}}{\partial z}|\,\delta w \\ &+ |\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}|\,\delta \lambda_{\rm c}\,\right)\,dxdydz \\ &+ \int \left(\lambda_{\rm c}\,\delta u\right)\,dydz + \int \left(\lambda_{\rm c}\,\delta v\right)\,dxdz \\ &+ \int \left(\lambda_{\rm c}\,\delta w\right)\,dxdy \end{split} \tag{10}$$

の右辺各項(第一項の大括弧内の4つの各項を含む)が全て0となるように、つまり E_r の極小にあたるように格子点ごとの修正後の成分(u, v, w)を変分しながら解いた。

Fig. 2 に強風時(1990年6月19日)と弱風時(1990年 4月16日)における,MATHEW モデルによる修正後 の水平風速分布をベクトルにより示す。6月の場合には 森林全体における平均風速は2.5 ms⁻¹と強く,海抜を考 慮したことにより山地の特に尾根付近では3 ms⁻¹以上 の風速が推定された。また標高が400m以上と高い地域 を避けるように、回り込むような風ベクトルが推定結果 に現れた。ここでは、各撮像日について得られた風速分

Fig. 2. Wind fields interpolated using MATHEW model at 0950 JST on Jun. 19 and Apr. 16, 1990. The intervals of grid points are 2290 m in E-W and 1840 m in N-S arrays.

布結果のうち、z=21.5 m における格子点ごとの水平風 速をもとに最終的な内挿を行った。そして4つの格子で 囲まれた長方形を対角線で二分した三角形の面を使って TM データの画素ごとの風速内挿値を求めた。

2.4 バルク係数と顕熱フラックスの推定

顕熱フラックスHの計算では、画素ごとにあらかじめ 計算した風速U,表面温度 T_s ,気温 T_a を(4)式に代入 することになる。また顕熱輸送のバルク係数 C_h につい ては大気の安定度により補正した画素ごとの値を用いる。 風速プロファイルの普遍関数積分値 Ψ_m ,温度プロファ イルの普遍関数積分値 Ψ_h を使うと、 C_h は次のように表 すことができる。

$$C_{\rm h} = \frac{\kappa}{(\ln\{(z-d_0)/z_0\} - \Psi_{\rm m}) \cdot (\ln\{(z-d_0)/z_{\rm h}\} - \Psi_{\rm h})}$$
(11)

ここで κ はカルマン定数 (本研究では 0.41 を使用) であ る。 z, d_0, z_0, z_h については前述した値(Table 1) を 適用した。 Ψ_m, Ψ_h の計算には、大気安定度のパラメー タくを求める必要がある。画素ごとの Ψ_m, Ψ_h の計算に 際しては、 T_a, T_s, U を用いてバルクリチャードソン数 を求め、それを基にくを推定し、さらにこれを Paulson (1970)による普遍関数積分値の計算式に当てはめる方 法を用いた(詳細については青野ら(1996)を参照)。

2.5 蒸発散効率と潜熱フラックスの推定

ここでは潜熱フラックス λE の計算に用いるバルク係 数 $C_e \varepsilon C_h$ と同じと仮定した。 $\lambda E \varepsilon$ (5)式で評価する のに必要な蒸発散効率 β は、金子・日野(1994)になら って森林地域における気孔開度 β_s と画素ごとに計算で きる蒸発散面積率 α_{NDVI} の積として表されるものとした。

 α_{NDVI} は, 正規化差植生指数NDVIから求める。 TM の場合, NDVI は赤色波長光バンド 3 と近赤外波長光バ ンド 4 の輝度値から計算され, 植生が多い画素ほど + 1 に近い値で評価される。 α_{NDVI} は上空から見える蒸発散 可能な被植面積の割合を示すもの(金子・日野, 1994)で, あらかじめ計算した各画素のNDVIを次のように正規化 して求める。

$$\alpha_{\rm NDVI} = \frac{\rm NDVI - \rm NDVI_0}{\rm NDVI_{100} - \rm NDVI_0}$$
(12)

ここで NDVI。は蒸発散面積率を0% と考えた 地点の NDVIの値で,本研究では市街地における最低値に近い -0.1 を全画像で共通に用いた。また NDVI 100 は同じく これが 100%と考えられた地点の NDVIの値で,森林に おける最高値(6月は 0.75,8月は 0.70,4月および 12 月の場合は 0.50)とした。

気孔開度 β_s は (R_n-G) と $(H+\lambda E)$ との残差分散を分 析することにより最終的に決定した。具体的には (R_n-G) ,

H, さらに $\lambda E/\beta_{s}$ (計算上は $\beta_{s}=1$ とし た λE)を画素ごとに計算し, うち $\lambda E/\beta_{s}$ に様々な値の β_{s} を掛けて画素ごとの 熱収支の残差 $(R_{n}-G) - (H+\lambda E)$ を求め, この残差分散の, $(H+\lambda E)$ の分散に対す る相対比 r_{s} を最小とするような β_{s} を見 いだすものである。青野ら (1996) は森 林全体について上記の解析を行い, 平均 本研究では画素ごとに見た熱収支項の残差もなるべく 減らす目的で、顕熱フラックスHの計算値に4つの階級 区分(100~200,200~300,300~400,400 Wm⁻²以上) を設け、それぞれの区分別に、上記の方法を適用して β_s を決定した。なお、中立に近く100 Wm⁻²以下の顕熱フ ラックスHを伴う画素については、表面温度や気温の小 さな推定誤差が β_s の評価結果を大きく左右する可能性 がある。従って、これらの画素は β_s の決定のための解 析から除外し、 λE の計算の際にはH=100~200 Wm⁻² の区分で求めた β_s の値をそのまま適用した。

3. 結果及び考察

3.1 純放射量・地中熱フラックス

本研究では純放射量 R_n と地中熱フラックスGについて、 R_n -Gとした1つの値により表す。Table 2 にはこれを 含めた各熱収支項の森林全体における平均値を示す。 R_n -Gの平均値は8月6日が最も大きく527 Wm⁻²,6 月19日で466 Wm⁻²,4月16日で419 Wm⁻²,12月6 日には234 Wm⁻²であった。 R_n 及びGの値はTable 2 に ある通りである。

Table 2 Mean values of estimations of heat budget terms and moisture availability β on each day.

dates	<i>R</i> _n (W m ⁻²)	G (W m ⁻²)	$(R_n - G)$ (W m ⁻²)	<i>H</i> (W m ⁻²)	<i>E</i> (W m ⁻²)	β
Aug. 6, 1990	573	46	527	159	350	0.30
Jun. 19, 1990	506	41	466	246	233	0.15
Apr. 16, 1990	455	36	419	158	272	0.53
Dec. 6, 1988	254	20	234	129	108	0.37

 $R_n - G (W m^{-2})$

The state	not forest							
				~	1	0	0	
	1	0	0	\sim	2	0	0	
	2	0	0	\sim	3	0	0	
m	3	0	0	\sim	4	0	0	
	4	0	0	\sim	5	0	0	
	5	0	0	\sim				

Aug. 6, 1990 Jun. 19, 1990 Apr. 16, 1990 Dec. 6, 1988 Fig. 3. Distribution of estimated $R_n - G$ for each day.

Fig. 3 に各事例について推定した R_n – Gの分布を示す。 いずれの場合も山地を南北に走る尾根線より東側の斜面 で大きくなっている。たとえば 8 月の場合には、計算値 が 500 Wm⁻²以上の範囲が東側斜面のほぼ全体を覆った。 これは前にも述べたように、真上から見た単位面積当り の斜面が受けた R_s の差に起因するものである。この東 西間差は撮像当時の太陽高度によって変化した。太陽高 度が 60°の 6 月 19 日には東西差が平均 36 Wm⁻²、 55° の 8 月 6 日で 65 Wm⁻²、 53°の 4 月 16 日で 75 Wm⁻¹と なり、太陽高度が低いほど広がる傾向にあった。

ただし太陽高度が 27° と最も低い 12月6日の場合は 58 Wm^{-2} とその差が再び小さくなるが、これは山の陰 に当たる部分の下向き短波放射量 R_s として一定の散乱 日射量(197 Wm^{-2})を適用したことによる。他の事例と 異なり、この日は山地の陰となっている範囲が西側斜面 のみならず東側でも存在したことから、下向き短波放射 量 R_s の東・西斜面間の差が小さくなった。

3.2 顕熱フラックス

森林全体で計算した顕熱フラックスHの平均値は8月 6日で159 Wm⁻²,6月19日で246 Wm⁻²,4月16日 では158 Wm⁻²,そして12月6日には129 Wm⁻²とか なり変化した(Table 2)。顕熱輸送のバルク式(4)から も分かるように、計算上は風速の強弱がHの値をかなり 左右する。4つの事例のうち最大のHが得られた6月19 日には、森林全体で平均して2.5 ms⁻¹の風速Uの内挿値 を用いたことから、これが1 ms⁻¹前後と小さい4月、 8月の事例に比べ、顕熱フラックスが大きくなった。 12月6日の風速内挿値は平均して4.8 ms⁻¹とかなり大 きいが、気温と表面温度の差($T_s - T_a$)が他の事例に比 べてきわめて小さく、結果として、顕熱フラックスHが 小さくなった。また、今回求めた8月6日のHならびに 潜熱フラックス λE の平均値は前報(青野ら、1996)での 同日の計算結果に対して100 Wm⁻²程度異なる。両者の 違いについては 3.4節で述べる。

Fig.4に、各撮像日における顕熱フラックスHの推定 分布を示す。いずれの事例も西側斜面でより東側斜面で Hが大きくなる傾向が見られた。6月19日の場合、東 側斜面の半分以上が300Wm-2以上の範囲,風速の強い 山頂付近では400Wm⁻²以上となった。これに対して西 側斜面は100~200 Wm⁻²の範囲でほとんど占められた。 全般に風の弱い8月6日の場合にも東・西斜面間でコン トラストは見られるが、6月19日ほど顕著ではない。 4月16日の場合は風速の強い尾根付近で200Wm⁻²を 超えるものの、大部分の画素では100Wm⁻²台の推定結 果となっておりコントラストは余り見られない。12月 の場合には西側斜面のほぼ全域で100Wm-2以下と評価 されているのに対し, 東側では200Wm-2を越える部分も 見られた。総じて見ると、風速の強い場合(特に6月)に は、弱い場合(8月、4月)に比べて、顕熱フラックスH の推定分布に東西斜面間のコントラストが顕著に現れて いる。風速がこの程度の範囲内で増加した場合、バルク 係数 Ch は幾分小さくなるものの,表面温度と気温の差 (T_a-T_a)が同じであれば, Hは結局大きく評価される。 東西斜面間に同程度の(T_s-T_a)の値のコントラストが あっても,風速次第でHのコントラストが変化すること を反映している。したがって風速分布の内挿精度はフラ ックスの推定精度を大きく左右することになる。風速の 内挿精度および顕熱フラックスの推定精度については 3.4節で考察する。

3.2 潜熱フラックス

各撮像日において決定した蒸発散効率 β の平均値は, 8月6日で0.30,6月19日で0.15,4月16日で0.53, 12月6日で0.37と大きく変化した。 β の推定値の変化 の原因や,この気象条件との関係については後に考察す る。最終的に決定した β を用いた潜熱フラックス λE の 計算値の平均は8月6日には350 Wm⁻²,6月19日で

Aug. 6, 1990 Jun. 19, 1990 Apr. 16, 1990 Dec. 6, 1988

233 Wm⁻², 4月16日には272 Wm⁻², 12月6日には 108 Wm⁻²となり,夏季の方が冬季に比べ大きくなった。

Fig. 5 に、解析した4 つの事例に関する潜熱フラック ス λE の推定分布を示す。8月の場合には山地のほぼ全 域で300 Wm⁻²以上となり、また300 Wm⁻²以下の範囲 の多くは尾根よりも西側に見られ、顕熱フラックスと同 様に東側斜面の方が相対的に大きくなるコントラストが 見られた。4月の場合にも、300 Wm⁻²以上の範囲で覆 われた東側斜面の方が200~300 Wm⁻² となった西側よ りも大きくなっている。12月でも値自体は小さいもの の、東西斜面間の差の同様の傾向は見られる。

これに対して6月19日の場合には、逆に西側斜面で 潜熱フラックスが高く評価されている。これは後にも述 べるが、山頂、尾根部分を中心に風速の内挿値が実際よ りも大きくなり、これが顕熱フラックスの推定値自体、 さらに東西斜面間の差の過大評価を引き起こし、*R_n-G* の東西間の差を上回った結果により、計算上こうした推 定分布になったことによる。

3.4 推定方法・精度の検討

Fig. 6 に各熱収支項の森林全体で計算した平均値を, 比較のため柱状グラフにより示す。各事例とも平均値の 残差は 20 Wm⁻²以内となった。1990 年の 3 つの事例の うち, 6月 19 日については潜熱フラックス λE より顕 熱フラックスHの占める割合が比較的大きくなったが, これは前にも述べたように,森林全体の風速内挿平均値 が 25 ms⁻² と大きく, Hの推定値がかなり大きくなった ことによる。

ところで前報(青野ら,1996)において述べた結果では, 1990年8月6日の同地域における顕熱フラックスHの 平均値が269 Wm^{-2} となり、本研究での結果はこれより 110 Wm^{-2} 小さい。この両者の違いは、主として式(4) の顕熱のバルク輸送係数 C_h が、本研究の方では全般的 に小さかったことに起因する。これは中立時の C_h を前

Fig. 6. Comparison of the mean values of $R_n - G$ and $H + \lambda E$ for each day.

報での場合(0.05)より小さな値(0.027)に設定したことに加え、本研究のz, z_0 , z_h を、より一般的な値に改めて設定したことから、仮に $T_s \ge T_a$ の差が広がり不安定の度合が増しても C_h が前報の場合ほど増加しなかったことによる。一方、 R_n -Gについては前報の結果とそれほど違わない。本研究では水蒸気のバルク輸送係数 C_e を C_h と同じ値と仮定しており、また潜熱フラックス λE や蒸発散効率 β については残差分散を解析することにより最終的に決定していることから、 $\lambda E \approx \beta$ の値は、Hとは逆に前報での場合に比べて大きく評価される結果となった。

画素ごとの残差の大きさを確認するために、4つの事 例について(R_n-G)と($H+\lambda E$)の散布図を描いた(Fig. 7)。プロットが重なり判別し難いが、8月、6月、4月 の場合には、プロット群が東・西斜面でいずれも1:1の 直線付近に集中した。残差のRMSは、6月19日で84 Wm⁻²と最も小さく、4月16日で99Wm⁻²、8月6日 で126Wm⁻²となった。12月6日の場合、 R_n-G のプ ロットが約100Wm⁻²以下で途切れているように見える が、これは R_n の計算に用いた下向きの短波放射量 R_8 に

Fig. 7. Scatter diagram of $R_n - G$ versus $H + \lambda E$ on the pixel base.

一定の散乱日射の値(197 W m⁻²)を用いたことによる。 また,特にフラックスの小さな領域では残差が多くなっ ており,残差の RMS も 135 W m⁻²と他の3事例より大 きくなった。

前にも述べたように、本研究では画素ごとの熱収支項 の残差を減少させる目的から、顕熱フラックスHで分け た4つの階級区分ごとに β_s を決定し、これを潜熱フラ ックス λE の計算に用いている。森林全体で一定の気孔 開度 β_s を決定して潜熱フラックス λE を求めた場合と比 較すると、今回用いた方法による熱収支項の残差のRMS はいずれも小さい。残差の RMSの減少は8月6日が91 Wm⁻²と最も多く、その他の全ての事例については15~ 42 Wm⁻² の範囲となった。

この解析における熱収支項推定値の残差はさまざまな 理由により生じたと考えられる。計算の過程に注目する と,まず熱収支計算のための基本的なデータである風速, 気温の推定方法の精度が問題となる。風速については複 雑地形地で滑らかな風速分布を得る目的から,変分法に よる内挿を試みたわけである。ここでアメダス観測点の 位置に当たる格子点で得られた最終的な風速の内挿値を, 変分法を適用する前の初期値と比較してみた。その結果, 大阪市など平地にある点や,奈良市といった山地の麓に 位置する点では両者の風速の差は0.3 ms⁻¹以内と比較的 小さいことが分かった。生駒山頂における両者の比較の 場合も,平均して1 ms⁻¹程度と風の弱い事例(1990年 4月16日,8月6日)では,他の地点と同様の差しか認 められなかった。しかしながら2 ms⁻¹を越えた1990年 6月19日,1988年12月6日の内挿値は初期値に対し, それぞれ 1.4, 1.6 倍 (差は各々 1.0, 2.5 m s⁻¹) 過大評価されていた。こ のように風速の内挿値が観測された 値よりも大きくなると, 6月 19日 のように表面温度と気温との差が大 きな場合ほど,顕熱フラックスの過 大評価が生じることになる。6月 19 日に関する計算の過程で変分法によ る風速分布内挿値をすべて 1.4 で除 し実際に近い値を用いると,山地全 体で顕熱フラックスは平均 31 W m⁻² 少なくなる。6月 19日の場合には, 顕熱フラックスが最高この程度まで 過大評価されている可能性が高い。

一方,気温については本研究の解 析では画素ごとの海抜高度を用いた 内挿にとどまっている。前に述べた ように,撮像が午前中であることか

ら尾根の西側では斜面に入射する短波放射が小さくなり、 加えて太陽高度が低い季節には直達日射の当たらない範 囲が現れる。これによる東西斜面間の温度差は表面温度 T_s のみならず気温 T_a にも存在した可能性がある。両者 の差($T_s - T_a$)はバルク式(4)においては直接顕熱フラ ックスHの計算に掛かることから、少しの T_a の内挿誤差 でもHの推定誤差につながる。

気温の内挿の基準点の1つとしたアメダス生駒山観測 所のある画素は、今回用いた4画像全てで直達日射があ ったことが確かめられた。気温T。の東西間差の影響を検 討する目的で, 西側斜面にあたる画素の気温を一定値引 き下げ,その時の熱収支項の残差の RMS を求めてみた (ただし顕熱フラックスHの各区分に対応する気孔開度 β。については、そのままの値を用いた)。その結果、最 も太陽高度の低かった12月6日の場合には、東側の同 海抜の画素での気温の値に対して西側の気温を2.0℃低 くした場合に残差のRMSが39Wm-2減少し、最小値を 示すことがわかった。他の事例でも尾根の西側の気温と して 0.2~1.2℃低い値を用いることにより残査の RMS は減少したものの、その量は 2~13 Wm⁻²に過ぎなかっ た。今回の推定方法では,太陽高度が低く西側斜面の広 い範囲で直達日射のなかった場合に内挿された気温が実 際以上に高くなり、これが $(T_s - T_a)$ の値の減少、さら には顕熱フラックスの過小評価につながったと言える。 このように解析に用いる気温の取扱いについては、海抜 高度の他に,斜面への入射が及ぼす影響に対しても留意 する必要があることがわかった。

3.5 蒸発散効率の変化

前にも述べたように、蒸発散効率 β の森林全体で計算 した平均値は、結果的に 0.15~0.53 の間で大きく変化し た。近藤ら(1994)が示した夏季の森林の例では β =0.26 となっているが、本研究における 8月6日の値(0.30)自 体はこれに近い。こうした β の推定値の大きな変化が生 じた理由について事例ごとに把握する必要がある。

Table 3 に各撮像日の β ならびに β_s の平均値と,そ の変化に関係すると思われる主な気象要素をまとめた。 本研究では β を蒸発散可能な面積の割合 α_{NDVI} と気孔開 度 β_s との積と定義したが、このうち α_{NDVI} については、 撮像日ごとのNDVIの最大値、最小値の範囲内で相対化 した蒸発散面積率としてここでは扱った。このため、 α_{NDVI} の値は撮像日ごとの β の相対的な地理的変化には 影響する。しかし対象領域がアカマツを中心とした森林 であるため、植生量のパターンは季節変化があまりなく 撮像日間の β の変化には直接影響しなかったと考えられ る。

これに対して気孔開度 β_s の変化については,まず前の項で述べた6月19日における風速分布の内挿値の過大評価,12月6日における尾根西側斜面の気温の過大評価の影響を除去することで正確な考察が可能になる。6月19日の場合には山地風速の過大評価が実際以上に高い顕熱フラックス,さらには小さな β あるいは β_s の推定値につながった。前節ではこの理由により顕熱フラックスが最高31 Wm^{-2} 過大評価された可能性があるとしたが,仮にこれに基づくと β は0.17(β_s は0.21)と概算される。

一方,12月6日の場合は6月19日,8月6日に比べ てβが0.37と大きくなっているが,通常こうした冬季に 蒸発散効率が夏季より大きくなるとは考え難い。これは 前にも述べたように西側斜面の気温に実際より高いと思 われる値を用いたことから,西側のほぼ全体の顕熱フラ ックスHが小さく評価され、 β の過大評価に至ったことによる。先に記したように、東側に比べ全般に 2.0 ℃低い気温を用いて β を概算してみると、森林全体の平均値は 0.18 (β_s は 0.25)となり、大きく減少する。

4月16日の β は 0.53, β_s は 0.78と4 事例中最も大き くなった。この日を山地全体の平均風速が同じで,また 日射量も100 Wm⁻²程度しか違わない8月6日とで比較 すると,撮像前日までの降水量の点が最も異なっていた。 当日の相対湿度は4月16日で70%,8月6日で72%と 大差はなかった。しかしながら4月16日の場合,撮像前 日まで3日間連続して合計24mmの降水があり,日照時 間もこの時期で計8時間と少なかったのに対し,8月6日 の場合には撮像日まで8日間降水がなく晴天続きであっ たため,両者には森林全体の乾燥の度合の点で相当な差 があったものと推察される。8月6日,4月16日の事例 の間にみられた β の差は,こうした森林全体の乾燥状態 の差によって生じた可能性が高い。

気温の内挿誤差による顕熱フラックスの過小評価を補 正して得られた 12月6日の β_s は 0.25 であったが、日 射量が少ないこうした季節における値としては、これで

Table 3 Mean values of moisture availability β and stomatal apature β_s in the forest, and some meteorological factors averaged over the forest area when remote sensing was done. β and β_s are corrected after eliminating over- and understimation of sensible heat fluxes on Jun. 19, 1990 and Dec. 6, 1988 respectively.

dates	Aug. 6, 1990	Jun. 19, 1990	Apr. 16, 1990	Dec. 6, 1988
(moisture availability β)				
without correction	0.30	0.15	0.53	0.37
with correction	_	0.17	—	0.18
(stomatal apature β_s)				
without correction	0.35	0.18	0.78	0.49
with correction	_	0.21	-	0.25
(variables when TM data was sensed)				
reletive humidity (%)	72	67	70	63
downward solar radiation (W m ⁻²)	684.7	690.3	605.6	354.2
wind speed (m s ⁻¹)	1.1	2.5	1.0	4.8
air temperature (°C)	27.1	25.2	12.0	5.9

もなお過大評価されている可能性がある。

本節の内容をまとめると、1) 蒸発散効率 β の値は 1 m s⁻¹内外の風の比較的弱い夏季では 0.30 程度である こと、2) 夏季では大気の湿度が減少するほど、また風 速が強いほど β が小さくなる傾向のあること、3) β は 降水などの影響による森林全体の乾燥の状態でも変化し、 湿潤な条件下では β が大きな値として評価される傾向が あること、4) 日射量や風速にともなって変化する β の 定量的な把握、ひいては熱収支分布自体を高い精度で推 定するためにも、山地の気温や風速の分布の内挿に、よ り細心の注意を払う必要があること、の4点に集約する ことができる。

4. まとめ

本研究では、ランドサットTMデータと地上気象観測 値とを併用しながら、複雑地形地にある森林の熱収支を 推定し、気象条件によるこれらの変化を考察した。顕熱 ・潜熱フラックスの推定には、それぞれに関するバルク 輸送式を用いた。山地における風速分布の内挿には、変 分法の一種MATHEWモデルを適用した。

顕熱フラックスの推定値は、山頂付近で 3 ms^{-1} 以上の風速の下で、夏季には 200 Wm^{-2} を超えたが、これが冬季になると 130 Wm^{-2} 程度となった。また山地の平均風速が 1 ms^{-1} 内外と比較的弱い場合には、夏季でもこれが 160 Wm^{-2} 程度に収まった。推定結果は、各撮像日における表面温度-気温差と風速によって大きく左右された。また、斜面に対して入射する日射量が多い東側斜面では、西側より顕熱フラックスが高くなるコントラストが見られ、これは風速が強くなるほど顕著となった。

一方,潜熱フラックスの推定値は、8月の盛夏時には 350 Wm⁻²と4事例中最大に、また冬季にはこれが100 Wm⁻²程度と最も少なくなった。結果的に強風時には潜 熱フラックスが減少する傾向が得られた。潜熱フラック スの計算に必要な蒸発散効率βの平均値は、乾燥した風 の弱い夏季においては0.3 程度、また日射量・風速がほ ぼ同じでも森林が湿潤な場合はこれよりも大きくなるこ とがわかった。

今回の解析では、強風時における山頂・尾根付近の風 速、また直達日射の少ない側の斜面における気温に関す る内挿精度に問題が見られ、これが顕熱・潜熱フラック スや β の推定値に影響を及ぼした。撮像時や撮像前の諸 条件と各熱フラックスや β の変化との関係の定量的な把 握にとって、さらに多くの事例の解析もさることながら、 解析に使う気象要素、とくに風速と気温の分布の内挿計 算のさらなる精度の向上も必要である。

引用文献

- 青野靖之・神田英之・張 暁川・文字信貴,1996:ラン ドサットTMデータを用いた山地森林の熱収支解析. 農業気象,**52**,221-231.
- Arya, S. P., 1988: Introduction to micrometeorology. p. 151, Academic Press.
- Brutsaert, W., Hsu, A. Y. and Schmugge, T. J., 1993: Parametarization of surface heat fluxes above forest with satellite thermal sensing and boundary-layer soundings. J. Appl. Meteorol., 32, 909-917.
- Dickerson, M. H., 1978: MASCON-a mass consistent atmospheric flux model for regions with complex terrain. J. Appl. Meteorol., 17, 241– 253.
- Garratt, J. R., 1978: Transfer characteristics for a heterogeneous surface of large aerodynamic roughness. *Quart. J. Royal Meteorol. Soc.*, 104, 491-502.
- 金子大二郎・日野幹夫, 1994: TM 植生指標と気象台ル ーチンデータを用いた広域森林における熱収支の算定 法の提案と検討.水文・水資源学会誌, 7, 10-21.
- 川島茂人, 1986: 航空機 MSS データによる地表面熱収 支分布の評価. 天気, **33**, 333-344.
- 近藤純正編著,1994:水環境の気象学一地表面の水収支 ・熱収支. p.229,朝倉書店,東京.
- 古藤田一雄・甲斐憲次・中川慎治・吉野正敏・星 仰 ・武田 要・関 利孝,1984:ランドサットデータに よる土地利用区分と広域蒸発散量算定手法の開発に関 する研究. 筑波大学水理実験センター報告,8,57-66.
- Lacis, A. A. and Hansen, J. E., 1974: A parametarization for the absorption of solar radiation in the earth's surface. J. Atmos. Sci., 31, 118–133.
- Lathrop, Jr. R. G. and Lillesand, T. M., 1987: Calibration of thematic mapper thermal data for water surface temperature mapping: Case study on the Great Lakes. *Remote Sens. Envi*ron., 22, 297–307.
- Liou, K.-N. and Sasamori, T., 1975: On the transfer of solar radiation in aerosol atmospheres. J. Atmos. Sci., 32, 2166–2177.
- 文字信貴・鱧谷 憲・奥田純二, 1994: 針葉樹林の蒸発 散効率の測定. 日本農業気象学会 1994 年度全国大会 講演要旨, 266-267.
- 中川清隆・大井祐成,1992:新潟県長岡市街地およびその周辺におけるLANDSAT/MSS波長域地表面アル ベドの分布とその季節変化.地理学評論,65A,769 -790.
- Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl.

Meteorol., 9, 857-861.

- Sasaki, Y., 1958: An objective analysis based on the variational method. J. Meteorol. Soc. Jpn., 36, 77-88.
- Shermann, C. A., 1978: A mass-consistent model for wind fields over complex terrain. J. Appl. Meteorol., 17, 312–319.
- 鈴木基雄,1992:変分法による風系推定モデル.大気環 境シミュレーション一大気の流れと拡散一, p.112-131,白亜書房,東京.

Swinbank, W. C., 1963: Long-wave radiation from

clear skies. Quart. J. Royal Meteorol. Soc., 89, 339-348.

- 富田圭一・佐橋 謙,1995: LANDSAT-TM熱赤外バ ンドデータと実測水表面温度との比較. 日本気象学会 関西支部大会講演要旨,11−14.
- 嚴 香姫,1994:大都市における湿度の変化に関する気 候学的研究.大阪府立大学農学研究科博士論文,117 pp.
- 矢吹万寿・宮川秀夫,1970:風速と光合成に関する研究 (第2報)風速と光合成の関係.農業気象,26,137-141.