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ON OPTIMAL
CAPITAL INVESTMENT, RESEARCH AND
DEVELOPMENT, AND ADVERTISING POLICIES

Hideaki Maeda

1. Introduction

Problems of optimal investment have been studied by Arrow, Beckmann
and Karlin [3], Arrow [1, 2], and others. Nerlove and Arrow [9] considered
the problem of optimal advertising policy. Dhrymes [5] considered a model
including both capital and advertising policies.

In the present paper we consider the problems of capital investment, research
and development, and advertising policies, using the results obtained in optimal
control theory. Many of the technical discussions that follow we owe to Lee and
Markus [7].

2. Plant and Equipment Investment

2.1. Model

We begin by examining investments in physical plants and equipments.
By physical plants and equipments we mean ‘‘capital stocks” that must be owned
by the firm in order to employ their services in its production process. We
consider such a firm as produces a single product by combining perfectly variable
factors of production with physical plants and equipments or capital stocks.
By a perfectly variable factor is meant one that can be altered in amount accord-
ing to a cost schedule which is independent of either the time rate of change in
the amount of that factor used or the time interval between a decision to vary
the amount of that factor and its actual variation.

Let x,, x, -+, ¥, denote capital stocks, and define a vector x as

For simplicity we assume constant rates of utilization of the services of
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capital stocks. Furthermore we assume that the amounts of the perfectly
variable factors used with physical plants and equipments of given sizes are
always optimally adjusted to the production technology and the prices of the
perfectly variable factors. In addition, we assume that output of the product
is determined to maximize the difference between the revenue obtained by
sales of the product and the production costs. We call this difference “operating
profit”, and let /I denote the operating profit function.

According to the above arguments the rate of operating profit may be
regarded as a function of capital stocks, production technology and prices of the
perfectly variable factors. In this section we do not introduce research and
development policy of the firm, so we assume that no technological progress
takes place. Therefore the rate of operating profit may be denoted by 11 (x, t).
The variable ¢ included in the function /7 signifies the incidences of changes in
prices of perfectly variable factors.

Next we introduce an expansion cost (investment outlay) function. Let
I; be the rate of gross investment in i-th capital good, and define a vector I as

Il

= |
I,
At each moment of time S(J, #) denotes the expansion cost. This says that the
cost of expansion depends both on the rates of gross investments and on the time
that has elapsed between the beginning of the planning period of the firm, date
0, and the date at which the investments occur, date £. The variable ¢ included
in the function S signifies the incidence of changes in supply conditions of
capital goods.

Then the net receipt at time ¢, say R(t), is given by

R(t)=H[x(t), {]—S[L), 1].

Present value is defined as the integral of discounted net receipts:

T _l" Ya

e Y OT Rt

0
where 7(z) is the rate of time discount at time 7 and 7T is the length of the plan-
ning period. For simplicity of the following discussion, we assume that the
rate of time discount is a constant 7, and that the length of the planning period
is a fixed finite positive number. Accordingly, the present value defined above
may be represented in a simpler form:

T

¢ "R(t)dt. (2.1)
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The aim of the firm is to maximize the present value (2.1), or to minimize
the functional

J()=— S:e"‘R(t)dt: S:{S[I(t), f]—I[x(2), t]e"dt (2.2)

by suitable choice of investment policy I(t).

The evolution of capital stocks is determined by their initial states and by
the investment policy chosen. If we assume depreciation at fixed exponential
rates §; (i=1, 2, .-+, n), then

x'i:Ii(t)"_aixi(t)

or in a matrix form

a=1I(t)— ox(t), (2.3)
where the dot denotes differentiation with respect to time and ¢ is defined as
8,0 -0
o=| 0 %0
00 -3,
Let x, be the initial state vector of capital stocks. Then the initial condition
is given by
 (0)=x, (2.4)
where the vector x, is defined as
X0
xo_ ',:6‘02

Now we state assumptions that are held in sections 2.2.1. and 2.2.2.
(1) I(¢) is a Lesbegue measurable vector-valued function on a finite interval
0<t<T and its values must satisfy the constraint

0<I()<],.x 0<=i<T), (2.5)
where I, is defined by
I ax ,
L] fom | 0<l e doo (=1, 2, -, 7).
) f—

Let 2cR® denote the set of all I that satisfy the constraint (2.5), where R" is
the n-dimensional vector space,
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Then, for each choice of the function I(f) c@, the differential system

(2.3) has a unique absolutely continuous solution x(t) on a subinterval of [0, T],
with a prescribed initial state x)=x(0). This is the conclusion of the Cara-
théodory existence theorem for differential systems.) The solution x(f) will
be called the corresponding trajectory to the investment policy I(t). The
trajectory x(t) is continuous, and it has a derivative, except on a set of measure
zero, such that the differential system (2.3) is satisfied almost everywhere.

(2) The operating profit function /T is concave and differentiable with respect

to x, and I7=0 and 9/l /x>0 for every x>0.

(3) The expansion cost function S is strictly convex and differentiable with

respect to I, and S=0 and 3S/oI>0 for every I>0.®

For the purpose of the following discussion we need some definitions. ()

(i) A target set. In the cases in which values of the trajectory of capital
stocks x(¢) are required to be in some prescribed set in the x-space R”,
we call the set a target set. '

(i) An admissible investment policy. An investment policy I(f) —&
which steers the initial state of capital stocks x, to the prescribed target
set is called an admissible investment policy. Let 4 denote the class of
admissible investment policies.

(iii) An optimal investment policy. An investment policy I*() in 4 is
called optimal in case

JUIF)=J)
for all I(¢) in 4.

(iv) A controllable process. The differential system (2.3) is called a
control process in optimal control theory. A control process is called
a controllable process if there exists at least one admissible investment
policy.

(v) A set of attainability. Consider the control process (2.3) with the
initial state of capital stocks x, and investment policies I(z)c® on
0<t<T. Let x(¢) denote the corresponding trajectory of capital stocks
initiating at x(0)=x,. The set of attainability denoted by A(T) is the
set of all endpoints x(7T) in R".

(vi) An extremal investment policy. An investment policy I(f) & on
0=<t<T which steers x, to an endpoint x(T) in the boundary 9A(T)
of the set of attainability by the process (2.3) is called extremal, and the

cf. Coddington and Levinson [4], Lee and Markus [6, 7].

This author treated in the paper [8] the case in which the expansion cost is given by the
product of capital good prices and the rates of gross investments.

Some additional concepts will be defined later.
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corresponding trajectory x(#) is an extremal trajectory of capital stocks.

(vii) A normal process. A control process is called normal in case any
two investment policies I'(¢) and I%(#)c £ on 0<¢<T, which steer x, to
the same boundary point in A(T), must be equal almost everywhere on
0=i<T.

2.2. Optimal Investment Policy

2.2.1. In the first instance we consider the case in which no requirement
is imposed on the values of capital stocks over the planning period 0<t<T,
that is, the target set is the x-space R" itself over the planning period.®

Then our problem is formulated as follows.

Among all investment policies that steer the initial state of capital stocks
%, to some point x in R" according to the differential system

x=1(1)— 0x(2) (2.3)
and satisfy the constraint
0<I(r)<I...  (0=<T), (2.5)

find one for which the objective functional
T !
J)=\ {S[I(¢), t]—H[x(t), t]e "dt (2.2)
0

achieves the least possible value.

Now let us consider the set of attainability A(T)cR" of all endpoints x(7)
of the trajectory of capital stocks x(¢) initiating at x(0)=x,. Making reference
to the well known result in optimal control theory,® we can prove the following
statement.

Proposition 1. Consider the control process relating the state of capital
stocks x(¢) to the investment policy () on 0<t<T

2=I(t)—0x(2) (2.3)
with intial state x, and constraint on the investment policy
Ogl(t)glmax (O_g_th). (2'5)

Then' the set of attainability A(T) is compact and convex in R™.

(4) In this case it is selfevident that the process (2.3) initiating at x(0)=ux, is controllable.
The variation-of-parameter formula states that the solution of the differential system
(2.3) with initial condition (2.4) is
x(t) = e—xy+ S e ~Um e,
so x(t)=0 for investment policies I(t) C £ on 0Zt<T.
(5) cf. Schmaedeke [10], or Lee and Markus [7].
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Proof. To prove that A(T) is compact, we prove that every sequence of
points {x*(T)} (v=1, 2, ---) in A(T) has a subsequence which converges to
some limit point #(T)=A(T). Consider the solution x”(¢) of the differential
system (2.3) corresponding to x”(T), and the investment policy /*(f)c 2 on 0<
t<T which yields the trajectory x”(#). Then the variation-of-parameter formula
states

12

x”(t):e“"’xo—l—s e~ =°I¥(7)dx. (2.6)
0

As is well known, the family of all measurable vector functions on a pres-
cribed compact real interval each of whch has values in a prescribed compact
convex set is sequentially weakly compact.(® Therefore the set of all investment
policies I(#)c 2 on 0=<¢<T is weakly compact, and there is a subsequence {I”: ()}
(i=1, 2, ---) which converges weakly to an investment policy I(f)c 2 on 0=¢<T,
that is,

lim S ze_(t_")"l”i (r)de= S ze_(‘_r)"i(r)dr. (2.7)

0 0

Let %(¢) denote the corresponding trajectory to I(¢). Then from (2.6) and (2.7)
F(t)=e "x,+ S e~ =0 (7)dr=lim x*i (2),
0 i—co
therefore

lim *: (T)=&(T)= A(T).

i—00

Thus the set A(T) is compact.
To prove that A(T) is convex we prove that the line segment

(A=ma(T)+p2XT)  (0=p=1)

joining any two points x'(7T") and ¥*T) in A(T), lies entirely in A(T). Let
x'(t) and x’(¢) be the solutions of the differential system (2.3) corresponding to
investment policies I'(f) and I%t)cQ on 0=t<T respectively. And define an
investment policy I4(t)c2 on 0<t<T by

I4(8)=(1— @)1 (2) + pI%0).
Then the corresponding trajectory of capital stocks x#(#) is given by

()~ (1= e syt | e L

e nt | e,
0

(6) cf. Lee and Markus [7], pp. 157-160.
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Therefore we have

()= (1— ) (t)+ px*(2)

$(T)==(1— p)e(T)+ o T).
Thus A(T) is convex. (Q.E.D))

Next we examine investment policies which steer x, to a point in 9A(T).

Such an investment policy is called extremal. In order to express the extre-
mality conditions we consider the differential system

#=—0x(1)
and its adjoint system

7=1(2)J,
where 7(t) is an n-row vector. 'This adjoint system has a solution of the form
y(t)=n,e”, where 7, is a constant vector. If 7,20, then y(¢) is a nontrivial
solution of the adjoint system.
Proposition 2. Consider the control process relating the state of capital
sotcks x(f) to the investment policy I(f) on 0<t<T

x==1I(t)— 0x(t) (2.3)
with intial state x, and constraint on the investment policy
0<It)<l... (0=t<T). (2.5)

An investment policy I(#)c 2 on 0<t<T is extremal if and only if there
exists a nontrivial solution 7(¢) of the adjoint system

9=()0 (2.8)
such that

P(BOI(t)=maxy()] o (2.9)

for almost all ¢ on 0<t<T.

Proof. First, assuming the investment policy I(f) on 0<t<T to be extre-
mal, we prove the existence of such a solution of the adjoint system that is required
by the Proposition.

Let I(t) be an extremal investment policy which steers x, to x(T)=dA(T)
by the corresponding trajectory

x(f)=e"x,+ \ e C~°[(c)dr.
.0

Since the set of attainability A(7") is compact and convex, A(7T) has a supporting
hyperplane at the boundary point x(7"). Let »(7") be the outward unit normal
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vector to the hyperplane at »(7). And define the nontrivial adjoint trajectory
7(2) by
p(t)=7,¢” with p(T)=,e".

Then we have
AR =t | e (o)

—seset-| 7o,

SO

W T)e(T) =7y, + S};@)I(r)df. (2.10)

Now suppose that the maximum condition (2.9) is not satisfied on some
set of positive duration in 0<<t< T, that is,

POty <maxy(1)],
Iep
and define an investment policy j(t)c.Q on 0=t<T by
7(8)I()=max p(t)1.
Ie g

Let &(f) denote the corresponding trajectory to the investment policy f(t)
Then we have
T

v(T)ﬂ?(T)Z%onrS (). (2.11)

0

By the definition of the investment policy I() we have

T

| te< | iy,

0

therefore from (2.10) and (2.11) we have
W D(T)<T)¥(T). (2.12)

However the inequality (2.12) contradicts the construction of 3(7T) as the outward
normal vector at the boundary point x(T'). The inequality (2.12) implies that
the point x(T)=dA(T) is separated by the supporting hyperplane from the set
of attainability A(7). But this is impossible because the point x(7) belongs
to the boundary 94(T).

Thus we can conclude that

AL =max ()]
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for almost all £ on 0<t<T.

Conversely we assume that, for some nontrivial adjoint trajectory x(f)=
7,6, the investment policy I(f)c 2 on 0<t<T satisfies the maximum condition
(2.9) almost everywhere on 0<t<T, and prove that the investment policy is
extremal, that is, the corresponing trajectory of capital stocks x() terminates at
a boundary point of A(T).

Now suppose that the terminal state x(7") lies in the interior of A(T'), and
consider a point (7T in A(T) such that

W Dx(T)<y(T)x(T)

for the specified adjoint trajectory z(¢). Let .f(t)c.Q on 0=<t<T denote the
investment policy which yields the trajectory &(t). Then by the above supposi-
tion we have :

AL =max ()]

for almost all ¢ on 0<¢t<7. Computing the inner products z(t)»(7T) and
»(T)%(T) we obtain

(T T)=yp(T)Z(T).

But this is a contradiction. Therefore the terminal state of capital stocks denoted
by x(T) must lie in the boundart dA(T). (Q.E.D))
Now we procced to prove that the control process (2.3) is normal, that is,
any two investment policies which steer x, to the same boundary point of A(7)
by the process (2.3) must be equal almost everywhere in 0=<t<T.
Proposition 3. Consider the control process relating the state of capital
stocks x(¢) to the investment policy /() on 0=t<T

x==I(t)—0x(t) (2.3)
with initial state x, and constraint on the investment policy
0<I()=<I,.. (0=t=T). | (2.5)

Then any two investment policies with values in 2CR" on 0=t<T are
equal for almost all ¢ on 0<<t<T.

Proof. Let I(f)c® on 0<¢<T be an extremal investment policy that
steers the initial state of capital stocks x, to the terminal state &(7) in 04(T),
and %(t) be the corresponding trajectory of capital stocks. :

Since the set of attainability A(T) is compact and convex (Proj)osztzon 1),
A(T) has a supporting hyperplane at the boundard point #(T'). Let y(#) be a
nontrivial adjoint trajectory with 7(7") an outward normal vector of A(T) at
#(T). Then we obtain the maximum condition
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()] (t)=r;f;;2X ()]

almost everywhere on 0<t<T.

Now let I(t)c 2 on 0<t<T denote an investment policy which steers x,
to the same terminal state #(7T) in 8A4(T), and let x(¢) be the corresponding
trajectory. In the following discussion we show that I(f)=I(¢) almost every-
where on 0<t<T.

Suppose that, in some subinterval of [0, 7] with positive duration,

p(OI(t)< 22!12)( p(H)1.

By using the variation-of-parameter formula, compute x(7") and 7(¢), then
we obtain the inner product

ADT) =gt | o)

Now specialize I() to I(¢) and x(f) to %(¢) to obtain

T
ADFT) =it | A0
Therefore, under the above supposition, we obtain
W T)(T)<y(T)%(T).

But this inequality contradicts to the assumption that the trajectory of capital
stocks x(¢) terminates at the point #(7'). Thus the investment policy I(t)c £
on 0<¢<T which steers x, to the same terminal state #(7") in 0A(T) must
statisfy the maximum condition

AU =7 =max ()] (2.13)

almost everywhere on 0<t<T.

Furthermore, to satisfy the condition (2.13) for the same y(¢), I(f) and I(£)
must be equal almost everywhere on the planning period. Thus the control
process (2.3) is normal. (Q.E.D))

Proposition 3 says that the investment policy on 0<¢<T which steers
x, to each endpoint in dA4(T) is unique. Using the result that the process
(2.3) is normal we can strengthen the result of Proposition 1.

Proposition 4. Consider the control process relating the state of capital
stocks x(f) to the investment policy I(f) on 0<t<T

se=I(t)—(t) (2.3)

with initial state x, and constraint on the investment policy
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0<I()=l.. (O==T). (2.5)

Then the set of attainability A(T) is strictly convex.

Proof. Conversely assume that A(T) is not strictly convex. Since A(T)
is compact and convex as proved in Proposition 1, there is asupporting hyperplane
p. Suppose that the intersection p N A(T) contains more than one point. Then
there is a compact line segment / in pNA(T) that combines these points. Let
I°(t) and I°({)c 2 on 0=<t<T denote two investment policies that steer x, to
distinct points P* and P’ in [ respectively.

Now let .7 denote the interval 0<¢t<<T. Consider, for each measurable
subinterval Bc.7", a real 2n-vector

. SBe"’I"(r)dT
o= SBe“’Ib(r)dz' '

Then the vector-valued set function I'(B) has some values

F(B)z[ gb ] and F(¢):[ : ]

where ¢ is an empty set. According to Liapnov’s result on measure theory,(”
there exists a subset B, for which(®
2

P(B%_)znf——B_;_):{ﬁﬂ 2.14)

2
Since P* and P’ are distinct, 8 is not equal to 3 and so neither B; and
(Z—B,) is a null set. )
2
Define the investment policies I'(f) and I%) as follows:
I°(t) for teB,
Il(t): b z
I¥¢t) for te(F —By)
2
and
I°(¢) for t=(F —B,)
Iz(t)z b 2
I*(¢t) for teB;
2
Then the terminal states of the corresponding trajectries x!(f) and x%*(z) are
respectively given by

(7) cf. Lee and Markus [7], pp. 163-164.
(8) (.97 -Bj) is a difference set.
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*(T)=e"xyt-e"? S e?1°(t)dt e S
. B g _B>l
2

o

e“’Ib(t)dtI
(2.15)
$(T)= e~ Tx, ¢~ S O T(t)dt e~ S eOT(1)dt
B

1 -8y
2 2
On the other hand, since P* and P’ are the terminal states corresponding
to the investment policies J°(¢) and I°(t) respectively, we have

Pe=¢=Tox ¢~ S e"’I“(t)dtl
.

and (2.16)

Pl=e~Tox |-~ 70 S e“’Ib(t)dtJ
e

Taking account of (2.14) we obtain the following equality from (2.15) and
(2.16)

xl(T):xZ(T)zé(P“-{—Pb). (2.17)

Since the control process (2.3) is normal (Proposition 3), the first equality
of (2.17) implies that I'(t)=I%¢) almost everywhere in .7". And this implies
that 1°(t)=1°(t) almost everywhere in the subintervals B, and (9 —B;). How-

2 2

ever this contradicts the above supposition that P* and P? are distinct terminal
states on the line segment . Therefore the set of attainability 4(7T) is strictly
convex in R". ' (Q.EE.D)

In the above discussions we have proved that the set of all terminal states
of the control process (2.3) with the initial state of capital stocks x, and the
constraint on the investment policy (2.5) is a compact and strictly convex set in
R", and that each terminal state represented as a point in the boundary of the
set of attainability is attained by a unique extremal investment policy. And we
have shown what the extremality condition is.

Now we introduce the objective functional (2.2) into the discussion. For
that purpose define a new state variable x°(¢) by

K(t)= S ;{S[I(T), t]—1[x(z), 7]}e”"dr (2.18)

and

x°(0)=0. (8.19)
And define a (n-1)-vector #(¢) as

2y
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and the initial state vector as

. 0
0= [x0:|

Then we have J(I)=«%(T), and so the aim of the firm is to minimize the
value of x°() at t=T. The state variable x%(¢) is controlled by the process

W= (S[I(t), {]—H[x(t), t]}e" (2.20)

Let A(T) denote the set of attainability of the extended control process
(2.20) and (2.3) with initial state #, and constraint set 2. The set 4(T') consist
of all endpoints of the trajectory #(¢) initiating at #(0)=#%,, and the trajectory
#(t) is the solution of the differential system (2.20) and (2.3) corresponding to
the investment policy I(f)c 2 on 0=t<T. '

Now investment policies () on 0=¢t<T have values in a compact convex
set 2CR", so the set of attainability A(T') is bounded in R**!. The projection
of A(T) on the x-space R" is the compact and strictly convex set A(7") defined
previously. In the following discussion we examine geometrical properties of
A(T). When we measure x°(T) vertically, we need not pay attention to the
upper boundary of A(T), and only the lower boundary is significant because
we seek the investment policy that minimizes x(T).

For the extended process (2.20) and (2.3), an investment policy I(f)c £ on
0<¢<T which steers &, to a point in the lower boundary of A(T) is now called
extremal investment policy. Let A, denote the set of all points (x°, x)eR"*!
for which there exists a point (y°, x)e4(T) with y’<a%.®

Then we can prove the existence of the optimal investment policy on 0=t

gT.Proposition 5. Consider the extended control process
#*={S[1(2), t]—1[x(t), t]}e" (2.20)
a=1I(t)— ox(t) (2.3)
with initial state #, and constraint on the investment policy
0I(n=l,., (0=t<T). (2.5)

Then the set 4,cR™*! is closed and convex, and the lower boundary of
- A, belongs to the set of attainability A(T). The lower boundary of AT
constitutes a strictly convex hypersurface defined over the set of attainability
of capital stocks A(T). The minimum value of the objective functional is
obtained at a unique point on the lower boundary of the set A,

Proof. First we prove that the set 4, is closed. Consider a sequence

(9) Therefore the lower boundary of A4, is the lower boundary of A(T).
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of points {¢”} which converges to the point g in R**!, where

0 A ~0
d”:[ay} and dzlicf J
a a
From the definition of 4,, we can find a sequence of investment policies {/*(£)}

(I*(f)c £ on 0=t<T) with a sequence of the trajectories {#*(f)} such that x*(T)=
a’ and x™(T)<a®, where

| ¥

0= 5y |
Moreover we can suppose, as shown in the proof of Proposition 1, that (a sub-
sequence denoted by the same symbol) {I*(¢)} converges weakly to an investment

policy I(f)c £ and the corresponding sequence of the trajectories of capital
stocks {x”(¢)} converges to ¥(¢), that is,

lim I*($)=1(t)c 2

V00

and
lim x*()=%(¢)

y—00

Therefore we obtain the inequality

lim a”=a"=lim inf «(T). (2.21)

v—00 »—00

By the fact that the set £ is a compact convex set in the I-space R" and
the set A(T) is bounded in the (x°, x)-space R**!, we have

lim inf x(T)=&%T) (2.22)

Y— 00

Therefore from (2.21) and (2.22), we can conclude that the terminal state
of the trajectory a?(t) corresponding to the investment policy I(¢) is x:(T),

where
o5l

s[5

Thus the terminal state @ belongs to 4,, and so 4, is a closed set in R**1.

and

If the terminal state @ belongs to the lower boundary of the set A(T'), then
we have #%(T)=a" and #(T)=4, and so the investment policy I(f) steers #° to

a. Therefore the lower boundary of the set 4, belongs to the set A(T).
Next we show the strict convexity of the lower boundary of A(T"). Con-
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sider two extremal investment policies I'(¢) and I%(#)c 2 on 0<t<T each of which
steers #, to some point on the lower boundary of A(T). Let the terminal |
states corresponding to I(¢) and I%t) be denoted by &(T) and #%T)

respectively. And define a point P by

| P=p@(T)+(1—p)#(T)  (0<p<1),
where

5 | P° oo | #%(T) .
P—[P:| and x(T)——[xi(T)} (=1, 2).
To prove that the lower boundary of the set A(T) is a strictly convex hyper-

surface, we have to construct an admissible investment policy which steers &,

to P and to show that the point P is an interior point of A(T).
Now define an investment policy I4(¢) on 0<t<T by

I48)=pI' (&) +(1—=p)I*(2),
and let x%(#) and x*(f) be the corresponding trajectories. Then the terminal
state of capital stocks is given by

%#(T) = (T4 (1— p)e¥(T)=P (2.23)

as shown in the proof of Proposition 1.
As for x°4(T) we obtain

4 T)= S:{S[I#(t), 1]— I [x(2), e dt

= S :{S [ {(8) 4 (1— p)IX(2), £]— T [ (£) 4 (1— p)(8), £}~ dt.

Since the expansion cost function S is strictly convex in [ and the operating
profit function /7 is concave in x, we obtain the inequality

STl () +(1— ) I2(t), 11— [pat(B)+ (1— (), 1]
<p(SINE), A—H0), M-+(1—p) S, [, 1

Therefore we have
S:{S[yll(t)+<1—m12<t>, £ — I [p(0)+ (I— p)o(8), e~ dt

< SU@), A1, D der(1—p) S,
—II[x%(t), t]}e™™ dt
= px™(T)+(1— p)a™(T)
—P.
So we have
 x%(T)<P". e

e
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Since values of investment policies I'(#) and I%(¢) are in the compact convex
set £ on the planning period 0<¢<T, the corresponding terminal states x%(7T)
and #%(T) belong to the set of attainability of capital stocks A(T). Therefore
from (2.23) and (2.24) and the fact that terminal state P° is given as a positive
convex linear combination of x"(7T") and x%(T), we find that the terminal state
P is an interior point of A(T).

By the above discussions the lower boundary of the set A(T) is a strictly
convex hypersurface defined over A(T).

Since the lower boundary of A(T) is a strictly convex hypersurface, the
objective functional J(I)=x%T) achieves its minimum value at a unique point
on the boundary. And this point is attainable, so our problem has the optimal
investment policy. (Q.E.D.)

An optimal investment policy steers the initial state #° to a terminal state
in the lower boundary of the set of attainability A(7T). Therefore an optimal
investment policy must be extremal for the extended process (2.20) and (2.3).

‘Then we proceed to show what the extremality condition is.

Proposition 6. Consider the extended control process

N={S[I(2), ] —H[x(¢), t]}e " (2.20)

#=1(t)—0x(t) (2.3)
with initial state #° and constraint on the investment policy

O<I(t)y<I™  (0<t<T). (2.5)

An investment policy I(£)c 2 on 0<t<T with the corresponding trajectory

a%(t) is extremal if and only if there exists a nonvanishing (n--1)—vector H(f)=
[/° 7(2)] satisfying the differential system

7°=0, °<0
oll[x(t), 1] _,, 2.25
I COX e (225)
x
and satisfying the maximum condition
7*S[I(t), tle~"+y(@)I(t)=max [°S(I, t)e~"*+ ()] (2.26)
Ieg

almost everywhere on the planning period 0<t<T, where
~ [ ®2)
o5 |
Proof. First, assuming that the investment policy I(£)c 2 on 0=t<T, the

corresponding trajectory é(t), and the adjoint trajectory #(#) satisfy the diffe-
rential system (2.20), (2.3) and (2.25), and the maximum condition (2.26) almost
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everywhere, we prove that the investment policy I(#) steers %, to the lower
boundary of the set of attainability A(7"). For that purpose it suffices to obtain
the inequality :

H(T)&(T)=H(T)4(T), - (2.27)

where %(T) is the terminal state of the trajectory %(¢) corresponding to any
admissible investment policy I(¢)c £ on 0<¢<T, and

o [2]

The inequality (2.27) implies (1) if °<0, then a%(T) belongs to the lower

boundary of the set A(T'), and (2) if 7°=0, then 9%(T) belongs to the lateral boun-
dary of the set 4, However if °=0, then the trajectory of capital stocks
&%(t) corresponding to I(#) is extremal in the sense of Proposition 2, and so the
terminal state £(7') lies on the boundary of the set A(T). Moreover the control
process (2.3) is normal (Proposition 3), I(t) is the only investment policy that
steers ¥, to the terminal state #(T') in §A(T). Therefore the terminal state

9%(T) is the unique point of the set A(T) that lies in the vertical direction of

&(T). Thus .9%(T) belongs to the lower boundary of A(T) in all cases, and so the
investment policy I(T) is extremal.

We must now prove the inequality (2.27). Differentiate the inner product
#(t)%(t) with respect to ¢, and we obtain

L =
Using differential systems (2.20), (2.3) and (2.5) we have
AT —7(0)%,
— S :[ﬁox"—i—p%&o—l—ﬁx—!—mﬂdt
—{ ot o-mto, ey
250,

+ +77(t)6}x(t)}dt

|’ [a” 5.9 (O~ (600, )

+°S[L(2), tle™"+n()I(t)}dt. , (2.28)
Now specialize I(f) to I(¢) and x(f) to X(t) to obtain
AS(T)—9(0)%,
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| o s, o

+°S[I(2), tle "+y(t)I(2))dt. (2.29)

The investment policy I(¢) satisfies the maximum condition (2.26) almost
everywhere, and so we have

PSIH), e +9OID=7 S, e~ +7(HI(2) (2.30)
almost everywhere on the planning period. We have assumed the concavity

of the operating profit function /7 in %, and so we obtain the inequality

augx t]‘(t) T, t]<aﬂ[x, 7]

Therefore from (2.28), (2.29), (2.30) and (2.31) the inequality (2.27) is
obtained.
Conversely assume that the investment policy I(f)cQ with the correspond-

x(t)—11[x(2), t]. (2.31)

ing trajectory a%(t) is extremal, and so steers #, to a terminal state o%(T) on the
lower boundary of the set of attainability A(T).

Let #(T)=[3" y(T)] be an outward normal vector to the set A(T) at the
point a%( T). Then 7°<0, and %°=0 just in case &(T") lies on the boundary of the
set of attainability A(7T"). Define (¢)=[»° 5(¢)] as the solution of the differential
system (2.25) under the terminal condition #(7). Then we must prove that
the maximum condition (2.26) is obtained for almost all ¢ in the planning period.

In the case of 3°=o0, y(T') is an outward normal vector to the set A(T) at
the point #(T) in §A(T), and the maximum condition

v(t)f(t)=r;;a;< p(t)]

holds almost everywhere on the planning period 0<¢<T as proved in Pro-
position 2. : -

Next we consider the case of 7°<0. In this case we can assume 3'=—1
without loss of generality. Assume that the investment policy I(f)c2 on
0<2<T does not satisfy the maximum condition (2.26) on some subinterval of

positive duration in the planning period, and define an investment policy I(z)
c® on 0<:<T by

—SU(), e +r(Oi)=max [S(L, e~ +5(0)]].

Let K denote a compact subinterval of positive duration in 0<¢<<T whereon

investment policies I(t) and I(£) are continuous and where

—SH(®), e +yOIO<—S(@), e~ +yDIB)—7
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for some constant y>0. Take a time ¢, in K for which the interval (¢,, #,+¢)
NK has a measure ¢[14-0(¢)] for all small >0, where lim0(¢)=0. Define

e—0

an investment policy I°(¢) as

_[I(ty  on Kn(ty, t+e)
1 (t)—{['(t) elsewhere on [0, T]

Then for sufficiently small ¢>0, the trajectory #°(f) corresponding to the
investment policy I°(f) approximates uniformly the trajectory a%(t) correspond-
ing to I(#), that is,

| &5(t)—&(2) | <ke

for some £>0 and on the planning period 0<¢<7, where

of75]

Since (91 /dx)e™™ is continuous, we obtain

an(x f)

0 D) —w(e)]e I [x(8), e+ [x(2), e|<e0(e).

Using the computations in the first half of this proof, .we have
HT)%(T)—7(0)%,
T Tol(x, t
| -0 -nwoo s, georo
0 .

Therefore we have

AT)R(T)—A(T)(T)

< | PP et scon—trpecey s, e

0
—re[1+oE)].

Then, for sufficiently small ¢>0, the inequality

HTWF(T)<n(T)i(T)
is obtained. But this is impossible since #(7") is an outward normal vector

to A(T) at .92( T) in the lower boundary of A(T). Therefore the extremal invest-
ment policy /() must satisfy the maximum condition (2.26) with the adjoint
trajectory #(¢) almost everywhere on the planning period 0<:<7. (Q.E.D))

An optimal investment policy must be extremal and so it must satisfy the
conditions stated in Proposition 6, We prove then the uniqueness of the optimal
investment policy.
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Proposition 7. Consider the extended control process
O={S[I(2), {]—[x(2), t]e " (2.20)
®=1I(2)— 0x(t) (2.3)
with initial state %, and constraint on the investment policy
0<I(t)=l,.. (0=:<T). (2.5)

Any two extremal investment policies which steer the initial state %, to
the same terminal state on the lower boundary of the set of attainability A(7T")
must coincide almost everywhere on the planning period 0<t<7T. Moreover,
there exists a unique optimal investment policy.

Proof. Consider two extremal investment policies I'(f) and I%(f) £ on

0<¢<T both of which steer #; to the same point 9%(T) on the lower boundary of
A(T), where

- x(¢
-5
Let 7()=[7" 5(t)] be the corresponding adjoint trajectory.

If an (n+1)-vector [0 5(T')] determines an outward normal vector to A(7T')

at #(T), then, as proved in proposition 3, we have I'(¢)=1I%t) almost everywhere
on 0<z<T.
Next we consider the case of 7°<<0. In this case we may assume 7°=—1

without loss of generality. Let 9%(25) denote the corresponding trajectory to the
investment policy I'(t) 2 on 0<t<T, and let #'(£)=[—1 3!(£)] be the corresnd-
ing adjoint trajectory, such that $(7’) is an outward normal vector to 4(T) at

O?A(T) Since the investment policy I(T) is extremal, we have
—S[I'(), ey (I ()=max [—S(L, e+ (O =a()
Iep

almost everywhere on the planning period 0<t< T.
Let #%() denote the corresponding trajectory to the investment policy I%(z),

and suppose that I%(t) steers #, to the same boundary point a%(T)

If, for the specified »'(¢), the investment policy I%#) fails to satisfy the
maximum condition on some subinterval of [0, 7] with a positive duration,
we obtain the inequality

T T

{—=S[I(2), fle "5 (O) I (2)}dt >\ {—S[IX?), tle™"

0 0

+3(£)I%(¢)}dt. (2.32)
Now compute ﬁl(T)oé(T)—ﬁl(T)oéz(T) by the same method in the proof of
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proposition 6. From the inequality (2.32) and the assumption that the operating
profit function /7 is concave in x. we obtain

HT)®(T)>PH(T)#(T)=7(T)&(T)-
However this is a contradition. Therefore we can say that any two extremal
investment policies I'(t) and I%(#) must satisfy the same maximum condition
almost everywhere on 0<t<T. .

Next, consider the investment policy 3[I'(#)+I%%)]. Then by the strict
convexity of the expansion cost functions S in I we obtain, whenever I'(¢)~17(t),

—SEI'O+IXE), tle™" 7 @) [I(t)+1(1)] > 3ot +o()

Thus we conclude that two investment policies I*(¢) and I%(t) must coincide
almost everywhere on the planning period.

Since the objective functional J(I)=%(T') achieves its minimum value at
a unique point of the lower boundary of A(T), as proved in proposition 5, there
exists a unique optimal investment policy. - (Q.E.D))

We proceed now to show what the optimality condition is.

Proposition 8. Consider the extended control process

#0=(S[I(2), f]—IT[x(t), t]}e" (2.20)

x=1I(t)— 0x(t) (2.3)
with the initial state #, and the constraint on the investment policy

0<I(H=l,... (0=t<T). (2.5)

An investment policy I*(t) c on 0<t<T with corresponding trajectory £*(z)
is optimal if I*(f), *({) and nonvanishing 7(t) satisfy the differential system
oll (x*,

y=— T Dy, oT)=0 2.33)

and satisfy the maximum condition

—SU*(), fle oI *(@)=max [~SI, D +yOI] (234

almost everywhere on the planning period 0<¢<T.

Proof. Assume that the investment policy I*(t) c on 0=<¢<T, the cor-
responding trajectory of capital stocks x*(), and the corresponding adjoint
trajectory 3(f) satisfy the maximum condition (2.34) and the differential system

(2.33) with the transversality condition 7(T)=0. Let I(t) denote any other
admissible investment policy, and let #(¢) be the corresponding trajectory of

capital stocks.
Differentiate —(t)+7(t)x(t) with respect to ¢, and compute —x**(7)+
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Z%T) under the transversality condition »(7)=0. Then we obtain

—x"*(T)+&%T)
“S {w[ (O)—a*(@)]e "+ (x4(1), D—H(E (D), e

F[=SI*@), e~ -y *B)]—[—SU(@), t)e™

+77(t)f(t)]}dt (2.35)
The concavity of the operating profit function /7 in x shows that
*
M[ S(O— I [F(), A—T[x%(0), 1 (2:36)

The investment policy I*(¢) satisfies the maximum condition (2.34) almost every-

where on 0<t<7. On the other hand the investment policy I(f) is distinct
from I*(t), and so there exists a subinterva of a positive duration of [0, 7] whereon
the inequality

=S, e +yB)l(H)<max [—S(T, e~ +y(2)]]

holds for 7(¢) that satisfies the maximum cndition (2.34) together with I*(z).()
Therefore we obtain the inequality

g:{—-S[I*(t), tle " 4-p(t)[*(¢)}dt > :{——S[f(t), tle™"

+y()1(2)3de. (2.37)
Thus, from (2.36) and (2.37), the right hand side of (2.35) is positive. So
we have
¥(T)<x%(T)

as required. . (Q.E.D)
By the above arguments the uniqueness of the optimal investment policy
and the optimality conditions were shown. Next, we prove that the corres-
ponding optimal trajectory of capital stocks and the correspondmg adjoint trajec-
tory are uniquely determined respectively.
Proposition 9. Consider the extended control process

W= (S[I(t), {]—II[x(t), t]}e" (2.20)
a=1(£)— dx(2) (2.3)

(10) Otherwise we have I*(t):IZt) almost everywhere on 0<t<T.
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with the initial state £, and the constraint on the investment policy
0<I(t)< max 0=t<T). ‘ (2.5)
Then the differential system
x=1I*(t,p)—ox(t)

oll(x, 1) _,
ﬁ=—é—§)e "3, T)=0

has a unique solution x*(#), 7*(¢). Here I*(¢, ) is determined by the maximum
condition

=S, e +pI*(O)=max [-SU, " +70I],  (234)

and I*(t)=1I%*(t, ) with the corresponding trajectory x*(¢) is the unique optimal
investment policy. :

Proof. Let I*(t) be the optimal investment policy that steers the initial
state #, to a terminal state #*(7T") by the corresponding trajectory %#*(t), where
%*(t) is defined as

o {33

Then the terminal state £*(T') belongs to the low/r boundary of the set of attai-
nability A(T), and the inequality x°¥(T")<x%T') holds for any other attainable
x°(T). And there exists a supporting hyperplane p* of A(T) at &¥(T) which
is parallel to x°=0.

Therefore we can define the vector #*(T)=["*(T) »*(T)[=[—1 0] as an
outward normal vector to A(T) at &*(T).

Now let 7*(¢) be the solution of the differential system

oIl (x*, 1)

. 1) -t
== +7(2)9

under the terminal condition 7(7")=0, then the investment policy I*(¢) with the
corresponding adjoint trajectory »*(z) satisfies the maximum condition (2.34)
almost everywhere on 0<¢<T as proved in Proposition 6. Therefore we have

I*()=I*(t, 7).

The expansion cost function S is strictly convex in /'Y, and the supporting
hyperplane p* meets A(T') at only one point #¥(7T").

Therefore I*(#), x*(¢), and »*(f) are uniquely determined respectively.

(QED.)

(11) A(T) is a strictly convex hypersurface defined over the set of attainability of capital stocks
A(T).
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Now let us seek the optimal investment policy that minimizes the objective
functional J(I)=x°(T). By the above arguments the optimal investment policy,
the corresponding optimal trajectory and the corresponding adjoint trajectory
are uniquely determined as I*(f) c2 on 0<¢<T, x*(t) and y(¢) that satisfy the
differential system with the boundary conditions x(0)=x, and 7(7")=0

&=1(t)—ox(t) _ (2.3)
and

oll (x*, t
p= o Doy, (2.33)

and satisfy the maximum condition
—S[I*(¢), tle "“+p(t)I*(t)= max[ S, t)e "+y(H)I] (2.34)

almost everywhere on the planning period 0<¢<T.
Define the Hamiltonian function H as

H=(S[I(t),f]— I [x(2),t]e~"-Fn(t)[I()— dx(t). (2.38)

Then the maximum condition (2.34) is eqiavalent to the maximimization of the
function H with respect to I.
Now we introduce a vector-valued function ¢(#) defined by

o(t)=7(t)e.”

Then the vector ¢(2) is interpreted as the imputed price vector of gross invest-
ments. The differential system (2.33) is rewritten as

. oll (x*, t

o= 00 s oyrE 1)

where the boundary condition at t=T is ¢(T)=0 and E is an n xn identity
matrix. And the maximum condition (2.34) and the Hamiltonian function (2.38)
are respectively written as

=S, A+e(OI*(O)=max [=S(, 1)+¢(?)]]
and
=—{S[(t), =1 [x(2), Pe "+ () —ox(t)]e™"
Define a function H* by
H*=—S[I(#), 11+ ¢()I(2).

By maximizing the function H* with respect to I €8, the optimal investment
policy is obtained as a function of ¢(2).
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Now differentiating the functio H* with espect to I we obtain

aHA_._ﬁ_I_ t)
ol oI ¢(2)-

When we ignore the constraint on the investment policy (2.5), the first necessary
condition for a maximum is

N
—5 FeH=0. (2.39)

And the secondary condition is guaranteed by the strict convexity of the expan-
sion cost function S in I.

Taking account of the constraint on the investment policy (2.5), the invest-
ment policy I*(#)=1I*(t, ¢) that maximizes the function H* can be determined.

2.2.2. In this section we consider the case in which the target set at =T
is prescribed as a compact convex set in the x-space R*. This is the case in
which the firm requires the terminal state of capital stocks to lie in some pres-
cribed compact convex set. Except for the target set at the end of the planning
period, other factors constituting the moel are assumed to be same as those of
Section 2.2.1.0(2)

Let the constraint on the terminal state of capital stocks be represented by

Xonin S X(T) £ X | (2.40)
where n-vectors x,,, and x.., are defined as
Ximin Xmax
Xppin= xzzmi“ and x,_,,= x:2max
X x,

nmin nmax

.in and x;... are positive finite numbers. Let the set of all endpoints
that satisfy the constraint (2.40) be denoted by X in the x-space R". The set
X is the target set at t=T.

Now our problem is to choose the investment polict I(z)c 2 on 0<¢t< T that
steers the initial state of capitalstocks x, to a terminal state in the target set X
and minimizes the objective functional J(I).

Introducting the target set at =7 into the picture, the terminal state x(7")
must be in the intersection of the set of attainability A(7") and the target set X.
Therefore we must choose the investment policy I(f)c £ on 0<t<T that steers
x, to some point in the set 4(T)N X and minimizes J(I).

By the above arguments it is obvious that we nst require

A(T)n X4, (2.41)

and x,

(12) ‘Therefore Proposition 1, 2, 3 and 4 in the previous section hold in this section too.
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exogenous. The effects of the technological progresses occured elsewhere are
singificant, but the research and development of production technology by the
firm is very important too. Then we examine the optimal research and develop-
ment policy of the firm in the following.

Now, define the expanision cost founction S as a strictly convex function
of I in the same way as before. The operating profit function /] may be regarded
as a function of capital stocks, the supply conditions of perfectly variable factors
and the production technology. At each moment of time the production te-
chnology may be regarded as a function of the accumulated expenditures for
research and development of the production technology. Let y(f) be the
accumulated expenditures up to time #, and call this “research and development
fund”, or simply “R & D fund”. Then the operating profit function may be
denoted by [7[x(t), y(£), t], where y(¢) is measured in dollar term. Let I (%)
be the rate of “‘gross investment in research and development”.

Then we have

Jay=\ (SU, d+L0—110), 50, e de (3.1)

as the objective functional to be minimized.
If we assume that y(f) “wears out” at a constant exponential rate J,, the
evolution of y(¢) is determined by

y=L()—0,5(%) (3.2)
and
Y(0)=,,
where y, is the initial state of R & D fund.
On the other hand the evolution of capital stocks is determined by

&=1(t)— ox(t) (3.3)
and
x(0)=ux,,

where x, is the initial state of capital stocks.
Now we states several assumptions to be maintained in section 3.2.
(1) I(t) is a Lesbegue measurable function on 0<¢<7, and its values
must satisfy the constraint

01 (n<l, (0=t<T)

max

The set of all I, that satisfy the constraint is denoted by £ ,cR"

(2) The operating profit function /7 is concave and differentiable with
respect to x and y. For every ¥>0 and y>0, [1=0, 6/1/0x>0 and
011 [ay>0.
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In addition, the assumptions (1) and (3) stated in section 2.1 are maintained.

3.2. Optimal Research and Development Policy
Thus our problem is formulated as follows.
Find the combination of
(1) the optimal investment policy I(f)c® on 0<¢<T that steers x, to
a terminal state in some prescribed target set by the control process
(3.3), and
(2) the optimal research and development policy I (f)c@, on 0<t<T
that steers y, to a terminal state in some prescribed target set by the
control process (3.2),
where the combination of optimal policies is the combination of I(#) and L(¢)
for which the objective functional (3.1) achieves the least possible value.
Obviously this problem is similar to the problems in section 2. So we
can say as follows.
1. Let A,(T) be the set of attainability of the control process (3.3) and (3.2)
with the initial state x, , and the constraint sets 2 and £, where

7o)
X
xyoz[ °i|.
Yo

Then the set A (T) is a strictly convex and compact set in the (x, y)-space
R,
2. 'The combination of the investment policy and the research and development -
policy that steers x, to each boundary point of the set 4 (T is unique.
3. Define x%#) by

= (S[I), -+IO—H[x(), (@), e (3.4)
%(0)=0,

and (n--2)-vectors #,(¢) and %, by

x%(t) 0
aﬁy(t)z[x(t) J and .92'%:{300 J
¥(?) Yo

Let A (T)cR**? denote the set of attainability of the trajectory #,(f) initiating
as &£, that corresponds to I(f)c@ and I(f)cQ, on 0<t<7. Then the
lower boundary of the set A (T) is a strictly convex hypersurface, and the
combination of policies that steers #, to each point on the lower boundary
of A,(T) exists. Moreover, there exists a unique point at which the objective
functional achieves the least possible value.

4. If the target set at the end of the planning period is the (x, y)-space R"*!,
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then there exists a combination of the optimal investment policy and the
optimal research and development policy. The optimal investment policy
I*(t)c 2 on 0=¢<T, the optimal research and development policy I *(t)c£2
on 0<¢< T, the corresponding optimal trajectory #,*(¢), and the corresponding

adjoint trajectory %.,(2)=[y(f) %,(t)] are determined by
the differential system (3.4), (3.3) and (3.2) with initial condition %,(0)=

5‘;}’0’
the differential system
oIl (x*, y*, 1) _,
;7:_—-——(x £ )e ()0 l .
ox (3.5)
] oIl (x*, y*, t) - :
Py==— ay +7,(2)8, J

with terminal condition 7, (7")=0,
and the maximum condition

—SI*(Q), t]-+L,X(0)ke "+ y(OI* @)+, ()L, *(2)
= max (=[S, t)+1]le " +9(t)[+y,(t),}

IyEQ}'

almost everywhere on 0<t<T.

5. Let the target set at =T be prescribed as a compact convex set in R"*1,
and assume that the control process (3.3) and (3.2) is controllable, that is,
there exists at least one combination of policies with graphs in £ and 2,
that steers x, to some point in the intersection of 4,(T) and the target set.
When the optimal point lies on the boundary of the target set, there exists a
combination of the optimal policies. The combination of the optimal
policies, the corresponding optimal trajectory, and the corresponding adjoint
trajectory can be determined in the same way as in the statement 4. But
in the case treated here the terminal condition of the differential system (3.5)
(the transversality condition) is stated as follows:

[(T) »,T)] is an inward normal vector of the target set at the
boundary point x, *(T).
Since we can prove these statements in the same way as in section 2, we
omit the proofs.

3.3. Remarks on Advertising Policy

Advertising expenditures are similar in many respects to investment in
plant and equipment. Advertising expenditures affect the demand function for
the product, and hence on the operating profit of the firm. By adding new
custmers and by altering the tastes and preferences of consumers such expen-
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ditures may shift the demand function and may change the shape of the func-
tion.

In order to represent the effects of current and past advertising expenditures
we may define a “stock” in dollar term. We may call this stock “goodwill”
according to Nerlove and Arrow [9]. Let 2(¢) denote goodwill at time . Then
we may define the operating profit function by II[x(2), y(t), 2(¢), t], where x(t)
is capital stock and y(¢) is R & D fund.

_ Advertising expenditures in the past may be considered to contribute less,
and so it may be said that goodwill “depreciates”. Assuming depreciation at
a fixed exponential rate §, the evolution of goodwill is determined by

g=1I(t)—0.2(t)
2(0)':20’

where I(¢) is the rate of “‘gross investment in advertising”’ (current advertising
outlay) and z, is the initial state of goodwill.

We assume that I (f) is a Lesbegue measurable function on 0<t¢<T, and
that the values of I,(f) must satisfy the constraint

0<I(t)<l. ... (0=t<T)

Let 2.cR' denote the set of all I, that satisfy the constraint.
Now the problem is formulated as follows.
Find the combination of
(1) the optimal investment policy I(f)cQ on 0<t<T that steers the
initial state of capital stocks x, to a terminal state in some prescribed
target set in the x-spacer R" by the process

a=I(t)—ox(2),

(2) the optimal research and development policy I (f)c®, on 0=<t<T
that steers the initial state of R & D fund y, to a terminal state in some
prescribed target set in the y-space R' by the process

y:Iy(t)_ayy(t))

and

(3) the optimal advertising policy I(f)c£ on 0<t<T that steers the
initial state of goodwill z, to a terminal state in some prescribed target
set in the z-space R!' by the process '

z.:Iz(t)—azz(.t)y

where the combination of the optimal policies is the combination of I(f), ,(?)
and I () for which the objective functional
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Ja )=S:{S [1(2), H]+L,()+L()— 1 [x(2), y(2), 2(t), the™™ dt

achieves the least possible value.
Under some plausible assumptions on the functions // and S we can solve
this problem by the same method as used in the previous sections.
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